Nighttime Lights and Population Migration: Revisiting Classic Demographic Perspectives with an Analysis of Recent European Data
Abstract
1. Introduction
2. Materials and Methods
2.1. Theoretical Background
2.2. Data and Methods
3. Results
4. Discussion
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Elvidge, C.D.; Sutton, P.C.; Ghosh, T.; Tuttle, B.T.; Baugh, K.E.; Bhaduri, B.; Bright, E. A global poverty map derived from satellite data. Comput. Geosci. 2009, 35, 1652–1660. [Google Scholar] [CrossRef]
- Ghosh, T.; LPowell, R.; DElvidge, C.; EBaugh, K.; CSutton, P.; Anderson, S. Shedding light on the global distribution of economic activity. Open Geogr. J. 2010, 3, 147–160. [Google Scholar]
- Henderson, J.V.; Storeygard, A.; Weil, D.N. Measuring economic growth from outer space. Am. Econ. Rev. 2012, 102, 994–1028. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Nordhaus, W.D. Using luminosity data as a proxy for economic statistics. Proc. Natl. Acad. Sci. USA 2011, 108, 8589–8594. [Google Scholar] [CrossRef]
- Lo, C.P. Modeling the population of China using DMSP operational linescan system nighttime data. Photogramm. Eng. Remote Sens. 2001, 67, 1037–1047. [Google Scholar]
- Sutton, P.C.; Elvidge, C.; Obremski, T. Building and Evaluating Models to Estimate Ambient Population Density. Photogramm. Eng. Remote Sens. 2003, 69, 545–553. [Google Scholar] [CrossRef]
- Keola, S.; Andersson, M.; Hall, O. Monitoring Economic Development from Space: Using Nighttime Light and Land Cover Data to Measure Economic Growth. World Dev. 2015, 66, 322–334. [Google Scholar] [CrossRef]
- Doll, C.N.; Muller, J.-P.; Morley, J.G. Mapping regional economic activity from night-time light satellite imagery. Ecol. Econ. 2006, 57, 75–92. [Google Scholar] [CrossRef]
- Anderson, B. World Population Dynamics: An Introduction to Demography. In Chapter 12: Migration and Urbanization; Pearson: Upper Saddle River, NJ, USA, 2014; pp. 402–458. [Google Scholar]
- Weeks, J. Population: An Introduction to Concepts and Issues; Thomason Higher Education: Belmont, CA, USA, 2008. [Google Scholar]
- White, M.J.; Lindstrom, D.P. Internal migration. In Handbook of Population; Springer: Boston, MA, USA, 2005; pp. 311–346. [Google Scholar]
- Brown, S.K.; Bean, F.D. International migration. In Handbook of Population; Springer: Boston, MA, USA, 2005; pp. 347–382. [Google Scholar]
- Karemera, D.; Oguledo, V.I.; Davis, B. A gravity model analysis of international migration to North America. Appl. Econ. 2000, 32, 1745–1755. [Google Scholar] [CrossRef]
- Ghosh, M.; Rao, J.N.K. Small Area Estimation: An Appraisal. Stat. Sci. 1994, 9, 55–76. [Google Scholar] [CrossRef]
- Williamson, P.; Birkin, M.; Rees, P.H. The estimation of population microdata by using data from small area statistics and samples of anonymised records. Environ. Plan. A Econ. Space 1998, 30, 785–816. [Google Scholar] [CrossRef] [PubMed]
- Ravenstein, E.G. The Laws of Migration. J. Stat. Soc. Lond. 1885, 48, 167. [Google Scholar] [CrossRef]
- Young, E.C. The Movement of Farm Population; Cornell University Agricultural Experiment Station Ithaca: Ithaca, NY, USA, 1924; Volume 426. [Google Scholar]
- Zipf, G.K. The P 1 P 2 D Hypothesis: On the Intercity Movement of Persons. Am. Sociol. Rev. 1946, 11, 677. [Google Scholar] [CrossRef]
- Lee, E.S. A Theory of Migration. Demography 1966, 3, 47. [Google Scholar] [CrossRef]
- Ekelund, R.B., Jr.; Hébert, R.F. Retrospectives: The origins of neoclassical microeconomics. J. Econ. Perspect. 2002, 16, 197–215. [Google Scholar] [CrossRef]
- Fields, G.S. Dualism in the labor market: A perspective on the lewis model after half a century. Manch. Sch. 2004, 72, 724–735. [Google Scholar] [CrossRef]
- Stark, O.; Bloom, D.E. The new economics of labor migration. Am. Econ. Rev. 1985, 75, 173–178. [Google Scholar]
- Elvidge, C.D.; Baugh, K.E.; Kihn, E.A.; Kroehl, H.W.; Davis, E.R.; Davis, C.W. Relation between satellite observed visible-near infrared emissions, population, economic activity and electric power consumption. Int. J. Remote Sens. 1997, 18, 1373–1379. [Google Scholar] [CrossRef]
- Sutton, P.; Roberts, D.; Elvidge, C.; Meij, H. A comparison of nighttime satellite imagery and population density for the continental United States. Photogramm. Eng. Remote Sens. 1997, 63, 1303–1313. [Google Scholar]
- Sutton, P.; Roberts, D.; Elvidge, C.; Baugh, K. Census from Heaven: An estimate of the global human population using night-time satellite imagery. Int. J. Remote Sens. 2001, 22, 3061–3076. [Google Scholar] [CrossRef]
- Bustos, M.F.A.; Hall, O.; Andersson, M. Nighttime lights and population changes in Europe 1992–2012. Ambio 2015, 44, 653–665. [Google Scholar] [CrossRef] [PubMed]
- Chen, X. Explaining Subnational Infant Mortality and Poverty Rates: What Can We Learn from Night-Time Lights? Spat. Demogr. 2015, 3, 27–53. [Google Scholar] [CrossRef]
- Chen, X. Addressing Measurement Error Bias in GDP with Nighttime Lights and an Application to Infant Mortality with Chinese County Data. Sociol. Methodol. 2016, 46, 319–344. [Google Scholar] [CrossRef]
- Quinn, J.A.; Nyhan, M.M.; Navarro, C.; Coluccia, D.; Bromley, L.; Luengo-Oroz, M. Humanitarian applications of machine learning with remote-sensing data: Review and case study in refugee settlement mapping. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2018, 376, 20170363. [Google Scholar] [CrossRef]
- Chen, X.; Nordhaus, W.D. VIIRS Nighttime Lights in the Estimation of Cross-Sectional and Time-Series GDP. Remote Sens. 2019, 11, 1057. [Google Scholar] [CrossRef]
- Nordhaus, W.; Xi, C. A sharper image? Estimates of the precision of nighttime lights as a proxy for economic statistics. J. Econ. Geogr. 2015, 15, 217–246. [Google Scholar] [CrossRef]
- Henderson, J.V.; Storeygard, A.; Weil, D.N. A Bright Idea for Measuring Economic Growth. Am. Econ. Rev. 2011, 101, 194–199. [Google Scholar] [CrossRef]
- Chen, X.; Nordhaus, W. A Test of the New VIIRS Lights Data Set: Population and Economic Output in Africa. Remote Sens. 2015, 7, 4937–4947. [Google Scholar] [CrossRef]
- Small, C.; Pozzi, F.; Elvidge, C. Spatial analysis of global urban extent from DMSP-OLS night lights. Remote Sens. Environ. 2005, 96, 277–291. [Google Scholar] [CrossRef]
- Ghosh, T.; Elvidge, C.D.; Sutton, P.C.; Baugh, K.E.; Ziskin, D.; Tuttle, B.T. Creating a Global Grid of Distributed Fossil Fuel CO2 Emissions from Nighttime Satellite Imagery. Energies 2010, 3, 1895–1913. [Google Scholar] [CrossRef]
- Oda, T.; Maksyutov, S. A very high-resolution (1 km × 1 km) global fossil fuel CO2 emission inventory derived using a point source database and satellite observations of nighttime lights. Atmospheric Chem. Phys. 2011, 11, 543–556. [Google Scholar] [CrossRef]
- VIIRS Day/Night Band Nighttime Lights (Version 1); The Earth Observation Group, NOAA National Centers for Environmental Information (NCEI). Available online: https://ngdc.noaa.gov/eog/download.html (accessed on 15 October 2019).
- Elvidge, C.D.; Baugh, K.E.; Zhizhin, M.; Hsu, F.-C. Why VIIRS data are superior to DMSP for mapping nighttime lights. Proc. Asia Pac. Adv. Netw. 2013, 35, 62. [Google Scholar] [CrossRef]
- Miller, S.D.; Mills, S.P.; Elvidge, C.D.; Lindsey, D.T.; Lee, T.F.; Hawkins, J.D. Suomi satellite brings to light a unique frontier of nighttime environmental sensing capabilities. Proc. Natl. Acad. Sci. USA 2013, 109, 15706–15711. [Google Scholar] [CrossRef] [PubMed]
- Elvidge, C.D.; Baugh, K.; Zhizhin, M.; Hsu, F.C.; Ghosh, T. VIIRS night-time lights. Int. J. Remote Sens. 2017, 38, 5860–5879. [Google Scholar] [CrossRef]
- Falchi, F.; Furgoni, R.; Gallaway, T.; Rybnikova, N.; Portnov, B.; Baugh, K.; Cinzano, P.; Elvidge, C. Light pollution in USA and Europe: The good, the bad and the ugly. J. Environ. Manag. 2019, 248, 109227. [Google Scholar] [CrossRef] [PubMed]
- Kyba, C.; Garz, S.; Kuechly, H.; de Miguel, A.; Zamorano, J.; Fischer, J.; Hölker, F. High-resolution imagery of earth at night: New sources, opportunities and challenges. Remote Sens. 2015, 7, 1–23. [Google Scholar] [CrossRef]
- Bennie, J.; Davies, T.W.; Duffy, J.P.; Inger, R.; Gaston, K.J. Contrasting trends in light pollution across Europe based on satellite observed night time lights. Sci. Rep. 2014, 4, 3789. [Google Scholar] [CrossRef]
Net Migration | Lights (Annual) | Lights (Averaged Monthly) | GDP per Capita | Population | |
---|---|---|---|---|---|
Lights (annual) | 0.202 * | ||||
2512 | |||||
Lights (averaged monthly) | 0.109 * | 0.783 * | |||
5051 | 2566 | ||||
GDP per capita | 0.189 * | 0.045 * | 0.014 | ||
3902 | 2566 | 3983 | |||
Population | 0.300 * | 0.739 * | 0.454 * | 0.053 * | |
5051 | 2566 | 5132 | 3983 | ||
Area size (km2) | −0.036 * | 0.418 * | 0.741 * | −0.098 * | 0.087 * |
5051 | 2566 | 5132 | 3983 | 5132 |
Lights | GDP per Capita | Population | Year 2016 | Area Size (km2) | N | adj. R2 | |
---|---|---|---|---|---|---|---|
Austria | 0.084 | −0.023 | 0.845 * | −0.133 * | −0.098 * | 70 | 0.902 |
Belgium | 0.908 * | 0.100 | −0.693 * | −0.218 * | 0.145 | 88 | 0.224 |
Bulgaria | 0.739 + | 0.198 | −0.01 | −0.06 | −0.226 * | 56 | 0.820 |
Croatia | 0.384 | 0.775 * | −0.523 | −0.129 | −0.198 + | 42 | 0.535 |
Finland | −0.073 | 0.170 * | 0.908 * | 0.059 | −0.037 | 38 | 0.945 |
France | 0.291 + | −0.459 * | −0.337 + | 0.006 | 0.068 | 194 | 0.347 |
Germany | 0.070 | −0.014 | 0.793 * | −0.268 * | −0.075 * | 802 | 0.802 |
Greece | 0.899 * | −0.346 * | −1.123 * | 0.205 * | −0.129 + | 104 | 0.644 |
Hungary | 5.554 * | −0.946 * | −4.342 * | −0.244 + | 0.004 | 40 | 0.471 |
Italy | 0.288 | 0.466 * | 0.028 | 0.057 | −0.112 + | 220 | 0.390 |
Netherlands | −0.107 + | 0.194 * | 0.849 * | 0.145 * | −0.217 * | 80 | 0.812 |
Norway | 0.395 + | −0.102 | 0.372 | −0.073 | −0.476 * | 34 | 0.511 |
Poland | 0.630 * | 0.080 | −0.087 | 0.100 | 0.027 | 146 | 0.357 |
Portugal | 1.129 | 0.256 | −0.931 | 0.036 | 0.071 | 50 | 0.134 |
Romania | 1.381 * | −0.418 * | −1.241 * | 0.016 | −0.126 | 84 | 0.482 |
Spain | −1.452 * | 0.176 * | 2.129 * | 0.102 * | −0.153 * | 118 | 0.807 |
Sweden | 0.139 | −0.076 | 0.900 * | 0.135 * | −0.177 * | 42 | 0.968 |
UK | −0.234 * | 0.129 * | 0.678 * | −0.124 * | 0.140 * | 304 | 0.297 |
Lights Model | Population Model | ||||||
---|---|---|---|---|---|---|---|
N | VIIRS Annual | GDP per Capita | adj. R2 | Population | GDP per Capita | adj. R2 | |
Austria | 70 | 0.821 * | −0.022 | 0.747 | 0.916 * | −0.016 | 0.902 |
Belgium | 88 | 0.365 * | −0.038 | 0.167 | 0.099 | 0.146 | 0.107 |
Bulgaria | 56 | 0.729 * | 0.198 | 0.824 | 0.644 * | 0.278 * | 0.811 |
Croatia | 42 | −0.136 | 0.800 * | 0.525 | −0.197 | 0.839 * | 0.537 |
Finland | 38 | 0.515 * | 0.435 * | 0.610 | 0.860 * | 0.163 * | 0.944 |
France | 194 | 0.027 | −0.587 * | 0.341 | −0.015 | −0.571 * | 0.340 |
Germany | 802 | 0.823 * | −0.073 * | 0.724 | 0.857 * | −0.007 | 0.802 |
Greece | 104 | 0.046 | −0.534 * | 0.269 | −0.404 * | −0.294 * | 0.392 |
Hungary | 40 | 0.785 * | −0.346 | 0.265 | 0.597 * | −0.145 | 0.194 |
Italy | 220 | 0.316 * | 0.466 * | 0.393 | 0.293 * | 0.478 * | 0.386 |
Netherlands | 80 | 0.117 | 0.686 * | 0.566 | 0.791 * | 0.185 * | 0.807 |
Norway | 34 | 0.589 * | 0.083 | 0.501 | 0.791 * | −0.274 | 0.467 |
Poland | 146 | 0.548 * | 0.080 | 0.360 | 0.324 * | 0.278 * | 0.301 |
Portugal | 50 | 0.227 | 0.262 + | 0.124 | 0.184 | 0.287 + | 0.109 |
Romania | 84 | 0.561 * | −0.679 * | 0.056 | −0.673 * | 0.361 * | 0.155 |
Spain | 118 | 0.639 * | 0.177 * | 0.579 | 0.731 * | 0.152 * | 0.704 |
Sweden | 42 | 1.088 * | −0.071 | 0.852 | 0.979 * | −0.034 | 0.967 |
UK | 304 | 0.295 * | 0.112 * | 0.118 | 0.496 * | 0.127 * | 0.278 |
Lights Model | Population Model | ||||||
---|---|---|---|---|---|---|---|
N | VIIRS Monthly | GDP per Capita | adj. R2 | Population | GDP per Capita | adj. R2 | |
Austria | 105 | 0.728 * | 0.016 | 0.671 | 0.921 * | −0.017 | 0.915 |
Belgium | 176 | 0.400 * | 0.002 | 0.213 | 0.133 | 0.179 + | 0.145 |
Bulgaria | 112 | 0.702 * | 0.208 + | 0.712 | 0.715 * | 0.158 | 0.749 |
Croatia | 63 | −0.096 | 0.793 * | 0.600 | −0.142 | 0.825 * | 0.605 |
Finland | 57 | 0.182 | 0.642 * | 0.431 | 0.861 * | 0.168 * | 0.950 |
France | 194 | 0.023 | −0.585 * | 0.341 | −0.015 | −0.571 * | 0.340 |
Germany | 1203 | 0.842 * | −0.045 * | 0.708 | 0.869 * | 0.007 | 0.816 |
Greece | 156 | −0.009 | −0.516 * | 0.287 | −0.489 * | −0.258 * | 0.470 |
Hungary | 80 | 0.756 * | −0.202 | 0.383 | 0.624 * | −0.061 | 0.330 |
Italy | 330 | 0.400 * | 0.382 * | 0.386 | 0.349 * | 0.406 * | 0.366 |
Netherlands | 80 | 0.105 | 0.697 * | 0.564 | 0.791 * | 0.185 * | 0.807 |
Norway | 51 | 0.394+ | 0.328 * | 0.414 | 0.721 * | −0.047 | 0.589 |
Poland | 219 | 0.519 * | 0.113 | 0.410 | 0.308 * | 0.311 * | 0.319 |
Portugal | 75 | 0.034 | 0.266 * | 0.100 | −0.029 | 0.299 * | 0.099 |
Romania | 126 | 0.673 * | −0.777 * | 0.130 | −0.621 * | 0.328 * | 0.149 |
Spain | 177 | 0.215 * | 0.129 + | 0.178 | 0.299 * | 0.104 | 0.220 |
Sweden | 63 | 0.272 | 0.717 * | 0.659 | 0.942 * | 0.016 | 0.969 |
UK | 635 | 0.331 * | 0.150 * | 0.126 | 0.521 * | 0.156 * | 0.314 |
Net Migration | ||
---|---|---|
Coef. of Xi var. | Coef. of Interaction Term (Xi var. × Lights) | |
Lights | 1.262 * | |
GDP per capita | −0.001 | −0.153 * |
Population | 0.016 | 0.483 * |
Country dummy variable | ||
Austria | −0.004 | 0.245 * |
Belgium | 0.105 * | −0.107 * |
Bulgaria | 0.014 | 0.006 |
Croatia | 0.004 | −0.058 |
Finland | 0.048 | −0.511 * |
France | 0.241 * | −0.687 * |
Germany | 0.215 * | 0.364 * |
Greece | 0.115 * | −0.166 * |
Italy | 0.185 * | −0.593 * |
Netherlands | 0.144 * | −0.297 * |
Norway | 0.070 + | −0.244 * |
Poland | −0.006 | −0.104 + |
Portugal | 0.077 * | −0.363 * |
Romania | 0.032 | −0.115 * |
Spain | 0.159 * | −0.794 * |
Sweden | 0.120 * | −0.314 * |
United Kingdom | 0.254 * | −0.106 + |
N | 2512 | |
adj. R2 | 0.507 |
Linear Model | Quadratic Model | Spatial Lag Model | |
---|---|---|---|
Lights | 0.012 * | −0.0194 * | 0.010 * |
(3.568) | (−3.840) | (3.107) | |
Lights squared | 0.000 * | ||
(7.913) | |||
GDP per capita | 0.016 * | 0.016 * | 0.012 * |
(3.400) | (3.444) | (2.600) | |
Population | 0.002 * | 0.003 * | 0.002 * |
(7.347) | (8.996) | (8.327) | |
Area size (km2) | −0.037 * | −0.008 | −0.030 * |
(−2.442) | (−0.520) | (−2.075) | |
Constant | −539.113 * | −231.704 | −753.450 * |
(−3.016) | (−1.296) | (−4.394) | |
Spatial lag parameter (p) | 0.311 * | ||
(9.175) | |||
N | 1256 | 1256 | 1256 |
adj. R2 | 0.172 | 0.208611 | 0.242 |
Log likelihood | −11,834.9 | −11,804.2 | −11,792.4 |
Moran’s I (error) | 13.992 * | ||
Lagrange multiplier (LM; lag) | 106.382 * | ||
Robust LM (lag) | 55.960 * |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X. Nighttime Lights and Population Migration: Revisiting Classic Demographic Perspectives with an Analysis of Recent European Data. Remote Sens. 2020, 12, 169. https://doi.org/10.3390/rs12010169
Chen X. Nighttime Lights and Population Migration: Revisiting Classic Demographic Perspectives with an Analysis of Recent European Data. Remote Sensing. 2020; 12(1):169. https://doi.org/10.3390/rs12010169
Chicago/Turabian StyleChen, Xi. 2020. "Nighttime Lights and Population Migration: Revisiting Classic Demographic Perspectives with an Analysis of Recent European Data" Remote Sensing 12, no. 1: 169. https://doi.org/10.3390/rs12010169
APA StyleChen, X. (2020). Nighttime Lights and Population Migration: Revisiting Classic Demographic Perspectives with an Analysis of Recent European Data. Remote Sensing, 12(1), 169. https://doi.org/10.3390/rs12010169