Upstream Remotely-Sensed Hydrological Variables and Their Standardization for Surface Runoff Reconstruction and Estimation of the Entire Mekong River Basin
Abstract
:1. Introduction
2. The Geography of the Mekong River Basin (MRB) and of Yunnan Province
3. Datasets
3.1. In Situ Hydrological Stations and Traditional Remotely-Sensed Data
3.2. Remotely-Sensed Hydrological Variables and Their Standardization
3.2.1. Remotely-Sensed Precipitation and Its Standardized Index, from TRMM
3.2.2. Remotely-Sensed Terrestrial Water Storage (TWS) and Its Standardized Index, from GRACE
3.2.3. Remotely-Sensed Evapotranspiration and Its Standardized Form, from MODIS
4. Methodology and Evaluation Metrics
4.1. Correlative Analysis, Data Standardization Results, and Estimation Procedures
4.2. Result Evaluation Metrics
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tarpanelli, A.; Barbetta, S.; Brocca, L.; Moramarco, T. River discharge estimation by using altimetry data and simplified flood routing modeling. Remote Sens. 2013, 5, 4145–4162. [Google Scholar] [CrossRef]
- Hassan, A.A.; Jin, S. Lake level change and total water discharge in east Africa rift valley from satellite-based observations. Glob. Planet. Chang. 2014, 117, 79–90. [Google Scholar] [CrossRef]
- Huang, S.; Krysanova, V.; Zhai, J.; Su, B. Impact of intensive irrigation activities on river discharge under agricultural scenarios in the semi-arid Aksu river basin, northwest China. Water Resour. Manag. 2015, 29, 945–959. [Google Scholar] [CrossRef]
- Pauw, K.; Thurlow, J. Economic Losses and Poverty Effects of Droughts and Floods in Malawi; International Food Policy Research Institute (IFPRI): Washington, DC, USA, 2009. [Google Scholar]
- Zampieri, M.; Carmona Garcia, G.; Dentener, F.; Gumma, M.; Salamon, P.; Seguini, L.; Toreti, A. Surface freshwater limitation explains worst rice production anomaly in India in 2002. Remote Sens. 2018, 10, 244. [Google Scholar] [CrossRef]
- Jarihani, A.A.; Callow, J.N.; Johansen, K.; Gouweleeuw, B. Evaluation of multiple satellite altimetry data for studying inland water bodies and river floods. J. Hydrol. 2013, 505, 78–90. [Google Scholar] [CrossRef]
- Sneeuw, N.; Lorenz, C.; Devaraju, B.; Tourian, M.J.; Riegger, J.; Kunstmann, H.; Bardossy, A. Estimating runoff using hydro-geodetic approaches. Surv. Geophys. 2014, 35, 1333–1359. [Google Scholar] [CrossRef]
- Wen, X.; Hu, D.; Cao, B.; Shen, S.; Tang, X. Dynamics change of Honghu lake’s water surface area and its driving force analysis based on remote sensing technique and TOPMODEL model. IOP Conf. Ser. Earth Environ. Sci. 2014, 17, 012130. [Google Scholar] [CrossRef]
- Townsend, P.A.; Walsh, S.J. Modeling floodplain inundation using an integrated GIS with radar and optical remote sensing. Geomorphology 1998, 21, 295–312. [Google Scholar] [CrossRef]
- Yue, W.; Xu, J.; Tan, W. The relationship between land surface temperature and NDVI with remote sensing: Application to shanghai Landsat 7 ETM+ data. Int. J. Remote Sens. 2007, 28, 3205–3226. [Google Scholar] [CrossRef]
- Pan, F.; Nichols, J. Remote sensing of river stage using the cross-sectional inundation area-river stage relationship (IARSR) constructed from digital elevation model data. Hydrol. Process. 2013, 27, 3596–3606. [Google Scholar] [CrossRef]
- Smith, L.C.; Pavelsky, T.M. Estimation of river discharge, propagation speed, and hydraulic geometry from space: Lena river, Siberia. Water Resour. Res. 2008, 44, 173–175. [Google Scholar] [CrossRef]
- Tarpanelli, A.; Brocca, L.; Lacava, T.; Faruolo, M.; Melone, F.; Moramarco, T.; Pergola, N.; Tramutoli, V. River discharge estimation through MODIS data. In Remote Sensing for Agriculture Ecosystems & Hydrology XIII; SPIE—International Society For Optics and Photonics: Bellingham, WA, USA, 2011; Volume 8174, pp. 283–304. [Google Scholar]
- Chiara, C.; Marco, M. Calibration and validation of a distributed energy–water balance model using satellite data of land surface temperature and ground discharge measurements. J. Hydrometeorol. 2012, 15, 376–392. [Google Scholar]
- Lu, X.X.; Wang, J.; Higgitt, D.L. NDVI and its relationships with hydrological regimes in the Upper Yangtze. Can. J. Remote Sens. 2000, 26, 418–427. [Google Scholar] [CrossRef]
- Li, C.H.; Yang, Z.F. Spatio-temporal changes of NDVI and their relations with precipitation and runoff in the Yellow River Basin. Geogr. Res. 2004, 23, 753–759. [Google Scholar]
- Xu, W.; Yang, D.; Li, Y.; Xiao, R. Correlation analysis of Mackenzie river discharge and NDVI relationship. Can. J. Remote Sens. 2016, 42, 292–306. [Google Scholar] [CrossRef]
- Leopold, L.B.; Maddock, T. The Hydraulic Geometry of Stream Channels and Some Physiographic Implications; US Geological Survey: Washington, DC, USA, 1953; Volume 252.
- Chow, V.T.; Maidment, D.; Mays, L. Applied Hydrology; Water Resour. Environ. Ser.; McGraw-Hill: Singapore, 1988. [Google Scholar]
- Bjerklie, D.M.; Moller, D.; Smith, L.C.; Dingman, S.L. Estimating discharge in rivers using remotely sensed hydraulic information. J. Hydrol. 2005, 309, 191–209. [Google Scholar] [CrossRef]
- LeFavour, G.; Alsdorf, D. Water slope and discharge in the Amazon river estimated using the shuttle radar topography mission digital elevation model. Geophys. Res. Lett. 2005, 32, L17404. [Google Scholar] [CrossRef]
- Matgen, P.; Schumann, G.; Henry, J.B.; Hoffmann, L.; Pfister, L. Integration of SAR-derived river inundation areas, high-precision topographic data and a river flow model toward near real-time flood management. Int. J. Appl. Earth Obs. 2007, 9, 247–263. [Google Scholar] [CrossRef]
- Neal, J.; Schumann, G.; Bates, P.; Buytaert, W.; Matgen, P.; Pappenberger, F. A data assimilation approach to discharge estimation from space. Hydrol. Processes. 2010, 23, 3641–3649. [Google Scholar] [CrossRef]
- Pavelsky, T.M.; Durand, M.T.; Andreadis, K.M.; Beighley, R.E.; Paiva, R.C.D.; Allen, G.H.; Miller, Z.F. Assessing the potential global extent of SWOT river discharge observations. J. Hydrol. 2014, 519, 1516–1525. [Google Scholar] [CrossRef]
- Gleason, C.J.; Smith, L.C. Toward global mapping of river discharge using satellite images and at-many-stations hydraulic geometry. Proc. Natl. Acad. Sci. USA 2014, 111, 4788–4791. [Google Scholar] [CrossRef] [PubMed]
- Gleason, C.J.; Wang, J. Theoretical basis for at-many-stations hydraulic geometry. Geophys. Res. Lett. 2015, 42, 7107–7114. [Google Scholar] [CrossRef]
- Sichangi, A.; Wang, L.; Hu, Z. Estimation of river discharge solely from remote-sensing derived data: An initial study over the Yangtze river. Remote Sens. 2018, 10, 1385. [Google Scholar] [CrossRef]
- Hirpa, F.A.; Hopson, T.M.; De Groeve, T.; Brakenridge, G.R.; Gebremichael, M.; Restrepo, P.J. Upstream satellite remote sensing for river discharge forecasting: Application to major rivers in South Asia. Remote Sens. Environ. 2013, 131, 140–151. [Google Scholar] [CrossRef]
- Shih, S.F.; Rahi, G.S. Seasonal variations of Manning’s roughness coefficient in a subtropical marsh. Trans. ASABE 1982, 25, 116–119. [Google Scholar] [CrossRef]
- Mailapalli, D.R.; Raghuwanshi, N.S.; Singh, R.; Schmitz, G.H.; Lennartz, F. Spatial and temporal variation of Manning’s roughness coefficient in furrow irrigation. J. Irrig. Drain Eng. 2008, 134, 185–192. [Google Scholar] [CrossRef]
- Frappart, F.; Minh, K.D.; L’Hermitte, J.; Cazenave, A.; Ramillien, G.; Le Toan, T.; Mognard-Campbell, N. Water volume change in the lower Mekong from satellite altimetry and imagery data. Geophys. J. Int. 2006, 167, 570–584. [Google Scholar] [CrossRef]
- Calmant, S.; Seyler, F.; Cretaux, J.F. Monitoring continental surface waters by satellite altimetry. Surv. Geophys. 2008, 29, 247–269. [Google Scholar] [CrossRef]
- Beven, K.J. Rainfall-Runoff Modelling: The Primer; John Wiley &Sons: Chichester, UK, 2001. [Google Scholar]
- Tourian, M.J.; Sneeuw, N.; Bárdossy, A. A quantile function approach to discharge estimation from satellite altimetry (ENVISAT). Water Resour. Res. 2013, 49, 4174–4186. [Google Scholar] [CrossRef]
- Kouraev, A.V.; Zakharova, E.A.; Samain, O.; Mognard, N.M.; Cazenave, A. Ob’river discharge from TOPEX/Poseidon satellite altimetry (1992–2002). Remote Sens. Environ. 2004, 93, 238–245. [Google Scholar] [CrossRef]
- Birkinshaw, S.J.; O’donnell, G.M.; Moore, P.; Kilsby, C.G.; Fowler, H.J.; Berry, P.A.M. Using satellite altimetry data to augment flow estimation techniques on the Mekong River. Hydrol. Process. 2010, 24, 3811–3825. [Google Scholar] [CrossRef]
- Paiva, R.C.D.; Collischonn, W.; Bonnet, M.P.; De Goncalves, L.G.G.; Calmant, S.; Getirana, A.; Santos da Silva, J. Assimilating in situ and radar altimetry data into a large-scale hydrologic-hydrodynamic model for streamflow forecast in the Amazon. Hydrol. Earth Syst. Sci. 2013, 17, 2929–2946. [Google Scholar] [CrossRef]
- Tourian, M.J.; Schwatke, C.; Sneeuw, N. River discharge estimation at daily resolution from satellite altimetry over an entire river basin. J. Hydrol. 2017, 546, 230–247. [Google Scholar] [CrossRef]
- Gómez-Enri, J.; Escudier, R.; Pascual, A.; Mañanes, R. Heavy Guadalquivir River discharge detection with satellite altimetry: The case of the eastern continental shelf of the Gulf of Cadiz (Iberian Peninsula). Adv. Space Res. 2015, 55, 1590–1603. [Google Scholar] [CrossRef]
- Sulistioadi, Y.B.; Tseng, K.H.; Shum, C.K.; Hidayat, H.; Sumaryono, M.; Suhardiman, A.; Setiawan, F.; Sunarso, S. Satellite radar altimetry for monitoring small rivers and lakes in Indonesia. Hydrol. Earth Syst. Sci. 2015, 19, 341–359. [Google Scholar] [CrossRef]
- Tapley, B.D.; Bettadpur, S.; Watkins, M.; Reigber, C. The gravity recovery and climate experiment: Mission overview and early results. Geophys. Res. Lett. 2004, 31, L09607. [Google Scholar] [CrossRef]
- Wahr, J.; Swenson, S.; Zlotnicki, V.; Velicogna, I. Time-variable gravity from GRACE: First results. Geophys. Res. Lett. 2004, 31, L11501. [Google Scholar] [CrossRef]
- Crowley, J.W.; Mitrovica, J.X.; Bailey, R.C.; Tamisiea, M.E.; Davis, J.L. Land water storage within the Congo Basin inferred from GRACE satellite gravity data. Geophys. Res. Lett. 2006, 33, L19402. [Google Scholar] [CrossRef]
- Chen, J.L.; Wilson, C.R.; Tapley, B.D. The 2009 exceptional Amazon flood and interannual terrestrial water storage change observed by GRACE. Water Resour. Res. 2010, 46, W12526. [Google Scholar] [CrossRef]
- Han, S.C.; Kim, H.; Yeo, I.Y.; Yeh, P.; Oki, T.; Seo, K.W.; Luthcke, S.B. Dynamics of surface water storage in the Amazon inferred from measurements of inter-satellite distance change. Geophys. Res. Lett. 2009, 36, L09403. [Google Scholar] [CrossRef]
- Riegger, J.; Tourian, M.J. Characterization of runoff-storage relationships by satellite gravimetry and remote sensing. Water Resour. Res. 2014, 50, 3444–3466. [Google Scholar] [CrossRef]
- Sproles, E.A.; Reager, J.T.; Leibowitz, S.G. GRACE storage-runoff hystereses reveal the dynamics of regional watersheds. Hydrol. Earth Syst. Sci. 2015, 19, 3253–3272. [Google Scholar] [CrossRef]
- Syed, T.H.; Famiglietti, J.S.; Chen, J.; Rodell, M.; Seneviratne, S.I.; Viterbo, P.; Wilson, C.R. Total basin discharge for the Amazon and Mississippi River basins from GRACE and a land-atmosphere water balance. Geophys. Res. Lett. 2005, 32, L24404. [Google Scholar] [CrossRef]
- Syed, T.H.; Famiglietti, J.S.; Chambers, D.P. GRACE-based estimates of terrestrial freshwater discharge from basin to continental scales. J. Hydrometeorol. 2009, 10, 22–40. [Google Scholar] [CrossRef]
- Ferreira, V.G.; Gong, Z.; He, X.; Zhang, Y.; Andam-Akorful, S.A. Estimating total discharge in the Yangtze River Basin using satellite-based observations. Remote Sens. 2013, 5, 3415–3430. [Google Scholar] [CrossRef]
- Frappart, F.; Ramillien, G.; Ronchail, J. Changes in terrestrial water storage versus rainfall and discharges in the Amazon basin. Int. J. Climatol. 2013, 33, 3029–3046. [Google Scholar] [CrossRef]
- Rodell, M.; Famiglietti, J.S.; Chen, J.; Seneviratne, S.I.; Viterbo, P.; Holl, S.; Wilson, C.R. Basin scale estimates of evapotranspiration using GRACE and other observations. Geophys. Res. Lett. 2004, 31, 183–213. [Google Scholar] [CrossRef]
- Li, Q.; Luo, Z.; Zhong, B.; Zhou, H. An Improved Approach for Evapotranspiration Estimation Using Water Balance Equation: Case Study of Yangtze River Basin. Water 2018, 10, 812. [Google Scholar] [CrossRef]
- Ferreira, V.G.; Montecino, H.C.; Ndehedehe, C.E.; Heck, B.; Gong, Z.; de Freitas, S.R.C.; Westerhaus, M. Space-based observations of crustal deflections for drought characterization in brazil. Sci. Total Environ. 2018, 644, 256–273. [Google Scholar] [CrossRef] [PubMed]
- Jones, P.D.; Hulme, M. Calculating regional climatic time series for temperature and precipitation: Methods and illustrations. Int. J. Climatol. 1996, 16, 361–377. [Google Scholar] [CrossRef]
- Li, B.; Rodell, M. Evaluation of a model-based groundwater drought indicator in the conterminous U.S. J. Hydrol. 2015, 526, 78–88. [Google Scholar] [CrossRef]
- He, Q.; Fok, H.S.; Chen, Q.; Chun, K.P. Water Level Reconstruction and Prediction Based on Space-Borne Sensors: A Case Study in the Mekong and Yangtze River Basins. Sensors 2018, 18, 3076. [Google Scholar] [CrossRef] [PubMed]
- Shukla, S.; Wood, A.W. Use of a standardized runoff index for characterizing hydrologic drought. Geophys. Res. Lett. 2008, 35, L02405. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Anthony, E.J.; Brunier, G.; Besset, M.; Goichot, M.; Dussouillez, P.; Nguyen, V.L. Linking rapid erosion of the Mekong river delta to human activities. Sci. Rep. 2015, 5, 14745. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, J.W. The Mekong river commission: Transboundary water resources planning and regional security. Geogr. J. 2002, 168, 354–364. [Google Scholar] [CrossRef]
- Ziv, G.; Baran, E.; Nam, S.; Rodríguez-Iturbe, I.; Levin, S.A. Trading-off fish biodiversity, food security, and hydropower in the Mekong River Basin. Proc. Natl. Acad. Sci. USA 2012, 109, 5609–5614. [Google Scholar] [CrossRef]
- Li, X.; Liu, J.P.; Saito, Y.; Nguyen, V.L. Recent evolution of the Mekong Delta and the impacts of dams. Earth-Sci. Rev. 2017, 175, 1–17. [Google Scholar] [CrossRef]
- Lu, X.X.; Li, S.; Kummu, M.; Padawangi, R.; Wang, J.J. Observed changes in the water flow at Chiang Saen in the lower Mekong: Impacts of Chinese dams? Quat. Int. 2014, 336, 145–157. [Google Scholar] [CrossRef]
- Cochrane, T.A.; Arias, M.E.; Piman, T. Historical impact of water infrastructure on water levels of the Mekong River and the Tonle Sap system. Hydrol. Earth Syst. Sci. 2014, 18, 4529–4541. [Google Scholar] [CrossRef]
- Hecht, J.S.; Lacombe, G.; Arias, M.E.; Dang, T.D.; Piman, T. Hydropower dams of the Mekong River basin: A review of their hydrological impacts. J. Hydrol. 2019, 568, 285–300. [Google Scholar] [CrossRef]
- Räsänen, T.A.; Kummu, M. Spatiotemporal influences of ENSO on precipitation and flood pulse in the Mekong River Basin. J. Hydrol. 2013, 476, 154–168. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Forsythe, N.; Kilsby, C.G.; Fowler, H.J.; Archer, D.R. Assessment of runoff sensitivity in the Upper Indus Basin to interannual climate variability and potential change using MODIS satellite data products. Mt. Res. Dev. 2012, 32, 16–29. [Google Scholar] [CrossRef]
- MRC (Mekong River Commission). Overview of the Hydrology of the Mekong Basin; Mekong River Commission: Vientiane, Laos, 2005; Volume 82. [Google Scholar]
- You, Z.; Feng, Z.M.; Jiang, L.G.; Yang, Y.Z. Population distribution and its spatial relationship with terrain elements in Lancang-Mekong river basin. Mt. Res. 2014, 32, 21–29. [Google Scholar]
- Wang, B. Rainy season of the Asian–Pacific summer monsoon. J. Clim. 2002, 15, 386–398. [Google Scholar] [CrossRef]
- Colin, C.; Siani, G.; Sicre, M.A.; Liu, Z. Impact of the east Asian monsoon rainfall changes on the erosion of the mekong river basin over the past 25,000 yr. Mar. Geol. 2010, 271, 84–92. [Google Scholar] [CrossRef]
- Fok, H.S.; He, Q.; Chun, K.P.; Zhou, Z.; Chu, T. Application of ENSO and drought indices for water level reconstruction and prediction: A case study in the lower Mekong river estuary. Water 2018, 10, 58. [Google Scholar] [CrossRef]
- Ma, M.; Liu, C.; Zhao, G.; Xie, H.; Jia, P.; Wang, D.; Wang, H.; Hong, Y. Flash Flood Risk Analysis Based on Machine Learning Techniques in the Yunnan Province, China. Remote Sens. 2019, 11, 170. [Google Scholar] [CrossRef]
- Ma, S.; Wu, Q.; Wang, J.; Zhang, S. Temporal evolution of regional drought detected from GRACETWSA and CCISM in Yunnan province, China. Remote Sens. 2017, 9, 1124. [Google Scholar] [CrossRef]
- Ha, T.D.; Ouillon, S.; Van Vinh, G. Water and Suspended Sediment Budgets in the Lower Mekong from High-Frequency Measurements (2009–2016). Water 2018, 10, 846. [Google Scholar]
- Dang, T.D.; Cochrane, T.A.; Arias, M.E. Future hydrological alterations in the Mekong Delta under the impact of water resources development, land subsidence and sea level rise. J. Hydrol. Reg. Stud. 2018, 15, 119–133. [Google Scholar] [CrossRef]
- Gugliotta, M.; Saito, Y.; Nguyen, V.L.; Ta, T.K.O.; Tamura, T. Sediment distribution and depositional processes along the fluvial to marine transition zone of the Mekong River delta, Vietnam. Sedimentology 2019, 66, 146–164. [Google Scholar] [CrossRef]
- Kummu, M.; Tes, S.; Yin, S.; Adamson, P.; Józsa, J.; Koponen, J.; Richey, J.; Sarkkula, J. Water balance analysis for the Tonle Sap Lake–floodplain system. Hydrol. Process. 2014, 28, 1722–1733. [Google Scholar] [CrossRef]
- Tangdamrongsub, N.; Ditmar, P.G.; Steele-Dunne, S.C.; Gunter, B.C.; Sutanudjaja, E.H. Assessing total water storage and identifying flood events over Tonlé Sap basin in Cambodia using GRACE and MODIS satellite observations combined with hydrological models. Remote Sens. Environ. 2016, 181, 162–173. [Google Scholar] [CrossRef]
- Frappart, F.; Biancamaria, S.; Normandin, C.; Blarel, F.; Bourrel, L.; Aumont, M.; Azemar, P.; Vu, P.L.; Le Toan, T.; Lubac, B.; et al. Influence of recent climatic events on the surface water storage of the Tonle Sap Lake. Sci. Total Environ. 2018, 636, 1520–1533. [Google Scholar] [CrossRef]
- Huffman, G.J.; Adler, R.F.; Bolvin, D.T.; Nelkin, E.J. The TRMM multi-satellite precipitation analysis (TMPA). J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; American Meteorological Society: Boston, MA, USA, 1993. [Google Scholar]
- Naresh Kumar, M.; Murthy, C.S.; Sesha Sai, M.V.R.; Roy, P.S. On the use of Standardized Precipitation Index (SPI) for drought intensity assessment. Meteorol. Appl. 2009, 16, 381–389. [Google Scholar] [CrossRef]
- Cheng, M.; Tapley, B.D. Variations in the Earth’s oblateness during the past 28 years. J. Geophys Res. 2004, 109. [Google Scholar] [CrossRef]
- Swenson, S.; Chambers, D.; Wahr, J. Estimating geocenter variations from a combination of grace and ocean model output. J. Geophys. Res. 2008, 113, B08410. [Google Scholar] [CrossRef]
- Ramillien, G.; Frappart, F.; Cazenave, A.; Güntner, A. Time variations of land water storage from an inversion of 2 years of GRACE geoids. Earth. Planet. Sci. Lett. 2005, 235, 283–301. [Google Scholar] [CrossRef]
- Swenson, S.; Wahr, J. Post-processing removal of correlated errors in GRACE data. Geophys. Res. Lett. 2006, 33, 1–4. [Google Scholar] [CrossRef]
- Zhao, M.; Velicogna, I.; Kimball, J.S. Satellite observations of regional drought severity in the continental United States using GRACE-based terrestrial water storage changes. J. Clim. 2017, 30, 6297–6308. [Google Scholar] [CrossRef]
- Fok, H.S.; He, Q. Water Level Reconstruction Based on Satellite Gravimetry in the Yangtze River Basin. ISPRS Int. J. Geo-Inf. 2018, 7, 286. [Google Scholar] [CrossRef]
- Zhang, K.; Kimball, J.S.; Nemani, R.R.; Running, S.W. A continuous satellite-derived global record of land surface evapotranspiration from 1983 to 2006. Water Resour. Res. 2010, 46, W09522. [Google Scholar] [CrossRef]
- Kim, M.C.; Jeong, K.S.; Kang, D.K.; Kim, D.K.; Shin, H.S.; Joo, G.J. Time lags between hydrological variables and phytoplankton biomass responses in a regulated river (the Nakdong River). J. Ecol. Field Biol. 2009, 32, 1–11. [Google Scholar] [CrossRef]
- Amante, C.; Eakins, B.W. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis; NOAA Technical Memorandum NGDC-24; National Geophysical Data Centre, NESDIS, NOAA, Department of Commerce: Boulder, CO, USA, 2009.
- Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol. 2009, 377, 80–91. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T. Real-Time TRMM Multi-Satellite Precipitation Analysis Data Set Documentation; NASA: Washington, DC, USA, 2015; p. 51.
- Running, S.; Mu, Q.; Zhao, M. MYD16A2 MODIS/Aqua Net Evapotranspiration 8-Day L4 Global 500m SIN Grid V006 [Data set]. NASA EOSDIS Land Processes DAAC 2017. [Google Scholar] [CrossRef]
- Gouweleeuw, B.T.; Kvas, A.; Gruber, C.; Gain, A.K.; Mayer-Gürr, T.; Flechtner, F.; Güntner, A. Daily GRACE gravity field solutions track major flood events in the Ganges–Brahmaputra Delta. Hydrol. Earth Syst. Sci. 2018, 22, 2867–2880. [Google Scholar] [CrossRef]
Variable | Station | Maximum | Minimum | Mean | Standard Deviation |
---|---|---|---|---|---|
Water Discharge (1 × 104 m3/s) | My Thuan | 1.854 | 0.069 | 0.661 | 0.449 |
Can Tho | 1.950 | 0.081 | 0.692 | 0.446 | |
Tan Chau | 3.362 | 0.661 | 1.528 | 0.696 | |
Chau Doc | 3.178 | 0.683 | 1.375 | 0.568 | |
Water Level (m) | My Thuan | 7.613 | 1.770 | 4.522 | 1.509 |
Can Tho | 4.380 | 1.714 | 3.072 | 0.655 | |
Tan Chau | 8.481 | 0.501 | 3.688 | 1.785 | |
Chau Doc | 7.802 | 0.244 | 2.923 | 1.449 | |
Runoff (mm/month) | My Thuan | 60.5 | 2.2 | 21.6 | 14.6 |
Can Tho | 63.6 | 2.6 | 22.5 | 14.6 | |
Tan Chau | 109.6 | 21.6 | 49.8 | 22.7 | |
Chau Doc | 103.6 | 22.3 | 44.8 | 18.5 |
Station | Variables | PCC | RMSE (mm) | NSE | |
---|---|---|---|---|---|
My Thuan (Rh = 1) | Traditional RSD | NDVI | 0.766 | 9.1 | 0.585 |
LST | 0.808 | 8.3 | 0.651 | ||
Hydrological Variables | TRMM-P | 0.773 | 9.0 | 0.603 | |
MODIS-ET | 0.771 | 9.1 | 0.600 | ||
GRACE-S | 0.741 | 9.6 | 0.556 | ||
Hydrological Indices | SPI | 0.905 | 6.1 | 0.811 | |
SETI | 0.903 | 6.2 | 0.808 | ||
SI | 0.897 | 6.3 | 0.799 | ||
Water-balance Representations | WBR | 0.898 | 6.3 | 0.802 | |
SWBR | 0.910 | 5.9 | 0.822 | ||
My Thuan estimate Can Tho (Rh = 1.05) | Traditional RSD | NDVI | 0.722 | 9.8 | 0.507 |
LST | 0.764 | 9.1 | 0.575 | ||
Hydrological Variables | TRMM-P | 0.752 | 9.5 | 0.576 | |
MODIS-ET | 0.741 | 9.7 | 0.562 | ||
GRACE-S | 0.711 | 10.1 | 0.513 | ||
Hydrological Indices | SPI | 0.860 | 7.3 | 0.730 | |
SETI | 0.856 | 7.4 | 0.722 | ||
SI | 0.852 | 7.4 | 0.716 | ||
Water-balance Representations | WBR | 0.854 | 7.3 | 0.725 | |
SWBR | 0.865 | 7.1 | 0.738 | ||
My Thuan estimate Tan Chau (Rh = 2.20) | Traditional RSD | NDVI | 0.813 | 11.7 | 0.576 |
LST | 0.867 | 13.1 | 0.668 | ||
Hydrological Variables | TRMM-P | 0.937 | 9.6 | 0.822 | |
MODIS-ET | 0.850 | 14.6 | 0.588 | ||
GRACE-S | 0.772 | 15.8 | 0.518 | ||
Hydrological Indices | SPI | 0.923 | 12.2 | 0.714 | |
SETI | 0.928 | 12.1 | 0.720 | ||
SI | 0.937 | 11.2 | 0.758 | ||
Water-balance Representations | WBR | 0.930 | 12.3 | 0.709 | |
SWBR | 0.934 | 10.7 | 0.781 |
Station | Variables | PCC | RMSE (mm) | NSE | |
---|---|---|---|---|---|
Tan Chau (Rh = 1) | Traditional RSD | NDVI | 0.863 | 11.5 | 0.745 |
LST | 0.866 | 11.4 | 0.750 | ||
Hydrological Variables | TRMM-P | 0.935 | 8.1 | 0.874 | |
MODIS-ET | 0.904 | 10.7 | 0.818 | ||
GRACE-S | 0.768 | 14.6 | 0.590 | ||
Hydrological Indices | SPI | 0.962 | 6.4 | 0.921 | |
SETI | 0.960 | 6.5 | 0.917 | ||
SI | 0.952 | 7.0 | 0.905 | ||
Water-balance Representations | WBR | 0.955 | 6.8 | 0.912 | |
SWBR | 0.965 | 5.9 | 0.931 | ||
Tan Chau estimate Chau Doc (Rh = 0.76) | Traditional RSD | NDVI | 0.791 | 11.8 | 0.591 |
LST | 0.757 | 12.7 | 0.525 | ||
Hydrological Variables | TRMM-P | 0.858 | 10.8 | 0.699 | |
MODIS-ET | 0.816 | 11.2 | 0.626 | ||
GRACE-S | 0.766 | 11.9 | 0.576 | ||
Hydrological Indices | SPI | 0.887 | 9.2 | 0.749 | |
SETI | 0.890 | 9.0 | 0.760 | ||
SI | 0.865 | 10.0 | 0.703 | ||
Water-balance Representations | WBR | 0.883 | 9.4 | 0.739 | |
SWBR | 0.900 | 8.5 | 0.785 | ||
Tan Chau estimate My Thuan (Rh = 0.45) | Traditional RSD | NDVI | 0.766 | 9.3 | 0.564 |
LST | 0.808 | 8.7 | 0.617 | ||
Hydrological Variables | TRMM-P | 0.808 | 8.6 | 0.633 | |
MODIS-ET | 0.821 | 8.4 | 0.644 | ||
GRACE-S | 0.703 | 10.3 | 0.470 | ||
Hydrological Indices | SPI | 0.864 | 7.5 | 0.716 | |
SETI | 0.880 | 7.3 | 0.735 | ||
SI | 0.883 | 7.2 | 0.740 | ||
Water-balance Representations | WBR | 0.864 | 7.6 | 0.714 | |
SWBR | 0.881 | 7.1 | 0.750 |
Station | Variables | ∆PCC | ∆RMSE (mm) | ∆NSE | |
---|---|---|---|---|---|
Tan Chau minus My Thuan | Traditional RSD | NDVI | 9.7% | 2.4 | 16.0% |
LST | 5.8% | 3.1 | 9.9% | ||
Hydrological Variables | TRMM-P | 16.2% | −0.9 | 27.1% | |
MODIS-ET | 13.3% | 1.6 | 21.8% | ||
GRACE-S | 2.7% | 5.0 | 3.4% | ||
Hydrological Indices | SPI | 5.7% | 0.3 | 11.0% | |
SETI | 5.7% | 0.3 | 10.9% | ||
SI | 5.5% | 0.7 | 10.6% | ||
Water-balance Representations | WBR | 5.7% | 0.5 | 11.0% | |
SWBR | 5.5% | 0.0 | 10.9% | ||
Tan Chau estimate Chau Doc minus My Thuan estimate Can Tho | Traditional RSD | NDVI | 6.9% | 2.0 | 8.4% |
LST | −0.7% | 3.6 | −5.0% | ||
Hydrological Variables | TRMM-P | 10.6% | 1.3 | 12.3% | |
MODIS-ET | 7.5% | 1.5 | 6.4% | ||
GRACE-S | 5.5% | 1.8 | 6.3% | ||
Hydrological Indices | SPI | 2.7% | 1.9 | 1.9% | |
SETI | 3.4% | 1.6 | 3.8% | ||
SI | 1.3% | 2.6 | −1.3% | ||
Water-balance Representations | WBR | 2.9% | 2.1 | 1.4% | |
SWBR | 3.5% | 1.4 | 4.7% | ||
Tan Chau estimate My Thuan minus My Thuan estimate Tan Chau | Traditional RSD | NDVI | −4.7% | −2.4 | −1.2% |
LST | −5.9% | −4.4 | −5.1% | ||
Hydrological Variables | TRMM-P | −12.9% | −1.0 | −18.9% | |
MODIS-ET | −2.9% | −6.2 | 5.6% | ||
GRACE-S | −6.9% | −5.5 | −4.8% | ||
Hydrological Indices | SPI | −5.9% | −4.7 | 0.2% | |
SETI | −4.8% | −4.8 | 1.5% | ||
SI | −5.4% | −4.0 | −1.8% | ||
Water-balance Representations | WBR | −6.6% | −4.7 | 0.5% | |
SWBR | −5.3% | −3.6 | −3.1% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, L.; Fok, H.S.; Ma, Z.; Chen, Q. Upstream Remotely-Sensed Hydrological Variables and Their Standardization for Surface Runoff Reconstruction and Estimation of the Entire Mekong River Basin. Remote Sens. 2019, 11, 1064. https://doi.org/10.3390/rs11091064
Zhou L, Fok HS, Ma Z, Chen Q. Upstream Remotely-Sensed Hydrological Variables and Their Standardization for Surface Runoff Reconstruction and Estimation of the Entire Mekong River Basin. Remote Sensing. 2019; 11(9):1064. https://doi.org/10.3390/rs11091064
Chicago/Turabian StyleZhou, Linghao, Hok Sum Fok, Zhongtian Ma, and Qiang Chen. 2019. "Upstream Remotely-Sensed Hydrological Variables and Their Standardization for Surface Runoff Reconstruction and Estimation of the Entire Mekong River Basin" Remote Sensing 11, no. 9: 1064. https://doi.org/10.3390/rs11091064
APA StyleZhou, L., Fok, H. S., Ma, Z., & Chen, Q. (2019). Upstream Remotely-Sensed Hydrological Variables and Their Standardization for Surface Runoff Reconstruction and Estimation of the Entire Mekong River Basin. Remote Sensing, 11(9), 1064. https://doi.org/10.3390/rs11091064