The Rapid and Steady Mass Loss of the Patagonian Icefields throughout the GRACE Era: 2002–2017
Abstract
:1. Introduction
2. Data and Methods
3. Uncertainty Estimation
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A Extended Description of GRACE Data Correction and Analysis Methods
GIA Correction
Surface Mass Variation Corrections
Empirical Regional Ocean Mass Rate Correction
A-Priori Mass Change Pattern
A-Priori Pattern | Ice Mass Change Rate (Gt/a) | SPI/NPI Ratio | Reference | SPI and NPIGRACE | RMSres | |||
---|---|---|---|---|---|---|---|---|
SPI | NPI | Total | (%) | (Gt/a) | (nm s−2 a−1) | |||
Wi12 | −18.934 | −4.410 | −23.344 | 100% | 4.3 | [2] | −23.8 | 0.44 |
Ja16 | −13.135 | −3.961 | −17.096 | 73% | 3.3 | [28] | −23.5 | 0.43 |
Br19 | −12.640 | −4.770 | −17.410 | 75% | 2.6 | [26] | −23.7 | 0.41 |
Fo18 | −14.500 | −6.790 | −21.290 | 91% | 2.1 | [4] | −23.9 | 0.39 |
Impact of GRACE Level-2 Data Quality Degradation on SPI and NPI Ice Mass Determination
References
- Casassa, G.; Rodríguez, J.L.; Loriaux, T. A New Glacier Inventory for the Southern Patagonia Icefield and Areal Changes 1986–2000. In Global Land Ice Measurements from Space; Kargel, J.S.S., Leonard, G.J.J., Bishop, M.P.P., Kääb, A., Raup, B.H.H., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 639–660. ISBN 978-3-540-79818-7. [Google Scholar]
- Willis, M.J.; Melkonian, A.K.; Pritchard, M.E.; Rivera, A. Ice loss from the Southern Patagonian Ice Field, South America, between 2000 and 2012. Geophys. Res. Lett. 2012, 39, 1–6. [Google Scholar] [CrossRef]
- Rignot, E.; Rivera, A.; Casassa, G. Contribution of the Patagonia Icefields of South America to sea level rise. Science 2003, 302, 434–437. [Google Scholar] [CrossRef]
- Foresta, L.; Gourmelen, N.; Weissgerber, F.; Nienow, P.; Williams, J.J.; Shepherd, A.; Drinkwater, M.R.; Plummer, S. Heterogeneous and rapid ice loss over the Patagonian Ice Fields revealed by CryoSat-2 swath radar altimetry. Remote Sens. Environ. 2018, 211, 441–455. [Google Scholar] [CrossRef]
- Dietrich, R.; Ivins, E.R.; Casassa, G.; Lange, H.; Wendt, J.; Fritsche, M. Rapid crustal uplift in Patagonia due to enhanced ice loss. Earth Planet. Sci. Lett. 2010, 289, 22–29. [Google Scholar] [CrossRef]
- Lange, H.; Casassa, G.; Ivins, E.R.; Schröder, L.; Fritsche, M.; Richter, A.; Groh, A.; Dietrich, R. Observed crustal uplift near the Southern Patagonian Icefield constrains improved viscoelastic Earth models. Geophys. Res. Lett. 2014, 41, 805–812. [Google Scholar] [CrossRef] [Green Version]
- Richter, A.; Ivins, E.; Lange, H.; Mendoza, L.; Schröder, L.; Hormaechea, J.L.; Casassa, G.; Marderwald, E.; Fritsche, M.; Perdomo, R.; et al. Crustal deformation across the Southern Patagonian Icefield observed by GNSS. Earth Planet. Sci. Lett. 2016, 452, 206–215. [Google Scholar] [CrossRef]
- Ivins, E.; James, T. Bedrock response to Llanquihue Holocene and present-day glaciation in southernmost South America. Geophys. Res. Lett. 2004, 31, L24613. [Google Scholar] [CrossRef]
- Ivins, E.; James, T. Simple models for late Holocene and present-day Patagonian glacier fluctuations and predictions of a geodetically detectable isostatic response. Geophys. J. Int. 1999, 138, 601–624. [Google Scholar] [CrossRef] [Green Version]
- Lliboutry, L. Glaciers of the wet Andes. In Glaciers of South America; Williams, R.S., Ferrigno, J.G., Eds.; U.S. Geological Survey Professional Paper 1386-I: Reston, VA, USA, 1998; pp. 148–206. [Google Scholar]
- Glasser, N.F.; Hambry, S.; Winchester, V.; Aniya, M. Late Pleistocene and Holocene palaeoclimate and glacier fluctuations in Patagonia. Glob. Planet. Chang. 2004, 43, 79–101. [Google Scholar] [CrossRef]
- Villalba, R.; Lara, A.; Boninsegna, J.A.; Masiokas, M.; Delgado, S.; Aravena, J.C.; Roig, F.A.; Schmelter, A.; Wolodarsky, A.; Ripalta, A. Large-scale temperature changes across the southern Andes: 20th-century variations in the context of the past 400 years. Clim. Chang. 2003, 59, 177–232. [Google Scholar] [CrossRef]
- Kilian, R.; Lamy, F. A review of Glacial and Holocene paleoclimate records from southernmost Patagonia (49–55°S). Quat. Sci. Rev. 2012, 53, 1–23. [Google Scholar] [CrossRef]
- Moy, C.M.; Dunbar, R.B.; Moreno, P.I.; Francois, J.-P.; Villa-Martínez, R.; Mucciarone, D.M.; Guildersond, T.P.; Garreaud, R.D. Isotopic evidence for hydrologic change related to the westerlies in SW Patagonia, Chile, during the last millennium. Quat. Sci. Rev. 2008, 27, 1335–1349. [Google Scholar] [CrossRef]
- Li, X.; Holland, D.M.; Gerber, E.P.; Yoo, C. Impacts of the north and tropical Atlantic Ocean on the Antarctic Peninsula and sea ice. Nature 2014, 505, 538–542. [Google Scholar] [CrossRef] [PubMed]
- Glasser, N.; Harrison, S.; Jansson, K.; Anderson, K.; Cowley, A. Global sea-level contribution from the Patagonian Icefields since the Little Ice Age maximum. Nat. Geosci. 2011, 4, 303–307. [Google Scholar] [CrossRef]
- Lenaerts, J.T.M.; Van Den Broeke, M.R.; Van Wessem, J.M.; Van De Berg, W.J.; Van Meijgaard, E.; Van Ulft, L.H.; Schaefer, M. Extreme precipitation and climate gradients in Patagonia revealed by high resolution regional atmospheric climate modeling. J. Clim. 2014, 27, 4607–4621. [Google Scholar] [CrossRef]
- Zemp, M.; Frey, H.; Gärtner-Roer, I.; Nussbaumer, S.U.; Hoelzle, M.; Paul, F.; Haeberli, W.; Denzinger, F.; Ahlstrøm, A.P.; Anderson, B.; et al. Historically unprecedented global glacier decline in the early 21st century. J. Glaciol. 2015, 61, 745–762. [Google Scholar] [CrossRef] [Green Version]
- Yeh, S.-W.; Cai, W.; Min, S.-K.; McPhaden, M.J.; Dommenget, D.; Dewitte, B.; Collins, M.; Ashok, K.; An, S.-I.; Yim, B.-Y.; et al. ENSO atmospheric teleconnections and their response to greenhouse gas forcing. Rev. Geophys. 2015, 56, 185–206. [Google Scholar] [CrossRef]
- Kennicutt, M.C.; Chown, S.L.; Cassano, J.J.; Liggett, D.; Massom, R.; Peck, L.S.; Rintoul, S.R.; Storey, J.W.V.; Vaughan, D.G.; Wilson, T.J.; et al. A roadmap for Antarctic and Southern Ocean science for the next two decades and beyond. Antarct. Sci. 2015, 27, 3–18. [Google Scholar] [CrossRef]
- Schaefer, M.; Machguth, H.; Falvey, M.; Casassa, G. Modeling past and future surface mass balance of the Northern Patagonia Icefield. J. Geophys. Res. Earth Surf. 2013, 118, 571–588. [Google Scholar] [CrossRef] [Green Version]
- Schaefer, M.; Machguth, H.; Falvey, M.; Casassa, G.; Rignot, E. Quantifying mass balance processes on the Southern Patagonia Icefield. Cryosphere 2015, 9, 25–35. [Google Scholar] [CrossRef] [Green Version]
- Willis, M.J.; Melkonian, A.K.; Pritchard, M.E.; Ramage, J.M. Ice loss rates at the Northern Patagonian Icefield derived using a decade of satellite remote sensing. Remote Sens. Environ. 2012, 117, 184–198. [Google Scholar] [CrossRef]
- Dussaillant, I.; Berthier, E.; Brun, F. Geodetic mass balance of the Northern Patagonian Icefield from 2000 to 2012 using two independent methods. Front. Earth Sci. 2018, 6, 8. [Google Scholar] [CrossRef]
- Rivera, A.; Benham, T.; Casassa, G.; Bamber, J.; Dowdeswell, J.A. Ice elevation and areal changes of glaciers from the Northern Patagonia Icefield, Chile. Glob. Planet. Chang. 2007, 59, 126–137. [Google Scholar] [CrossRef]
- Braun, M.H.; Malz, P.; Sommer, C.; Farías-Barahona, D.; Sauter, T.; Casassa, G.; Soruco, A.; Skvarca, P.; Seehaus, T.C. Constraining glacier elevation and mass changes in South America. Nat. Clim. Chang. 2019, 9, 130–136. [Google Scholar] [CrossRef]
- Malz, P.; Meier, E.; Casassa, G.; Jana, R.; Svarca, P.; Braun, M. Elevation and mass changes of the Southern Patagonia Icefield derived from TanDEM-X and SRTM data. Remote Sens. 2018, 10, 188. [Google Scholar] [CrossRef]
- Jaber, A.W. Derivation of Mass Balance and Surface Velocity of Glaciers by Means of High Resolution Synthetic Aperture Radar: Application to the Patagonian Icefields and Antarctica. DLR-Forschungsbericht 2016. Available online: http://elib.dlr.de/109075/1/Thesis_AbdelJaber_final.pdf (accessed on 4 August 2018).
- Mouginot, J.; Rignot, E. Ice motion of the Patagonian Icefields of South America: 1984–2014. Geophys. Res. Lett. 2015, 42, 1441–1449. [Google Scholar] [CrossRef]
- Tapley, B.D.; Bettadpur, S.; Watkins, M.; Reigber, C. The gravity recovery and climate experiment: Mission overview and early results. Geophys. Res. Lett. 2004, 31, L09607. [Google Scholar] [CrossRef] [Green Version]
- Ivins, E.R.; James, T.S.; Wahr, J.; Schrama, E.J.O.; Landerer, F.W.; Simon, K.M. Antarctic contribution to sea level rise observed by GRACE with improved GIA correction. J. Geophys. Res.-Solid Earth 2013, 118, 3126–3141. [Google Scholar] [CrossRef] [Green Version]
- Gardner, A.S.; Moholdt, G.; Cogley, J.G.; Wouters, B.; Arendt, A.A.; Wahr, J.; Berthier, E.; Hock, R.; Pfeffer, W.T.; Kaser, G.; et al. A Reconciled Estimate of Glacier Contributions to Sea Level Rise: 2003 to 2009. Science 2013, 340, 852–857. [Google Scholar] [CrossRef] [Green Version]
- Wouters, B.; Bonin, J.A.; Chambers, D.P.; Riva, R.E.M.; Sasgen, I.; Wahr, J. GRACE, time-varying gravity, Earth system dynamics and climate change. Rep. Prog. Phys. 2014, 77, 116801. [Google Scholar] [CrossRef] [Green Version]
- Shepherd, A.; Ivins, E.; Rignot, E.; Smith, B.; van den Broeke, M.; Velicogna, I.; Whitehouse, P.; Briggs, K.; Joughin, I.; Krinner, G.; et al. Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature 2018, 558, 219–222. [Google Scholar] [CrossRef]
- Shepherd, A.; Ivins, E.R.; Geruo, A.; Barletta, V.R.; Bentley, M.J.; Bettadpur, S.; Briggs, K.H.; Bromwich, D.H.; Forsberg, R.; Natalia Galin, N.; et al. A reconciled estimate of ice sheet mass balance. Science 2012, 338, 1183–1189. [Google Scholar] [CrossRef]
- Chen, J.L.; Wilson, C.R.; Tapley, B.D.; Blankenship, D.D.; Ivins, E.R. Patagonia icefield melting observed by gravity recovery and climate experiment (GRACE). Geophys. Res. Lett. 2007, 34, L22501. [Google Scholar] [CrossRef]
- Ivins, E.R.; Watkins, M.M.; Yuan, D.N.; Dietrich, R.; Casassa, G.; Rülke, A. On-land ice loss and glacial isostatic adjustment at the Drake Passage: 2003–2009. J. Geophys. Res.-Solid Earth 2011, 116, B02403. [Google Scholar] [CrossRef]
- Jacob, T.; Wahr, J.; Pfeffer, W.T.; Swenson, S. Recent contributions of glaciers and ice caps to sea level rise. Nature 2012, 482, 514–518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schrama, E.J.O.; Wouters, B.; Rietbroek, R. A mascon approach to assess ice sheet and glacier mass balances and their uncertainties from GRACE data. J. Geophys. Res. Solid Earth 2014, 119, 6048–6066. [Google Scholar] [CrossRef] [Green Version]
- Reager, J.T.; Gardner, A.S.; Famiglietti, J.S.; Wiese, D.N.; Eicker, A.; Lo, M.-H. A decade of sea level rise slowed by climate-driven hydrology. Science 2016, 351, 699–703. [Google Scholar] [CrossRef]
- Mayer-Gürr, T.; Behzadpour, S.; Ellmer, M.; Kvas, A.; Klinger, B.; Zehentner, N. ITSG-Grace2016—Monthly and Daily Gravity Field Solutions from GRACE. GFZ Data Services 2016. Available online: ftp://ftp.tugraz.at/outgoing/ITSG/GRACE/ITSG-Grace2016/monthly/monthly_n120/ (accessed on 11 October 2018).
- Forsberg, R.; Reeh, N. Mass change of the Greenland ice sheet from Grace. In Proceedings of the 1st Meeting of the International Gravity Field Service; Springer: Berlin, Germany, 2006; Volume 18, pp. 454–458. [Google Scholar]
- Baur, O.; Sneeuw, N. Assessing Greenland ice mass loss by means of point-mass modeling: A viable methodology. J. Geod. 2011, 85, 607–615. [Google Scholar] [CrossRef]
- Forsberg, R.; Sørensen, L.S.; Simonsen, S.B. Greenland and Antarctica Ice Sheet Mass Changes and Effects on Global Sea Level. Surv. Geophys. 2017, 38, 89–104. [Google Scholar] [CrossRef] [Green Version]
- Ran, J.; Ditmar, P.; Klees, R.; Farahani, H.H. Statistically optimal estimation of Greenland Ice Sheet mass variations from GRACE monthly solutions using an improved mascon approach. J. Geod. 2018, 92, 299–319. [Google Scholar] [CrossRef]
- Watkins, M.M.; Wiese, D.N.; Yuan, D.-N.; Boening, C.; Landerer, F.W. Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons: Improved Gravity Observations from GRACE. J. Geophys. Res. Solid Earth 2015, 120, 2648–2671. [Google Scholar] [CrossRef]
- Horwath, M.; Groh, A. Evaluation of recent GRACE monthly solution series with an ice sheet perspective. Geophys. Res. Abstr. 2016, 18. Available online: http://www.egsiem.eu/images/publication/EGU2016/horwath_egu2016_releases_b.pdf (accessed on 24 October 2018).
- Kusche, J. Approximate decorrelation and non-isotropic smoothing of time-variable GRACE-type gravity field models. J. Geod. 2007, 81, 733–749. [Google Scholar] [CrossRef] [Green Version]
- Bergmann-Wolf, I.; Zhang, L.; Dobslaw, H. Global Eustatic Sea-Level Variations for the Approximation of Geocenter Motion from Grace. J. Geod. Sci. 2014, 4. [Google Scholar] [CrossRef] [Green Version]
- Cheng, M.; Tapley, B.D.; Ries, J.C. Deceleration in the Earth’s oblateness. J. Geophys. Res. Solid Earth 2013, 118, 740–747. [Google Scholar] [CrossRef]
- Wahr, J.; Nerem, R.S.; Bettadpur, S.V. The pole tide and its effect on GRACE time-variable gravity measurements: Implications for estimates of surface mass variations. J. Geophys. Res. Solid Earth 2015, 120, 4597–4615. [Google Scholar] [CrossRef] [Green Version]
- Groh, A.; Horwath, M. The method of tailored sensitivity kernels for GRACE mass change estimates. Geophys. Res. Abstr. 2016, 18. Available online: https://data1.geo.tu-dresden.de/ais_gmb/ (accessed on 24 October 2018).
- Döll, P.; Kaspar, F.; Lehner, B. A global hydrological model for deriving water availability indicators: Model tuning and validation. J. Hydrol. 2003, 270, 105–134. [Google Scholar] [CrossRef]
- Weedon, G.P.; Balsamo, G.; Bellouin, N.; Gomes, S.; Best, M.J.; Viterbo, P. The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA-Interim reanalysis data. Water Resour. Res. 2014, 50, 7505–7514. [Google Scholar] [CrossRef] [Green Version]
- Richter, A.; Marderwald, E.; Hormaechea, J.L.; Mendoza, L.; Perdomo, R.; Connon, G.; Scheinert, M.; Horwath, M.; Dietrich, R. Lake-level variations and tides in Lago Argentino, Patagonia: Insights from pressure tide gauge records. J. Limnol. 2016, 75, 62–77. [Google Scholar] [CrossRef]
- Mitrovica, J.X.; Peltier, W.R. On postglacial geoid subsidence over the equatorial oceans. J. Geophys. Res. 1991, 96, 20053–20071. [Google Scholar] [CrossRef]
- Harig, C.; Simons, F.J. Ice mass loss in Greenland, the Gulf of Alaska, and the Canadian Archipelago: Seasonal cycles and decadal trends. Geophys. Res. Lett. 2016, 43, 3150–3159. [Google Scholar] [CrossRef]
- Flechtner, F. GRACE Science Data System Monthly Report, November 2016. Available online: ftp://rz-vm152.gfz-potsdam.de/grace/DOCUMENTS/NEWSLETTER/2016/GRACE_SDS_NL_1611.pdf (accessed on 4 October 2018).
- Flechtner, F. GRACE Science Data System Monthly Report, February 2015. Available online: ftp://rz-vm152.gfz-potsdam.de/grace/DOCUMENTS/NEWSLETTER/2015/GRACE_SDS_NL_1502.pdf (accessed on 4 October 2018).
- Groh, A.; Horwath, M.; Horvath, A.; Meister, R.; Sørensen, L.; Barletta, V.; Forsberg, R.; Wouters, B.; Ditmar, P.; Ran, J.; et al. Evaluating GRACE Mass Change Time Series for the Antarctic and Greenland Ice Sheet—ESA CCI Round Robin Methods and Results. Geosciences. under review.
- Ryan, J.C.; Sessions, M.; Wilson, R.; Wündrich, O.; Hubbard, A. Rapid Surface Lowering of Benito Glacier, Northern Patagonian Icefield. Front. Earth Sci. 2018, 6, 47. [Google Scholar] [CrossRef]
- Wouters, B.; Bamber, J.L.; van den Broeke, M.R.; Lenaerts, J.T.M.; Sasgen, I. Limits in detecting acceleration of ice sheet mass loss due to climate variability. Nat. Geosci. 2013. [Google Scholar] [CrossRef]
- Sterenborg, M.G.; Morrow, E.; Mitrovica, J.X. Bias in GRACE estimates of ice mass change due to accompanying sea-level change. J. Geod. 2012, 87, 387–392. [Google Scholar] [CrossRef]
- Bettadpur, S. GRACE 327-742: UTCSR Level-2 Processing Standards Document (For Level-2 Product Release 0006); Center for Space Research, The University of Texas at Austin: Austin, TX, USA, 2018. Available online: ftp://podaac.jpl.nasa.gov/allData/grace/docs/L2-CSR006_ProcStd_v5.0.pdf (accessed on 28 October 2018).
- Aniya, M. Recent glacier variations of the Hielos Patagonicos, South America, and their contribution to sea-level rise. Arct. Antarct. Alp. Res. 1999, 31, 165–173. [Google Scholar] [CrossRef]
- Farrel, W.E. Deformation of the Earth by surface loads. Rev. Geophys. Space Phys. 1972, 10, 762–795. [Google Scholar] [CrossRef]
- Groh, A. Zur Bestimmung Eisinduzierter Massensignale aus der Kombination Geodätischer Daten. Ph.D. Thesis, Technische Universität Dresden, Dresden, Germany, 2014. [Google Scholar]
- Raup, B.H.; Racoviteanu, A.; Khalsa, S.J.S.; Helm, C.; Armstrong, R.; Arnaud, Y. The GLIMS Geospatial Glacier Database: A New Tool for Studying Glacier Change. Glob. Planet. Chang. 2007, 56, 101–110. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The shuttle radar topography mission. Rev. Geophys. 2007, 45. [Google Scholar] [CrossRef]
- Bandikova, T.; McCullough, C.M.; Kruizinga, G.L.H. GRACE Accelerometer Transplant. In Proceedings of the Transactions of the American Geophysical Union, Fall Meeting, New Orleans, LA, USA, 11–15 December 2017. abstract G31B-0405. [Google Scholar]
Reference | Comment | Time Span | Ice Mass Rate (Gt/a) | |
---|---|---|---|---|
GRACE satellite gravimetry | ||||
Chen et al. [36] | SPI and NPI | 04/2002–12/2006 | −25.1 ± 9.9 | * |
Ivins et al. [37] | SPI and NPI and Ant. Penins. | 01/2003–03/2009 | −26 ± 6 | |
Jacob et al. [38] | Global (Patagonia) | 01/2003–12/2010 | −23 ± 9 | |
Gardner et al. [32] | Global (Southern Andes) | 08/2003–08/2009 | −29 ± 10 | |
Schrama et al. [39] | Global (Patagonia) | 02/2003–06/2013 | −22.1 ± 7 | |
Reager et al. [40] | Global (Southern Andes) | 04/2002–12/2014 | −33.1 ± 12.1 | |
this study | SPI and NPI | 04/2002–06/2017 | −24.4 ± 4.7 | |
Cryosat-2 swath radar altimetry | ||||
Foresta et al. [4] | SPI andNPI | 04/2011–03/2017 | −21.3 ± 2.0 | |
Remote sensing-SPI | ||||
Rignot et al. [3] | SRTM, Photogrammetry | 1968/75–2000 | −12.2 ± 0.7 | * |
1995–2000 | −34.8 ± 4.0 | * | ||
Willis et al. [2] | ASTER, SRTM | 2000–2012 | −20.0 ± 1.2 | |
Jaber [28] | TanDEM-X, SRTM | 2000–2011/12 | −13.14 ± 0.4 | |
Malz et al. [27] | TanDEM-X, SRTM | 2000–2015/16 | −11.84 ± 3.3 | |
Braun et al. [26] | TanDEM-X, SRTM | 2000–2015 | −12.64 ± 0.98 | |
Remote sensing-NPI | ||||
Rignot et al. [3] | SRTM, Photogrammetry | 1968/1975–2000 | −2.9 ± 0.4 | * |
Rivera et al. [25] | ASTER, Photogr. | 1979–2001 | −5.1 | * |
Willis et al. [23] | ASTER, SRTM | 2000–2011 | −3.40 ± 0.07 | |
Willis et al. [2] | ASTER, SRTM | 2000–2011 | −4.4 ± 0.3 | * |
Jaber [28] | TanDEM-X, SRTM | 2000–2014 | −3.96 ± 0.1 | |
Dussaillant et al. [24] | SPOT5, SRTM | 2000–2012 | −4.1 ± 0.4 | * |
ASTER | 2000–2012 | −4.2 ± 0.3 | * | |
Braun et al. [26] | TanDEM-X, SRTM | 2000–2015 | −4.77 ± 0.48 |
Correction | Change in Ice-Mass Rate | RMS Ratio | |
---|---|---|---|
(Gt/a) | (%) | ||
Inclusion of degree one Stokes coefficients | +0.09 | +0.37 | 0.166 |
Replacement of C20 coefficients from SLR | −0.15 | −0.62 | 0.191 |
Pole tide correction of C21, S21 coefficients | −0.00 | −0.02 | 0.177 |
CSR release 06 instead of ITSG2016 Level-2 data | +0.75 | +3.17 | 0.117 |
Regional GIA: model La-A in Lange et al. [6] | +9.12 | +37.38 | 0.243 |
using GIA model La-B instead of model La-A | −1.41 | −5.77 | 0.142 |
Contribution of elastic deformation | +1.42 | +5.81 | 0.151 |
Global ocean water mass | −2.10 | −8.59 | 0.152 |
Antarctic ice sheet | +1.14 | +4.65 | 0.315 |
Global continental water storage | −0.27 | −1.09 | 0.183 |
Patagonian lakes | +0.01 | +0.06 | 0.152 |
South American glaciers outside Patagonia | −0.30 | −1.21 | 0.142 |
Empiric regional ocean mass-rate increment | +0.22 | +0.89 | 0.181 |
Optimization of the a-priori ice-mass change pattern | +0.63 | +2.59 | 0.176 |
Downweighting of monthly solutions after March 2016 | −1.32 | −5.41 | 0.141 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Richter, A.; Groh, A.; Horwath, M.; Ivins, E.; Marderwald, E.; Hormaechea, J.L.; Perdomo, R.; Dietrich, R. The Rapid and Steady Mass Loss of the Patagonian Icefields throughout the GRACE Era: 2002–2017. Remote Sens. 2019, 11, 909. https://doi.org/10.3390/rs11080909
Richter A, Groh A, Horwath M, Ivins E, Marderwald E, Hormaechea JL, Perdomo R, Dietrich R. The Rapid and Steady Mass Loss of the Patagonian Icefields throughout the GRACE Era: 2002–2017. Remote Sensing. 2019; 11(8):909. https://doi.org/10.3390/rs11080909
Chicago/Turabian StyleRichter, Andreas, Andreas Groh, Martin Horwath, Erik Ivins, Eric Marderwald, José Luis Hormaechea, Raúl Perdomo, and Reinhard Dietrich. 2019. "The Rapid and Steady Mass Loss of the Patagonian Icefields throughout the GRACE Era: 2002–2017" Remote Sensing 11, no. 8: 909. https://doi.org/10.3390/rs11080909
APA StyleRichter, A., Groh, A., Horwath, M., Ivins, E., Marderwald, E., Hormaechea, J. L., Perdomo, R., & Dietrich, R. (2019). The Rapid and Steady Mass Loss of the Patagonian Icefields throughout the GRACE Era: 2002–2017. Remote Sensing, 11(8), 909. https://doi.org/10.3390/rs11080909