A Novel Approach for the Detection of Developing Thunderstorm Cells
Abstract
1. Introduction
2. Materials and Methods
2.1. Method
2.2. Validation Approach
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AMV | Atmospheric Motion Vectors |
BT | Brightness Temperature |
Cb | Cumulonimbus |
CMV | Cloud Motion Vectors |
CSI | Critical Success Index |
CTH | Cloud Top Height |
ECMWF | European Centre for Medium Weather Forecasts |
FAR | False Alarm Ratio |
ICON | NWP model of Deutscher Wetterdienst |
IFS | Integrated Forecast System |
IR | InfraRed |
KO | Convection Index |
MSG | Meteosat Second Generation |
MTG | Meteosat Third Generation |
Meteosat | Meteorological satellite |
NWP | Numerical Weather Prediction |
POD | Probability of Detection |
SEVIRI | Spinning Enhanced Visible and InfraRed Imager |
SR | Search Region |
WV | Water Vapor |
Appendix A
References
- Schmetz, J.; Tjemkes, A.; Gube, M.; van der Berg, L. Monitoring deep convection and convective overshooting with Meteosat. Adv. Space Res. 1997, 19, 433–441. [Google Scholar] [CrossRef]
- Mosher, F. Detection of deep convection around the globe. In Proceedings of the 10th Conference on Aviation, Range, and Aerospace Me- Teorology; American Meteorological Society: Portland, OR, USA, 2002; pp. 289–292. [Google Scholar]
- Donovan, M.F.; Williams, E.R.; Kessinger, C.; Blackburn, G.; Herzegh, P.H.; Bankert, R.L.; Miller, S. The Identification and VErificantion of Hazardous Convective Cells over Oceans Using Visible and Infrared Satellite Observations. J. Appl. Meteorol. Climatol. 2008, 47. [Google Scholar] [CrossRef]
- Müller, R.; Haussler, S.; Jerg, M. The Role of NWP Filter for the Satellite Based Detection of Cumulonimbus Clouds. Remote Sens. 2018, 10, 386. [Google Scholar] [CrossRef]
- Deierling, W.; Petersen, W.A.; Latham, J.; Ellis, S.; Christian, H.J. The relationship between lightning activity and ice fluxes in thunderstorms. J. Geogr. Res. 2008, 113. [Google Scholar] [CrossRef]
- Mecikalski, J.; MacKenzie, W.; Koenig, M.; Muller, S. Cloud-Top Properties of Growing Cumulus prior to Convective Initiation as Measured by Meteosat Second Generation. Part I: Infrared Fields. J. Appl. Meteorol. Climatol. 2010, 49, 521–534. [Google Scholar] [CrossRef]
- Merk, D.; Zinner, T. Detection of convective initiation using Meteosat SEVIRI: Implementation in and verification with the tracking and nowcasting algorithm Cb-TRAM. Atmos. Meas. Tech. 2013, 6, 1903–1918. [Google Scholar] [CrossRef]
- Okabe, I.; Imai, T.; Izumikawa, Y. Detection of Rapidly Developing Cumulus Areas through MTSAT Rapid Scan Operation Observations; Meteorological Satellite Center Technical Note; JMA: Tokyo, Japan, 2011. [Google Scholar]
- Autones, F. Algorithm Theoretical Basis Document for Convection Products; Technical Report; NWC-SAF: Toulouse, France, 2016. [Google Scholar]
- Lee, S.; Han, H.; Im, J.; Jang, E.; Lee, M.I. Detection of deterministic and probabilistic convection initiation using Himawari-8 Advanced Himawari Imager data. Atmos. Meas. Tech. 2017, 10, 1859–1874. [Google Scholar] [CrossRef]
- Bedka, K.M.; Mecikalski, J.R. Application of Satellite-Derived Atmospheric Motion Vectors for Estimating Mesoscale Flows. J. Appl. Meteorol. 2005, 44, 1761–1772. [Google Scholar] [CrossRef]
- Urbich, I.; Benidx, J.; Múller, R. A Novel Approach for the Short-Term Forecast of the Effective Cloud Albedo. Remote Sens. 2018, 10, 955. [Google Scholar] [CrossRef]
- Schmetz, J.; Pili, P.; Tjemkes, S.; Just, D.; Kerkmann, J.; Rota, S.; Ratier, A. An Introduction to Meteosat Second Generation (MSG). Bull. Am. Meteorol. Soc. 2002, 83, 977–992. [Google Scholar] [CrossRef]
- Gijben, M.; de Coning, C. Using Satellite and Lightning Data to Track Rapidly Developing Thunderstorms in Data Sparse Regions. Atmosphere 2017, 8, 67. [Google Scholar] [CrossRef]
- Rorig, M.; Bothwell, P. Predicting Dry Lightning Risk Nationwide. Fire Sci. Brief 2012, 149. Available online: www.firescience.gov (accessed on 10 January 2019).
- Available online: https://www.wmo-sat.info/oscar/instruments/view/503 (accessed on 21 August 2018).
- Moncrief, M.W.; Miller, M.J. The dynamics and simulation of tropical cumulonimbus and squall lines. Q. J. R. Meteorol. Soc. 1976, 120, 373–394. [Google Scholar] [CrossRef]
- Bechtold, P.; Köhler, M.; Jung, T.; Doblas-Reyes, F.; Leutbecher, M.; Rodwell, M.J.; Vitart, F.; Balsamo, G. Advances in simulating atmospheric variability with the ECMWF model: From synoptic to decadal time-scales. Q. J. R. Meteorol. Soc. 2008, 134, 1337–1351. [Google Scholar] [CrossRef]
- Available online: www.ecmwf.int/en/forecasts/documentation-and-support/changes-ecmwf-model/ifs-documentation (accessed on 10 September 2017).
- Betz, H.D.; Schmidt, K.; Laroche, P.; Blanchet, P.; Oettinger, W.P.; Defer, E.; Dziewit, Z.; Konarski, J. LINET—An international lightning detection network in Europe. Atmos. Res. 2009, 91, 564–573. [Google Scholar] [CrossRef]
- Betz, H.; Schmidt, K.; Oettinger, W.; Montag, B. Cell-tracking with lightning data from LINET. Adv. Geosci. 2008, 17, 55–61. [Google Scholar] [CrossRef]
- Sengupta, S.K.; Welch, R.M.; Navar, M.; Berendes, T.A.; Chen, D.W. Cumulus Cloud Field Morphology and Spatial Patterns Derived from High Spatial Resolution Landsat Imageery. J. Appl. Meteorol. 1990, 29, 1245–1267. [Google Scholar] [CrossRef]
- Orit, A.; Ilan, K.; Graham, F.; Mikhail, O.; Erick, F.; Guy, D.; Lital, P.; Ricki, Y.; Qian, C. Characterization of cumulus cloud fields using trajectories in the center of gravity versus water mass phase space: 2. Aerosol effects on warm convective clouds. J. Geophys. Res. Atmos. 2016, 121, 6356–6373. [Google Scholar]
- Trapp, R.J. Mesoscale-Convective Processes in the Atmosphere; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Mecikalski, J.R.; MacKenzie, W.M.; König, M.; Muller, S. Cloud-Top Properties of Growing Cumulus prior to Convective Initiation as Measured by Meteosat Second Generation. Part II: Use of Visible Reflectance. J. Appl. Meteorol. Climatol. 2010, 49, 2544–2558. [Google Scholar] [CrossRef]
No. | CI If | NWP/Period | POD (%) | FAR (%) | CSI (%) | Time Lightning |
---|---|---|---|---|---|---|
1 | NUS > 0.02 | IFS/2016 | 81.8 | 22.6 | 66.0 | +4–19 min |
2 | NUS > 0.02 | none/2016 | 85.9 | 28.6 | 63.8 | +4–19 min |
3 | NUS > 0.015 | IFS/2016 | 90.3 | 28.1 | 66.8 | +4–19 min |
4 | NUS > 0.015 | IFS/2016 | 88.6 | 25.1 | 68.3 | +4–29 min |
5 | NUS > 0.02 | IFS/2017 I | 89.2 | 36.4 | 59.1 | +4–19 min |
6 | NUS > 0.02 | none/2017 | 90.1 | 47.6 | 49.8 | +4–19 min |
7 | NUS > 0.02 | IFS/2017 I | 87.6 | 32.5 | 61.6 | +4–29 min |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Müller, R.; Haussler, S.; Jerg, M.; Heizenreder, D. A Novel Approach for the Detection of Developing Thunderstorm Cells. Remote Sens. 2019, 11, 443. https://doi.org/10.3390/rs11040443
Müller R, Haussler S, Jerg M, Heizenreder D. A Novel Approach for the Detection of Developing Thunderstorm Cells. Remote Sensing. 2019; 11(4):443. https://doi.org/10.3390/rs11040443
Chicago/Turabian StyleMüller, Richard, Stéphane Haussler, Matthias Jerg, and Dirk Heizenreder. 2019. "A Novel Approach for the Detection of Developing Thunderstorm Cells" Remote Sensing 11, no. 4: 443. https://doi.org/10.3390/rs11040443
APA StyleMüller, R., Haussler, S., Jerg, M., & Heizenreder, D. (2019). A Novel Approach for the Detection of Developing Thunderstorm Cells. Remote Sensing, 11(4), 443. https://doi.org/10.3390/rs11040443