Icing Detection over East Asia from Geostationary Satellite Data Using Machine Learning Approaches
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Geostationary Satellite Data
2.3. Pilot Reports
3. Methodology
3.1. Sample Extraction
3.2. Machine Learning
3.3. Existing Satellite-Based Icing Detection Algorithms
3.4. Accuracy Assessment
4. Results and Discussion
4.1. Variable Importance
4.2. Model Performance
4.3. Temporal Variation of Icing
4.4. Novelty and Limitations
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Shappell, S.; Hackworth, C.; Holcomb, K.; Lanicci, J.; Bazargan, M.; Baron, J.; Iden, R.; Halperin, D. Developing Proactive Methods for General Aviation Data Collection; Clemson University, South Carolina: Clemson, SC, USA, 2010. [Google Scholar]
- Petty, K.R.; Floyd, C.D. In A statistical review of aviation airframe icing accidents in the US. In Proceedings of the 11th Conference on Aviation, Range, and Aerospace Hyannis, Hyannis, MA, USA, 3–8 October 2004. [Google Scholar]
- Alexandrov, M.D.; Cairns, B.; Van Diedenhoven, B.; Ackerman, A.S.; Wasilewski, A.P.; McGill, M.J.; Yorks, J.E.; Hlavka, D.L.; Platnick, S.E.; Arnold, G.T. Polarized view of supercooled liquid water clouds. Remote Sens. Environ. 2016, 181, 96–110. [Google Scholar] [CrossRef]
- Jung, S.; Tiwari, M.K.; Doan, N.V.; Poulikakos, D. Mechanism of supercooled droplet freezing on surfaces. Nat. Commun. 2012, 3, 615. [Google Scholar] [CrossRef] [PubMed]
- Politovich, M.K. Aircraft icing caused by large supercooled droplets. J. Appl. Meteorol. 1989, 28, 856–868. [Google Scholar] [CrossRef]
- Thompson, G.; Bullock, R.; Lee, T.F. Using satellite data to reduce spatial extent of diagnosed icing. Weather Forecast. 1997, 12, 185–190. [Google Scholar] [CrossRef]
- Schwartz, B. The quantitative use of pireps in developing aviation weather guidance products. Weather Forecast. 1996, 11, 372–384. [Google Scholar] [CrossRef]
- Ellrod, G.P. The Use of Goes-8 Multispectral Imagery for the Detection of Aircraft Icing Regions; NASA: Washington, DC, USA, 1996.
- Brown, B.G.; Thompson, G.; Bruintjes, R.T.; Bullock, R.; Kane, T. Intercomparison of in-flight icing algorithms. Part II: Statistical verification results. Weather Forecast. 1997, 12, 890–914. [Google Scholar] [CrossRef]
- Bernstein, B.C.; McDonough, F.; Politovich, M.K.; Brown, B.G.; Ratvasky, T.P.; Miller, D.R.; Wolff, C.A.; Cunning, G. Current icing potential: Algorithm description and comparison with aircraft observations. J. Appl. Meteorol. 2005, 44, 969–986. [Google Scholar] [CrossRef]
- Benjamin, S.G.; Dévényi, D.; Weygandt, S.S.; Brundage, K.J.; Brown, J.M.; Grell, G.A.; Kim, D.; Schwartz, B.E.; Smirnova, T.G.; Smith, T.L. An hourly assimilation—Forecast cycle: The ruc. Mon. Weather Rev. 2004, 132, 495–518. [Google Scholar] [CrossRef]
- Wang, P.; Li, J.; Li, J.; Li, Z.; Schmit, T.J.; Bai, W. Advanced infrared sounder subpixel cloud detection with imagers and its impact on radiance assimilation in NWP. Geophys. Res. Lett. 2014, 41, 1773–1780. [Google Scholar] [CrossRef]
- Kind, R.; Potapczuk, M.; Feo, A.; Golia, C.; Shah, A. Experimental and computational simulation of in-flight icing phenomena. Prog. Aerosp. Sci. 1998, 34, 257–345. [Google Scholar] [CrossRef]
- Rauber, R.M.; Tokay, A. An explanation for the existence of supercooled water at the top of cold clouds. J. Atmos. Sci. 1991, 48, 1005–1023. [Google Scholar] [CrossRef]
- Smith, W.L., Jr.; Minnis, P.; Fleeger, C.; Spangenberg, D.; Palikonda, R.; Nguyen, L. Determining the flight icing threat to aircraft with single-layer cloud parameters derived from operational satellite data. J. Appl. Meteorol. Climatol. 2012, 51, 1794–1810. [Google Scholar] [CrossRef]
- Minnis, P.; Nguyen, L.; Smith, W., Jr.; Young, D.; Khaiyer, M.; Palikonda, R.; Spangenberg, D.; Doelling, D.; Phan, D.; Nowicki, G. Real-Time Cloud, Radiation, and Aircraft Icing Parameters from Goes over the USA; NASA: Washington, DC, USA, 2004.
- Thompson, G.; Bruintjes, R.T.; Brown, B.G.; Hage, F. Intercomparison of in-flight icing algorithms. Part I: Wisp94 real-time icing prediction and evaluation program. Weather Forecast. 1997, 12, 878–889. [Google Scholar] [CrossRef]
- Isaac, G.; Cober, S.; Strapp, J.; Hudak, D.; Ratvasky, T.; Marcotte, D.; Fabry, F. In Preliminary results from the alliance icing research study (airs). In Proceedings of the 39th Aerospace Sciences Meeting and Exhibit, East Hartford, CT, USA, 8–11 January 2001; p. 393. [Google Scholar]
- Serke, D.J.; Politovich, M.K.; Reehorst, A.L.; Gaydos, A. Use of x-band radars to support the detection of in-flight icing hazards. J. Appl. Remote Sens. 2009, 3, 033532. [Google Scholar] [CrossRef]
- Bernstein, B.C.; Le Bot, C. An inferred climatology of icing conditions aloft, including supercooled large drops. Part II: Europe, Asia, and the globe. J. Appl. Meteorol. Climatol. 2009, 48, 1503–1526. [Google Scholar] [CrossRef]
- Minnis, P.; Smith, W., Jr.; Bedka, K.M.; Nguyen, L.; Palikonda, R.; Hong, G.; Trepte, Q.; Chee, T.; Scarino, B.; Spangenberg, D. Near-Real Time Satellite-Retrieved Cloud and Surface Properties for Weather and Aviation Safety Applications; AGU Fall Meeting Abstracts; American Geophysical Union: Washington, DC, USA, 2014. [Google Scholar]
- Choi, M.-B.; Kim, O.; Cha, E.; Yoo, S.-J. Development and verification of icing algorithm using communication, ocean and meteorological satellite (coms). In Proceedings of the Autumn Meeting of KMS, Jeju-island, Korea, 13–15 October 2014; pp. 715–716. [Google Scholar]
- Im, J.; Jensen, J.R.; Jensen, R.R.; Gladden, J.; Waugh, J.; Serrato, M. Vegetation cover analysis of hazardous waste sites in Utah and Arizona using hyperspectral remote sensing. Remote Sens. 2012, 4, 327–353. [Google Scholar] [CrossRef]
- Li, M.; Im, J.; Beier, C. Machine learning approaches for forest classification and change analysis using multi-temporal landsat tm images over huntington wildlife forest. GISci. Remote Sens. 2013, 50, 361–384. [Google Scholar]
- Kim, Y.H.; Im, J.; Ha, H.K.; Choi, J.-K.; Ha, S. Machine learning approaches to coastal water quality monitoring using goci satellite data. GISci. Remote Sens. 2014, 51, 158–174. [Google Scholar] [CrossRef]
- Rhee, J.; Im, J.; Carbone, G.; Jensen, J. Delineation of climate regions using in-situ and remotely-sensed data for the Carolinas. Remote Sens. Environ. 2008, 112, 3099–3111. [Google Scholar] [CrossRef]
- Lu, Z.; Im, J.; Quackenbush, L. A volumetric approach to population estimation using LiDAR remote sensing. Photogramm. Eng. Remote Sens. 2011, 77, 1145–1156. [Google Scholar]
- Park, M.-S.; Kim, M.; Lee, M.-I.; Im, J.; Park, S. Detection of tropical cyclone genesis via quantitative satellite ocean surface wind pattern and intensity analyses using decision trees. Remote Sens. Environ. 2016, 183, 205–214. [Google Scholar] [CrossRef]
- Han, H.; Lee, S.; Im, J.; Kim, M.; Lee, M.-I.; Ahn, M.H.; Chung, S.-R. Detection of convective initiation using meteorological imager onboard communication, ocean, and meteorological satellite based on machine learning approaches. Remote Sens. 2015, 7, 9184–9204. [Google Scholar] [CrossRef]
- Kim, M.; Im, J.; Park, H.; Park, S.; Lee, M.-I.; Ahn, M.-H. Detection of tropical overshooting cloud tops using himawari-8 imagery. Remote Sens. 2017, 9, 685. [Google Scholar] [CrossRef]
- Lee, S.; Han, H.; Im, J.; Jang, E.; Lee, M.-I. Detection of deterministic and probabilistic convection initiation using Himawari-8 advanced Himawari imager data. Atmos. Meas. Tech. 2017, 10, 1859–1874. [Google Scholar] [CrossRef]
- Airports Council International. ACI Releases Preliminary 2016 World Airport Traffic Rankings—Robust Gains in Passenger Traffic at Hub Airports Serving Trans-PACIFIC and East Asian Routes. Available online: http://www.aci.aero/News/Releases/Most-Recent/2017/04/19/ACI-releases-preliminary-2016-world-airport-traffic-rankingsRobust-gains-in-passenger-traffic-at-hub-airports-serving-transPacific-and-East-Asian-routes (accessed on 19 April 2017).
- Choi, Y.S.; Ho, C.H.; Ahn, M.H.; Kim, Y.M. An exploratory study of cloud remote sensing capabilities of the communication, ocean and meteorological satellite (coms) imagery. Int. J. Remote Sens. 2007, 28, 4715–4732. [Google Scholar]
- King, M.D.; Tsay, S.-C.; Platnick, S.E.; Wang, M.; Liou, K.-N. Cloud Retrieval Algorithms for Modis: Optical Thickness, Effective Particle Radius, and Thermodynamic Phase; MODIS Algorithm Theoretical Basis Document, 1997. Available online: http://patarnott.com/satsens/pdf/CloudRetrieval_atbd_mod05.pdf (accessed on 17 April 2018).
- Menzel, P.; Strabala, K. Cloud Top Properties and Cloud Phase Algorithm Theoretical Basis Document; University of Wisconsin-Madison: Madison, WI, USA, 1997. [Google Scholar]
- Da, C. Preliminary assessment of the Advanced Himawari Imager (AHI) measurement onboard Himawari-8 geostationary satellite. Remote Sens. Lett. 2015, 6, 637–646. [Google Scholar] [CrossRef]
- Kurihara, Y.; Murakami, H.; Kachi, M. Sea surface temperature from the new Japanese geostationary meteorological Himawari-8 satellite. Geophys. Res. Lett. 2016, 43, 1234–1240. [Google Scholar] [CrossRef]
- Yumimoto, K.; Nagao, T.; Kikuchi, M.; Sekiyama, T.; Murakami, H.; Tanaka, T.; Ogi, A.; Irie, H.; Khatri, P.; Okumura, H. Aerosol data assimilation using data from Himawari-8, a next-generation geostationary meteorological satellite. Geophys. Res. Lett. 2016, 43, 5886–5894. [Google Scholar] [CrossRef]
- Thompson, G.; Politovich, M.K.; Rasmussen, R.M. A numerical weather model’s ability to predict characteristics of aircraft icing environments. Weather Forecast. 2017, 32, 207–221. [Google Scholar] [CrossRef]
- Choi, Y.-S.; Lindzen, R.S.; Ho, C.-H.; Kim, J. Space observations of cold-cloud phase change. Proc. Natl. Acad. Sci. USA 2010, 107, 11211–11216. [Google Scholar] [CrossRef] [PubMed]
- Kühnlein, M.; Appelhans, T.; Thies, B.; Nauss, T. Improving the accuracy of rainfall rates from optical satellite sensors with machine learning—A random forests-based approach applied to MSG SEVIRI. Remote Sens. Environ. 2014, 141, 129–143. [Google Scholar] [CrossRef]
- Tu, J.V. Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. J. Clin. Epidemiol. 1996, 49, 1225–1231. [Google Scholar] [CrossRef]
- Autonès, F. Algorithm Theoretical Basis Document for “Rapid Development Thunderstorms” (RDT-PGE11 v3.0); METEO-FRANCE: Paris, France, 2013. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Richardson, H.; Hill, D.; Denesiuk, D.; Fraser, L. A comparison of geographic datasets and field measurements to model soil carbon using random forests and stepwise regressions (British Columbia, Canada). GISci. Remote Sens. 2017, 54, 573–591. [Google Scholar] [CrossRef]
- Amani, M.; Salehi, B.; Mahdavi, S.; Granger, J.; Brisco, B. Wetland classification in Newfoundland and Labrador using multi-source SAR and optical data integration. GISci. Remote Sens. 2017, 54, 779–796. [Google Scholar] [CrossRef]
- Lu, Z.; Im, J.; Rhee, J.; Hodgson, M. Building type classification using spatial and landscape attributes derived from LiDAR remote sensing data. Landsc. Urban Plan. 2014, 130, 134–148. [Google Scholar] [CrossRef]
- Guo, Z.; Du, S. Mining parameter information for building extraction and change detection with very high resolution imagery and GIS data. GISci. Remote Sens. 2017, 54, 38–63. [Google Scholar] [CrossRef]
- Li, M.; Im, J.; Quackenbush, L.; Liu, T. Forest biomass and carbon stock quantification using airborne LiDAR data: A case study over Huntington Wildlife Forest in the Adirondack Park. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3143–3156. [Google Scholar] [CrossRef]
- Forkuor, G.; Dimobe, K.; Serme, I.; Tondoh, J. Landsat-8 vs. Sentinel-2: Examining the added value of sentinel-2′s red-edge bands to land-use and land-cover mapping in Burkina Faso. GISci. Remote Sens. 2018, 55, 331–354. [Google Scholar] [CrossRef]
- Jang, E.; Im, J.; Park, G.; Park, Y. Estimation of fugacity of carbon dioxide in the East Sea using in situ measurements and Geostationary Ocean Color Imager satellite data. Remote Sens. 2017, 9, 821. [Google Scholar] [CrossRef]
- Millard, K.; Richardson, M. On the importance of training data sample selection in random forest image classification: A case study in peatland ecosystem mapping. Remote Sens. 2015, 7, 8489–8515. [Google Scholar]
- Park, S.; Im, J.; Jang, E.; Rhee, J. Drought assessment and monitoring through blending of multi-sensor indices using machine learning approaches for different climate regions. Agric. For. Meteorol. 2016, 216, 157–169. [Google Scholar]
- Yoo, C.; Im, J.; Park, S.; Quackenbush, L. Estimation of daily maximum and minimum air temperature in urban landscapes using MODIS time series satellite data. ISPRS J. Photogramm. Remote Sens. 2018, 137, 149–162. [Google Scholar] [CrossRef]
- Benoit, K. Linear Regression Models with Logarithmic Transformations; London School of Economics: London, UK, 2011; Available online: http://kenbenoit.net/assets/courses/ME104/logmodels2.pdf (accessed on 17 April 2018).
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with s-Plus; Springer Science & Business Media: Berlin, Germany, 2013. [Google Scholar]
- Ripley, B.; Venables, W.; Ripley, M.B. Package ‘nnet’; R Package Version 2016, 7.3-12. Available online: https://cran.r-project.org/web/packages/nnet/nnet.pdf (accessed on 17 April 2018).
- Smith, W.L., Jr.; Minnis, P.; Fleeger, C. Algorithm Theoretical Basis Document: Flight Icing Threat; NOAA NESDIS Center for Satellite Applications and Research: Silver Spring, MD, USA, 2010.
- AghaKouchak, A.; Mehran, A. Extended contingency table: Performance metrics for satellite observations and climate model simulations. Water Resour. Res. 2013, 49, 7144–7149. [Google Scholar] [CrossRef]
- Han, H.; Im, J.; Kim, M.; Sim, S.; Kim, J.; Kim, D.-J.; Kang, S.-H. Retrieval of melt ponds on arctic multiyear sea ice in summer from terrasar-x dual-polarization data using machine learning approaches: A case study in the chukchi sea with mid-incidence angle data. Remote Sens. 2016, 8, 57. [Google Scholar] [CrossRef]
- Kim, M.; Im, J.; Han, H.; Kim, J.; Lee, S.; Shin, M.; Kim, H.-C. Landfast sea ice monitoring using multisensor fusion in the antarctic. GISci. Remote Sens. 2015, 52, 239–256. [Google Scholar] [CrossRef]
- Louppe, G.; Wehenkel, L.; Sutera, A.; Geurts, P. Understanding variable importances in forests of randomized trees. In Advances in Neural Information Processing Systems; Burges, C.J.C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K.Q., Eds.; NIPS Foundation: La Jolla, CA, USA, 2013; pp. 431–439. [Google Scholar]
- Rhee, J.; Im, J. Meteorological drought forecasting for ungauged areas based on machine learning: Using long-range climate forecast and remote sensing data. Agric. For. Meteorol. 2017, 237, 105–122. [Google Scholar] [CrossRef]
- Wolters, E.L.; Roebeling, R.A.; Feijt, A.J. Evaluation of cloud-phase retrieval methods for seviri on meteosat-8 using ground-based lidar and cloud radar data. J. Appl. Meteorol. Climatol. 2008, 47, 1723–1738. [Google Scholar] [CrossRef]
- Schmit, T.J.; Gunshor, M.M.; Menzel, W.P.; Gurka, J.J.; Li, J.; Bachmeier, A.S. Introducing the next-generation advanced baseline imager on GOES-R. Bull. Am. Meteorol. Soc. 2005, 86, 1079–1096. [Google Scholar] [CrossRef]
- Choi, Y.S.; Cho, H. Algorithm Theoretical Basis Document for Cloud Phase; National Meteorological Satellite Center: Chungcheongbuk-do, Korea, 2012.
- Choi, Y.S.; Cho, H. Algorithm Theoretical Basis Document for Cloud Optical Thickness; National Meteorological Satellite Center: Chungcheongbuk-do, Korea, 2012.
- Carrière, J.-M.; Lainard, C.; Le Bot, C.; Robart, F. A climatological study of surface freezing precipitation in Europe. Meteorol. Appl. 2000, 7, 229–238. [Google Scholar] [CrossRef]
COMS MI | Himawari-8 AHI | |||||
---|---|---|---|---|---|---|
Variable Name | Description | Resolution | Variable Name | Description | Resolution | |
Level 1b | CH01 | Albedo of 0.43–0.48 µm channel | 1 km | |||
Visible | Albedo of 0.55–0.80 µm channel | 1 km | CH02 | Albedo of 0.50–0.52 µm channel | ||
SWIR | Tb of 3.5–4.0 µm channel | 4 km | CH04 | Albedo of 0.85–0.87 µm channel | ||
WV | Tb of 6.5–7.0 µm channel | CH05 | Albedo of 1.60–1.62 µm channel | 2 km | ||
IR1 | Tb of 10.3–11.3 µm channel | CH06 | Albedo of 2.25–2.27 µm channel | |||
IR2 | Tb of 11.5–12.5 µm channel | CH07 | Tb of 3.74–3.96 µm channel | |||
BTD1 | Tb difference between SWIR and IR1 | CH08 | Tb of 6.06–6.43 µm channel | |||
BTD2 | Tb difference between IR1 and IR2 | CH09 | Tb of 6.89–7.01 µm channel | |||
Level 2 | CH10 | Tb of 7.26–7.43 µm channel | ||||
CLA | COT | Cloud optical thickness | 4 km | CH11 | Tb of 8.44–8.76 µm channel | |
CP | Cloud phase | CH13 | Tb of 10.3–10.6 µm channel | |||
CTTP | CTT | Cloud top temperature | CH14 | Tb of 11.1–11.3 µm channel | ||
CTH | Cloud top height | CH15 | Tb of 12.2–12.5 µm channel | |||
CTP | Cloud top pressure | CH16 | Tb of 13.2–13.4 µm channel |
Rule | Description | Satellite Sensor | Flag | |
---|---|---|---|---|
COMS | Himawari-8 | |||
Rule 1 | Flight over a cloud top | FA * > CTH | FA > CTH | Excluded |
Rule 2 | Flight near an ice cloud top | FA ~ CTH CPH = ICE | ̶ | Excluded |
Rule 3 | Flight below a thick ice cloud top | FA < CTH CPH = ICE COT > 6 | FA < CTH R > 0.1 | Pass |
Rule 4 | Flight below a thin ice cloud top | FA < CTH CPH = ICECOT ~ 0 | FA < CTH R < 0.1 | Excluded |
Rule 5 | Flight near or below a warm cloud | Tb 11 μm > 270 K | Tb 11 μm > 270 K | Excluded |
Rule 6 | Flight near or below a frigid cloud | Tb 11 μm < 228 K | Tb 11 μm < 228 K | Excluded |
Final Decision | The remaining pixels that meet the rules > 20% of the buffer with a radius of 20 km | Valid |
COMS (April 2011–July 2017) | Himawari-8 (July 2015–July 2017) | |||
---|---|---|---|---|
Icing | Non-Icing | Icing | Non-Icing | |
KMA | 12 (18) | 219 | 6 (8) | 59 |
HKO | 21 (36) | 0 | 10 (16) | 0 |
Sum | 33 (54) | 219 | 16 (24) | 59 |
FIT Algorithm | KMA Algorithm | ||||||
---|---|---|---|---|---|---|---|
Cloud Phase | COT | Icing Mask | IR1 | Visible | SWIR–IR1 | IR1–IR2 | Icing Mask |
Clear | ─ | No icing | 243 K ≤ Tb ≤ 272 K | Albedo ≥ 37% | BTD ≥ 10 K | BTD < 1 K | Icing |
Water | All | No icing | 243 K ≤ Tb ≤ 272 K | Albedo ≥ 37% | BTD ≥ 10 K | BTD ≥ 1 K | No icing |
SLW | τ > 1.0 | Icing | 243 K ≤ Tb ≤ 272 K | Albedo ≥ 37% | BTD < 10 K | ─ | No icing |
SLW | τ ≤ 1.0 | No icing | 243 K ≤ Tb ≤ 272 K | 4.5% ≤ Albedo < 37% | ─ | ─ | No icing |
Mixed | τ >1.0 | Icing | 243 K ≤ Tb ≤ 272 K | Albedo < 4.5% | BTD ≤ −2.5 K | BTD < 1 K | Icing |
Mixed | τ ≤ 1.0 | No icing | 243 K ≤ Tb ≤ 272 K | Albedo < 4.5% | BTD ≤ −2.5 K | BTD ≥ 1 K | No icing |
Ice | τ ≤ 6.0 | No icing | 243 K ≤ Tb ≤ 272 K | Albedo < 4.5% | BTD > −2.5 K | ─ | No icing |
Ice | τ > 6.0 | Unknown | Tb < 243 K or Tb > 272 K | ─ | ─ | ─ | No icing |
Reference | ||
---|---|---|
Model Classified | Non-Icing | Icing |
Non-icing | Correct negative (N) | Miss (M) |
Icing | False (F) | Hit (H) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sim, S.; Im, J.; Park, S.; Park, H.; Ahn, M.H.; Chan, P.-w. Icing Detection over East Asia from Geostationary Satellite Data Using Machine Learning Approaches. Remote Sens. 2018, 10, 631. https://doi.org/10.3390/rs10040631
Sim S, Im J, Park S, Park H, Ahn MH, Chan P-w. Icing Detection over East Asia from Geostationary Satellite Data Using Machine Learning Approaches. Remote Sensing. 2018; 10(4):631. https://doi.org/10.3390/rs10040631
Chicago/Turabian StyleSim, Seongmun, Jungho Im, Sumin Park, Haemi Park, Myoung Hwan Ahn, and Pak-wai Chan. 2018. "Icing Detection over East Asia from Geostationary Satellite Data Using Machine Learning Approaches" Remote Sensing 10, no. 4: 631. https://doi.org/10.3390/rs10040631