Next Article in Journal
Monitoring and Detecting Archaeological Features with Multi-Frequency Polarimetric Analysis
Next Article in Special Issue
Deep TEC: Deep Transfer Learning with Ensemble Classifier for Road Extraction from UAV Imagery
Previous Article in Journal
Can We Use the QA4ECV Black-sky Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) using AVHRR Surface Reflectance to Assess Terrestrial Global Change?
Previous Article in Special Issue
Automatic Detection of Track and Fields in China from High-Resolution Satellite Images Using Multi-Scale-Fused Single Shot MultiBox Detector
Open AccessFeature PaperArticle

Remote Sensing Big Data Classification with High Performance Distributed Deep Learning

by Rocco Sedona 1,2,3,4,*,†, Gabriele Cavallaro 2,3,4,†, Jenia Jitsev 2,4,†, Alexandre Strube 2, Morris Riedel 1,2,3,4 and Jón Atli Benediktsson 1
1
School of Engineering and Natural Sciences, University of Iceland, Dunhagi 5, 107 Reykjavík, Iceland
2
Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich (FZJ), Wilhelm-Johnen-Strasse 1, 52425 Jülich, Germany
3
High Productivity Data Processing Research Group, JSC, 52425 Jülich, Germany
4
Cross-Sectional Team Deep Learning (CST-DL), JSC, 52425 Jülich, Germany
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Remote Sens. 2019, 11(24), 3056; https://doi.org/10.3390/rs11243056
Received: 16 October 2019 / Revised: 26 November 2019 / Accepted: 11 December 2019 / Published: 17 December 2019
(This article belongs to the Special Issue Analysis of Big Data in Remote Sensing)
High-Performance Computing (HPC) has recently been attracting more attention in remote sensing applications due to the challenges posed by the increased amount of open data that are produced daily by Earth Observation (EO) programs. The unique parallel computing environments and programming techniques that are integrated in HPC systems are able to solve large-scale problems such as the training of classification algorithms with large amounts of Remote Sensing (RS) data. This paper shows that the training of state-of-the-art deep Convolutional Neural Networks (CNNs) can be efficiently performed in distributed fashion using parallel implementation techniques on HPC machines containing a large number of Graphics Processing Units (GPUs). The experimental results confirm that distributed training can drastically reduce the amount of time needed to perform full training, resulting in near linear scaling without loss of test accuracy. View Full-Text
Keywords: distributed deep learning; high performance computing; residual neural network; convolutional neural network; classification; sentinel-2 distributed deep learning; high performance computing; residual neural network; convolutional neural network; classification; sentinel-2
Show Figures

Graphical abstract

MDPI and ACS Style

Sedona, R.; Cavallaro, G.; Jitsev, J.; Strube, A.; Riedel, M.; Benediktsson, J.A. Remote Sensing Big Data Classification with High Performance Distributed Deep Learning. Remote Sens. 2019, 11, 3056.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop