Next Article in Journal
Sub-Annual Calving Front Migration, Area Change and Calving Rates from Swath Mode CryoSat-2 Altimetry, on Filchner-Ronne Ice Shelf, Antarctica
Previous Article in Journal
A Comparative Study of RGB and Multispectral Sensor-Based Cotton Canopy Cover Modelling Using Multi-Temporal UAS Data
Previous Article in Special Issue
Nitrogen and Phosphorus Effect on Sun-Induced Fluorescence and Gross Primary Productivity in Mediterranean Grassland
Open AccessArticle

The High-Performance Airborne Imaging Spectrometer HyPlant—From Raw Images to Top-of-Canopy Reflectance and Fluorescence Products: Introduction of an Automatized Processing Chain

1
Institute of Bio- and Geosciences, Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
2
Department of Earth Physics and Thermodynamics, University of Valencia, 46980 Valencia, Spain
3
Remote Sensing of Environmental Dynamics Lab., DISAT, University of Milano-Bicocca, 20126 Milan, Italy
4
Department of Geography, University of Zurich, 8057 Zurich, Switzerland
5
National Physical Laboratory, Teddington TW11 0LW, UK
6
ETSI de Telecomunicación, Universitat Politècnica de València, 46022 Valencia, Spain
7
Global Change Research Institute, Czech Academy of Sciences, 60300 Brno, Czech Republic
8
Specim Spectral Imaging Ltd., 90590 Oulu, Finland
9
Field Lab Campus Klein-Altendorf, University of Bonn, 53359 Rheinbach, Germany
10
International Maize and Wheat Improvement Center (CIMMYT), Ciudad de México 11305, Mexico
11
Finnish Meteorological Institute, 00560 Helsinki, Finland
12
German Aerospace Center (DLR), Space Administration, Earth Observation, 53227 Bonn, Germany
13
ESA-ESTEC, 2201 AZ Noordwijk, The Netherlands
14
University of South Bohemia, 37005 Ceske Budejovice, Czech Republic
*
Author to whom correspondence should be addressed.
Remote Sens. 2019, 11(23), 2760; https://doi.org/10.3390/rs11232760
Received: 30 October 2019 / Revised: 15 November 2019 / Accepted: 20 November 2019 / Published: 23 November 2019
The HyPlant imaging spectrometer is a high-performance airborne instrument consisting of two sensor modules. The DUAL module records hyperspectral data in the spectral range from 400–2500 nm, which is useful to derive biochemical and structural plant properties. In parallel, the FLUO module acquires data in the red and near infrared range (670–780 nm), with a distinctly higher spectral sampling interval and finer spectral resolution. The technical specifications of HyPlant FLUO allow for the retrieval of sun-induced chlorophyll fluorescence (SIF), a small signal emitted by plants, which is directly linked to their photosynthetic efficiency. The combined use of both HyPlant modules opens up new opportunities in plant science. The processing of HyPlant image data, however, is a rather complex procedure, and, especially for the FLUO module, a precise characterization and calibration of the sensor is of utmost importance. The presented study gives an overview of this unique high-performance imaging spectrometer, introduces an automatized processing chain, and gives an overview of the different processing steps that must be executed to generate the final products, namely top of canopy (TOC) radiance, TOC reflectance, reflectance indices and SIF maps. View Full-Text
Keywords: HyPlant; hyperspectral; automatized processing chain; sun-induced chlorophyll fluorescence; SIF; SIF retrieval; airborne imaging spectrometer; FLuorescence Explorer; FLEX HyPlant; hyperspectral; automatized processing chain; sun-induced chlorophyll fluorescence; SIF; SIF retrieval; airborne imaging spectrometer; FLuorescence Explorer; FLEX
Show Figures

Graphical abstract

MDPI and ACS Style

Siegmann, B.; Alonso, L.; Celesti, M.; Cogliati, S.; Colombo, R.; Damm, A.; Douglas, S.; Guanter, L.; Hanuš, J.; Kataja, K.; Kraska, T.; Matveeva, M.; Moreno, J.; Muller, O.; Pikl, M.; Pinto, F.; Quirós Vargas, J.; Rademske, P.; Rodriguez-Morene, F.; Sabater, N.; Schickling, A.; Schüttemeyer, D.; Zemek, F.; Rascher, U. The High-Performance Airborne Imaging Spectrometer HyPlant—From Raw Images to Top-of-Canopy Reflectance and Fluorescence Products: Introduction of an Automatized Processing Chain. Remote Sens. 2019, 11, 2760. https://doi.org/10.3390/rs11232760

AMA Style

Siegmann B, Alonso L, Celesti M, Cogliati S, Colombo R, Damm A, Douglas S, Guanter L, Hanuš J, Kataja K, Kraska T, Matveeva M, Moreno J, Muller O, Pikl M, Pinto F, Quirós Vargas J, Rademske P, Rodriguez-Morene F, Sabater N, Schickling A, Schüttemeyer D, Zemek F, Rascher U. The High-Performance Airborne Imaging Spectrometer HyPlant—From Raw Images to Top-of-Canopy Reflectance and Fluorescence Products: Introduction of an Automatized Processing Chain. Remote Sensing. 2019; 11(23):2760. https://doi.org/10.3390/rs11232760

Chicago/Turabian Style

Siegmann, Bastian; Alonso, Luis; Celesti, Marco; Cogliati, Sergio; Colombo, Roberto; Damm, Alexander; Douglas, Sarah; Guanter, Luis; Hanuš, Jan; Kataja, Kari; Kraska, Thorsten; Matveeva, Maria; Moreno, Jóse; Muller, Onno; Pikl, Miroslav; Pinto, Francisco; Quirós Vargas, Juan; Rademske, Patrick; Rodriguez-Morene, Fernando; Sabater, Neus; Schickling, Anke; Schüttemeyer, Dirk; Zemek, František; Rascher, Uwe. 2019. "The High-Performance Airborne Imaging Spectrometer HyPlant—From Raw Images to Top-of-Canopy Reflectance and Fluorescence Products: Introduction of an Automatized Processing Chain" Remote Sens. 11, no. 23: 2760. https://doi.org/10.3390/rs11232760

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop