Satellite Remote Sensing of the Greenland Ice Sheet Ablation Zone: A Review
Abstract
:1. Introduction
2. Ice Sheet Mass Balance, Surface Mass Balance, and Energy Balance
3. Ice Surface Elevation Change
3.1. Radar Altimetry
3.1.1. Radar Altimetry Sensors and Datasets
3.1.2. Current Challenges and Future Opportunities
3.2. Laser Altimetry
3.2.1. Laser Altimetry Sensors, Methods, and Datasets
3.2.2. ICESat-2 and Future Opportunities
4. Remote Sensing of Mass Balance
4.1. Converting Ice Surface Elevation Change to Mass Change
4.2. The Input–Output Method
4.3. Time Variable Gravimetry and the Twin-GRACE Mission
5. Remote Sensing of Ice Surface Reflectance and Albedo
5.1. Definition of Reflectance, BRDF, and Albedo
5.2. Optical Reflectance and Albedo Sensors and Datasets
5.3. Dark Ice in the Ablation Zone: Albedo Trends and Drivers
5.4. Current Challenges and Future Opportunities
6. Mapping Surface Melt and Glaciological Zones
6.1. Active Microwave Detection of Surface Melt and Glacier Zones
6.2. Passive Microwave and Thermal Radiometry
6.3. Multi-Angular Reflectance and Surface Roughness
6.4. Future Opportunities for Mapping the Changing GrIS Ablation Zone Surface
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
Abbreviations for select remote sensing satellite platforms. | |
ADEOS | ADvanced Earth Observing Satellite |
ADEOS-2 | ADvanced Earth Observing Satellite-2 |
ALOS | Advanced Land Observing Satellite |
CryoSat | Cryosphere Satellite |
DMSP | Defense Meteorological Satellite Program |
EnviSat | Environmental Satellite |
EO-1 | Earth Observation-1 |
ERS-1 | European Remote-sensing Satellite-1 |
ERS-2 | European Remote-sensing Satellite-2 |
GCOM-W | Global Change Observation Mission—Water “Shizuku” |
GCOM-C | Global Change Observation Mission—Climate “Shikisai” |
GEOS-3 | Geodetic and Earth Orbiting Satellite-3 |
GEOSAT | GEOdetic SATellite |
GFO | GEOdetic SATellite Follow On |
GOES | Geostationary Operational Environmental Satellites |
GRACE | Gravity Recovery and Climate Experiment |
ICESat | Ice, Cloud, and land Elevation Satellite |
ICESat-2 | Ice, Cloud, and land Elevation Satellite-2 |
JERS-1 | Japanese Earth Resource Satellite-1 |
Landsat | Land Satellite |
MetOp | Meteorological Operational satellite program |
NOAA | National Oceanic and Atmospheric Administration |
QuickSCAT | Quick Scatterometer |
RADARSAT | Radar Satellite of the Canadian Space Agency |
SPOT | Satellite Pour l’Observation de la Terre |
SARAL | Satellite with Argos and ALtiKa |
Suomi NPP | Suomi National Polar-orbiting Partnership |
TerraDEM-X | TerraSAR-X add on for Digital Elevation Measurements |
TerraSAR-X | Synthetic Aperture Radar X-band |
TIROS | Television Infrared Operational Satellite |
Abbreviations for select remote sensing satellite sensors. | |
AATSR | Advanced Along Track Scanning Radiometer |
ALI | Advanced Land Imager |
ALT | Radar Altimeter |
ALtiKa | Ka-Band Altimeter |
AMI | Advanced Microwave Instrument |
AMSR | Advanced Microwave Scanning Radiometer |
AMSR-2 | Advanced Microwave Scanning Radiometer 2 |
AMSR-E | Advanced Microwave Scanning Radiometer—Earth Observing System |
ASAR | Advanced Synthetic-Aperture Radar |
ASCAT | Advanced Scatterometer |
ASTER | Advanced Spaceborne Thermal Emission and Reflection radiometer |
ATLAS | Advanced Topographic Laser Altimeter System |
ATM | Airborne Topographic Mapper |
ATSR | Along Track Scanning Radiometer |
ATSR-2 | Along Track Scanning Radiometer-2 |
AVCS | Advanced Vidcon Camera System |
AVHRR | Advanced Very High Resolution Radiometer |
AVNIR | Advanced Visible and Near Infrared Radiometer |
AVNIR-2 | Advanced Visible and Near Infrared Radiometer type 2 |
BGIS2000 | Ball Global Imaging System 2000 |
C-SAR | C-band Synthetic Aperture Radar |
ESMR | Electrically Scanning Multichannel Radiometer |
ETM+ | Enhanced Thematic Mapper Plus |
GIS | GeoEye Imaging System |
GLAS | Geoscience Laser Altimeter System |
GLI | Global Land Imager |
GRA | Geosat Radar Altimeter |
GRACE | Gravity Recovery and Climate Experiment |
HRG | High Resolution Geometric |
HRS | High Resolution Stereoscopic |
HRV | High Resolution Visible |
HRVIR | High Resolution Visible and Infrared |
Hyperion | Hyperspectral Imager |
IDCS | Image Dissector Camera System |
LVIS | Land, Vegetation and Ice Sensor |
MERIS | MEdium Resolution Imaging Spectrometer |
MISR | Multi-angle Imaging SpectroRadiometer |
MODIS | Moderate Resolution Imaging Spectroradiometer |
MSI | Multispectral Imager |
MSS | Multispectral Scanner |
MWR | Microwave Radiometer |
NAOMI | New AstroSat Optical Modular Instrument |
NSCAT | NASA Scatterometer |
OLCI | Ocean and Land Colour Instrument |
OLI | Operational Land Imager |
OSA | Optical Sensor Assembly |
OPS | Optical Sensor |
PALSAR | Phased-Array type L-band SAR |
PALSAR-2 | Phased-Array type L-band SAR |
POLDER | Polarization and Directionality of the Earth’s Reflectances |
RA | Radar Altimeter |
RA-2 | Radar Altimeter 2 |
SAR | Synthetic Aperture Radar |
SASS | SEASAT-A Satellite Scatterometer |
SGLI | Second generation Global Imager |
SIRAL | Synthetic Aperture Interferometric Radar Altimeter |
SMMR | Scanning Multichannel Microwave Radiometer |
SSM/I | Special Sensor Microwave/Imager |
SSMIS | Special Sensor Microwave Imager/Sounder |
TIRS | Thermal Infrared Sensor |
TM | Thematic Mapper |
VIIRS | Visible/Infrared Imager Radiometer Suite |
VIRR | Visible and Infrared Radiometer |
VISSR | Visible and Infrared Spin Scan Radiometer |
WV3-Imager | WorldView-3 Imager |
WV60 | WorldView-60 camera |
WV110 | WorldView-110 camera |
WVR | Water Vapor Radiometer |
Abbreviations for public and private remote sensing sponsoring agencies. | |
CNES | French Space Agency |
CSA | Canadian Space Agency |
DLR | German Aerospace Center |
DoD | Department of Defense (United States) |
EADS | European Aeronautic Defense and Space Company |
EOMS | European Organisation for Meteorological Satellites |
EOSAT | Earth Observation Satellite Company |
ESA | European Space Agency |
ISRO | Indian Space Research Organisation |
JAXA | Japanese Aerospace Exploratory Agency |
JPL | Jet Propulsion Laboratory |
NASA | National Aeronautics and Space Administration (US) |
NASDA | National Space Development Agency of Japan |
NOAA | National Oceanic and Atmospheric Administration (US) |
USGS | United States Geological Survey |
Appendix A
Managing Organization | Repository Name | URL |
---|---|---|
World Meteorological Organization | Observing Systems Capability Analysis and Review (OSCAR) | https://www.wmo-sat.info/oscar/spacecapabilities |
NASA | NASA Space Science Data Coordinated Archive (NSSDCA) | https://nssdc.gsfc.nasa.gov/nmc/ |
ESA | Earth Observation Portal (eoPortal) | https://directory.eoportal.org/web/eoportal/satellite-missions |
References
- Van den Broeke, M.R.; Enderlin, E.M.; Howat, I.M.; Kuipers Munneke, P.; Noël, B.P.Y.; van de Berg, W.J.; van Meijgaard, E.; Wouters, B. On the recent contribution of the Greenland ice sheet to sea level change. Cryosphere 2016, 10, 1933–1946. [Google Scholar] [CrossRef] [Green Version]
- Hanna, E.; Huybrechts, P.; Steffen, K.; Cappelen, J.; Huff, R.; Shuman, C.; Irvine-Fynn, T.; Wise, S.; Griffiths, M. Increased Runoff from Melt from the Greenland Ice Sheet: A Response to Global Warming. J. Clim. 2008, 21, 331–341. [Google Scholar] [CrossRef] [Green Version]
- Vizcaíno, M.; Mikolajewicz, U.; Gröger, M.; Maier-Reimer, E.; Schurgers, G.; Winguth, A.M.E. Long-term ice sheet–climate interactions under anthropogenic greenhouse forcing simulated with a complex Earth System Model. Clim. Dyn. 2008, 31, 665–690. [Google Scholar] [CrossRef]
- Ettema, J.; van den Broeke, M.R.; van Meijgaard, E.; van de Berg, W.J.; Bamber, J.L.; Box, J.E.; Bales, R.C. Higher surface mass balance of the Greenland ice sheet revealed by high-resolution climate modeling. Geophys. Res. Lett. 2009, 36, L12501. [Google Scholar] [CrossRef]
- Vizcaíno, M.; Lipscomb, W.H.; Sacks, W.J.; van Angelen, J.H.; Wouters, B.; van den Broeke, M.R. Greenland Surface Mass Balance as Simulated by the Community Earth System Model. Part I: Model Evaluation and 1850–2005 Results. J. Clim. 2013, 26, 7793–7812. [Google Scholar] [CrossRef]
- Vizcaíno, M.; Lipscomb, W.H.; Sacks, W.J.; van den Broeke, M. Greenland Surface Mass Balance as Simulated by the Community Earth System Model. Part II: Twenty-First-Century Changes. J. Clim. 2013, 27, 215–226. [Google Scholar] [CrossRef]
- Vizcaíno, M.; Mikolajewicz, U.; Ziemen, F.; Rodehacke, C.B.; Greve, R.; van den Broeke, M.R. Coupled simulations of Greenland ice sheet and climate change up to AD 2300. Geophys. Res. Lett. 2015, 42, 3927–3935. [Google Scholar] [CrossRef]
- Trusel, L.D.; Das, S.B.; Osman, M.B.; Evans, M.J.; Smith, B.E.; Fettweis, X.; McConnell, J.R.; Noël, B.P.Y.; Broeke, M.R. van den Nonlinear rise in Greenland runoff in response to post-industrial Arctic warming. Nature 2018, 564, 104–108. [Google Scholar] [CrossRef]
- Pattyn, F.; Ritz, C.; Hanna, E.; Asay-Davis, X.; DeConto, R.; Durand, G.; Favier, L.; Fettweis, X.; Goelzer, H.; Golledge, N.R.; et al. The Greenland and Antarctic ice sheets under 1.5 °C global warming. Nat. Clim. Chang. 2018, 8, 1053–1061. [Google Scholar] [CrossRef]
- Bamber, J.L.; Westaway, R.M.; Marzeion, B.; Wouters, B. The land ice contribution to sea level during the satellite era. Environ. Res. Lett. 2018, 13, 063008. [Google Scholar] [CrossRef]
- Hanna, E.; Navarro, F.J.; Pattyn, F.; Domingues, C.M.; Fettweis, X.; Ivins, E.R.; Nicholls, R.J.; Ritz, C.; Smith, B.; Tulaczyk, S.; et al. Ice-sheet mass balance and climate change. Nature 2013, 498, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, A.; Ivins, E.R.; Geruo, A.; Barletta, V.R.; Bentley, M.J.; Bettadpur, S.; Briggs, K.H.; Bromwich, D.H.; Forsberg, R.; Galin, N.; et al. A Reconciled Estimate of Ice-Sheet Mass Balance. Science 2012, 338, 1183–1189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rignot, E.; Velicogna, I.; van den Broeke, M.R.; Monaghan, A.; Lenaerts, J.T.M. Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys. Res. Lett. 2011, 38, L05503. [Google Scholar] [CrossRef]
- Bevis, M.; Harig, C.; Khan, S.A.; Brown, A.; Simons, F.J.; Willis, M.; Fettweis, X.; van den Broeke, M.R.; Madsen, F.B.; Kendrick, E.; et al. Accelerating changes in ice mass within Greenland, and the ice sheet’s sensitivity to atmospheric forcing. Proc. Natl. Acad. Sci. USA 2019, 116, 1934–1939. [Google Scholar] [CrossRef] [PubMed]
- Wouters, B.; Bamber, J.L.; van den Broeke, M.R.; Lenaerts, J.T.M.; Sasgen, I. Limits in detecting acceleration of ice sheet mass loss due to climate variability. Nat. Geosci. 2013, 6, 613–616. [Google Scholar] [CrossRef]
- Kjeldsen, K.K.; Korsgaard, N.J.; Bjørk, A.A.; Khan, S.A.; Box, J.E.; Funder, S.; Larsen, N.K.; Bamber, J.L.; Colgan, W.; van den Broeke, M.; et al. Spatial and temporal distribution of mass loss from the Greenland Ice Sheet since AD 1900. Nature 2015, 528, 396–400. [Google Scholar] [CrossRef] [PubMed]
- van den Broeke, M.; Bamber, J.; Ettema, J.; Rignot, E.; Schrama, E.; van de Berg, W.J.; van Meijgaard, E.; Velicogna, I.; Wouters, B. Partitioning Recent Greenland Mass Loss. Science 2009, 326, 984–986. [Google Scholar] [CrossRef] [Green Version]
- Enderlin, E.M.; Howat, I.M.; Jeong, S.; Noh, M.-J.; van Angelen, J.H.; van den Broeke, M.R. An improved mass budget for the Greenland ice sheet. Geophys. Res. Lett. 2014, 41, 866–872. [Google Scholar] [CrossRef] [Green Version]
- Andersen, M.L.; Stenseng, L.; Skourup, H.; Colgan, W.; Khan, S.A.; Kristensen, S.S.; Andersen, S.B.; Box, J.E.; Ahlstrøm, A.P.; Fettweis, X.; et al. Basin-scale partitioning of Greenland ice sheet mass balance components (2007–2011). Earth Planet. Sci. Lett. 2015, 409, 89–95. [Google Scholar] [CrossRef]
- Machguth, H.; MacFerrin, M.; van As, D.; Box, J.E.; Charalampidis, C.; Colgan, W.; Fausto, R.S.; Meijer, H.A.J.; Mosley-Thompson, E.; van de Wal, R.S.W. Greenland meltwater storage in firn limited by near-surface ice formation. Nat. Clim. Chang. 2016, 6, 390–393. [Google Scholar] [CrossRef] [Green Version]
- Lenaerts, J.T.M.; Medley, B.; van den Broeke, M.R.; Wouters, B. Observing and Modeling Ice Sheet Surface Mass Balance. Rev. Geophys. 2019, 57, 376–420. [Google Scholar] [CrossRef] [PubMed]
- Fettweis, X.; Box, J.E.; Agosta, C.; Amory, C.; Kittel, C.; Lang, C.; van As, D.; Machguth, H.; Gallée, H. Reconstructions of the 1900–2015 Greenland ice sheet surface mass balance using the regional climate MAR model. Cryosphere 2017, 11, 1015–1033. [Google Scholar] [CrossRef]
- Van Angelen, J.H.; van den Broeke, M.R.; Wouters, B.; Lenaerts, J.T.M. Contemporary (1960–2012) Evolution of the Climate and Surface Mass Balance of the Greenland Ice Sheet. Surv. Geophys. 2014, 35, 1155–1174. [Google Scholar] [CrossRef]
- Hanna, E.; Cropper, T.E.; Hall, R.J.; Cappelen, J. Greenland Blocking Index 1851–2015: A regional climate change signal. Int. J. Climatol. 2016, 36, 4847–4861. [Google Scholar] [CrossRef]
- Fettweis, X.; Hanna, E.; Lang, C.; Belleflamme, A.; Erpicum, M.; Gallée, H. Brief communication: Important role of the mid-tropospheric atmospheric circulation in the recent surface melt increase over the Greenland ice sheet. Cryosphere 2013, 7, 241–248. [Google Scholar] [CrossRef]
- Ryan, J.C.; Smith, L.C.; van As, D.; Cooley, S.W.; Cooper, M.G.; Pitcher, L.H.; Hubbard, A. Greenland Ice Sheet surface melt amplified by snowline migration and bare ice exposure. Sci. Adv. 2019, 5, eaav3738. [Google Scholar] [CrossRef] [Green Version]
- Hofer, S.; Tedstone, A.J.; Fettweis, X.; Bamber, J.L. Decreasing cloud cover drives the recent mass loss on the Greenland Ice Sheet. Sci. Adv. 2017, 3, e1700584. [Google Scholar] [CrossRef]
- Lim, Y.-K.; Schubert, S.D.; Nowicki, S.M.J.; Lee, J.N.; Molod, A.M.; Cullather, R.I.; Zhao, B.; Velicogna, I. Atmospheric summer teleconnections and Greenland Ice Sheet surface mass variations: Insights from MERRA-2. Environ. Res. Lett. 2016, 11, 024002. [Google Scholar] [CrossRef]
- Tedesco, M.; Fettweis, X.; van den Broeke, M.R.; van de Wal, R.S.W.; Smeets, C.J.P.P.; van de Berg, W.J.; Serreze, M.C.; Box, J.E. The role of albedo and accumulation in the 2010 melting record in Greenland. Environ. Res. Lett. 2011, 6, 014005. [Google Scholar] [CrossRef]
- Box, J.E.; Fettweis, X.; Stroeve, J.C.; Tedesco, M.; Hall, D.K.; Steffen, K. Greenland ice sheet albedo feedback: Thermodynamics and atmospheric drivers. Cryosphere 2012, 6, 821–839. [Google Scholar] [CrossRef]
- Fürst, J.J.; Goelzer, H.; Huybrechts, P. Ice-dynamic projections of the Greenland ice sheet in response to atmospheric and oceanic warming. Cryosphere 2015, 9, 1039–1062. [Google Scholar] [CrossRef] [Green Version]
- Franco, B.; Fettweis, X.; Erpicum, M. Future projections of the Greenland ice sheet energy balance driving the surface melt. Cryosphere 2013, 7, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Steger, C.R.; Reijmer, C.H.; van den Broeke, M.R. The modelled liquid water balance of the Greenland Ice Sheet. Cryosphere 2017, 11, 2507–2526. [Google Scholar] [CrossRef] [Green Version]
- Bader, H. The Greenland Ice Sheet; Cold Regions Research and Engineering Lab: Hanover, NH, USA, 1961; pp. 1–17. [Google Scholar]
- Benson, C.S. Stratigraphic Studies in the Snow and Firn of the Greenland Ice Sheet; Cold Regions Research and Engineering Lab: Hanover, NH, USA, 1962; pp. 13–37. [Google Scholar]
- Pritchard, H.D.; Luthcke, S.B.; Fleming, A.H. Understanding ice-sheet mass balance: Progress in satellite altimetry and gravimetry. J. Glaciol. 2011, 56, 1151–1161. [Google Scholar] [CrossRef]
- Brooks, R.L.; Campbell, W.J.; Ramseier, R.O.; Stanley, H.R.; Zwally, H.J. Ice sheet topography by satellite altimetry. Nature 1978, 274, 539–543. [Google Scholar] [CrossRef]
- Sørensen, L.S.; Simonsen, S.B.; Forsberg, R.; Khvorostovsky, K.; Meister, R.; Engdahl, M.E. 25 years of elevation changes of the Greenland Ice Sheet from ERS, Envisat, and CryoSat-2 radar altimetry. Earth Planet. Sci. Lett. 2018, 495, 234–241. [Google Scholar] [CrossRef]
- Brenner, A.C.; DiMarzio, J.P.; Zwally, H.J. Precision and Accuracy of Satellite Radar and Laser Altimeter Data Over the Continental Ice Sheets. IEEE Trans. Geosci. Remote Sens. 2007, 45, 321–331. [Google Scholar] [CrossRef]
- Abdalati, W.; Zwally, H.J.; Bindschadler, R.; Csatho, B.; Farrell, S.L.; Fricker, H.A.; Harding, D.; Kwok, R.; Lefsky, M.; Markus, T.; et al. The ICESat-2 Laser Altimetry Mission. Proc. IEEE 2010, 98, 735–751. [Google Scholar] [CrossRef]
- Drinkwater, M.R.; Francis, R.; Ratier, G.; Wingham, D.J. The European Space Agency’s Earth Explorer Mission CryoSat: Measuring variability in the cryosphere. Ann. Glaciol. 2004, 39, 313–320. [Google Scholar] [CrossRef]
- Flechtner, F.; Neumayer, K.-H.; Dahle, C.; Dobslaw, H.; Fagiolini, E.; Raimondo, J.-C.; Güntner, A. What can be Expected from the GRACE-FO Laser Ranging Interferometer for Earth Science Applications? In Remote Sensing and Water Resources; Cazenave, A., Champollion, N., Benveniste, J., Chen, J., Eds.; Space Sciences Series of ISSI; Springer International Publishing: Cham, Switzerland, 2016; pp. 263–280. ISBN 978-3-319-32449-4. [Google Scholar]
- Turyshev, S.G.; Sazhin, M.V.; Toth, V.T. General relativistic laser interferometric observables of the GRACE-Follow-On mission. Phys. Rev. D 2014, 89, 105029. [Google Scholar] [CrossRef]
- Bjørk, A.A.; Kjær, K.H.; Korsgaard, N.J.; Khan, S.A.; Kjeldsen, K.K.; Andresen, C.S.; Box, J.E.; Larsen, N.K.; Funder, S. An aerial view of 80 years of climate-related glacier fluctuations in southeast Greenland. Nat. Geosci. 2012, 5, 427–432. [Google Scholar] [CrossRef] [Green Version]
- Gallaher, D.; Campbell, G.G.; Meier, W.; Moses, J.; Wingo, D. The process of bringing dark data to light: The rescue of the early Nimbus satellite data. GeoResJ 2015, 6, 124–134. [Google Scholar] [CrossRef] [Green Version]
- Bindschadler, R. Monitoring ice sheet behavior from space. Rev. Geophys. 1998, 36, 79–104. [Google Scholar] [CrossRef] [Green Version]
- Freden, S.C.M. Significant Results Obtained from the Earth Resources Technology Satellite-1. Volume 1: Technical presentations, sections A and B. In Proceedings of the Symposium on Significant Results Obtained from the Earth Resources Technology Satellite-1, New Carrollton, MD, USA, 5–9 March 1973. [Google Scholar]
- He, T.; Liang, S.; Yu, Y.; Wang, D.; Gao, F.; Liu, Q. Greenland surface albedo changes in July 1981–2012 from satellite observations. Environ. Res. Lett. 2013, 8, 044043. [Google Scholar] [CrossRef]
- Key, J.; Wang, X.; Liu, Y.; Dworak, R.; Letterly, A. The AVHRR Polar Pathfinder Climate Data Records. Remote Sens. 2016, 8, 167. [Google Scholar] [CrossRef]
- Fahnestock, M.; Bindschadler, R.; Kwok, R.; Jezek, K. Greenland Ice Sheet Surface Properties and Ice Dynamics from ERS-1 SAR Imagery. Science 1993, 262, 1530–1534. [Google Scholar] [CrossRef]
- Tedstone, A.J.; Bamber, J.L.; Cook, J.M.; Williamson, C.J.; Fettweis, X.; Hodson, A.J.; Tranter, M. Dark ice dynamics of the south-west Greenland Ice Sheet. Cryosphere 2017, 11, 2491–2506. [Google Scholar] [CrossRef] [Green Version]
- Wientjes, I.G.M.; Oerlemans, J. An explanation for the dark region in the western melt zone of the Greenland ice sheet. Cryosphere 2010, 4, 261–268. [Google Scholar] [CrossRef] [Green Version]
- Nolin, A.W.; Payne, M.C. Classification of glacier zones in western Greenland using albedo and surface roughness from the Multi-angle Imaging SpectroRadiometer (MISR). Remote Sens. Environ. 2007, 107, 264–275. [Google Scholar] [CrossRef]
- Yang, K.; Smith, L.C. Supraglacial Streams on the Greenland Ice Sheet Delineated From Combined Spectral-Shape Information in High-Resolution Satellite Imagery. IEEE Geosci. Remote Sens. Lett. 2013, 10, 801–805. [Google Scholar] [CrossRef]
- Hall, D.K.; Williams, R.S.; Casey, K.A.; DiGirolamo, N.E.; Wan, Z. Satellite-derived, melt-season surface temperature of the Greenland Ice Sheet (2000–2005) and its relationship to mass balance. Geophys. Res. Lett. 2006, 33, L11501. [Google Scholar] [CrossRef]
- Gledhill, L.A.; Williamson, A.G. Inland advance of supraglacial lakes in north-west Greenland under recent climatic warming. Ann. Glaciol. 2018, 59, 66–82. [Google Scholar] [CrossRef]
- Legleiter, C.J.; Tedesco, M.; Smith, L.C.; Behar, A.E.; Overstreet, B.T. Mapping the bathymetry of supraglacial lakes and streams on the Greenland ice sheet using field measurements and high-resolution satellite images. Cryosphere 2014, 8, 215–228. [Google Scholar] [CrossRef] [Green Version]
- Ryan, J.C.; Hubbard, A.L.; Stibal, M.; Irvine-Fynn, T.D.; Cook, J.; Smith, L.C.; Cameron, K.; Box, J.E. Dark zone of the Greenland Ice Sheet controlled by distributed biologically-active impurities. Nat. Commun. 2018, 9, 1065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhardwaj, A.; Sam, L.; Akanksha; Martín-Torres, F.J.; Kumar, R. UAVs as remote sensing platform in glaciology: Present applications and future prospects. Remote Sens. Environ. 2016, 175, 196–204. [Google Scholar] [CrossRef]
- Van den Broeke, M.; Box, J.; Fettweis, X.; Hanna, E.; Noël, B.; Tedesco, M.; van As, D.; van de Berg, W.J.; van Kampenhout, L. Greenland Ice Sheet Surface Mass Loss: Recent Developments in Observation and Modeling. Curr. Clim. Chang. Rep. 2017, 3, 345–356. [Google Scholar] [CrossRef] [Green Version]
- Quincey, D.J.; Luckman, A. Progress in satellite remote sensing of ice sheets. Prog. Phys. Geogr. 2009, 33, 547–567. [Google Scholar] [CrossRef]
- Rémy, F.; Parouty, S. Antarctic Ice Sheet and Radar Altimetry: A Review. Remote Sens. 2009, 1, 1212–1239. [Google Scholar] [CrossRef] [Green Version]
- Long, D.G. Polar Applications of Spaceborne Scatterometers. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 2307–2320. [Google Scholar] [CrossRef]
- Hall, D.K. Assessment of polar climate change using satellite technology. Rev. Geophys. 1988, 26, 26–39. [Google Scholar] [CrossRef]
- König, M.; Winther, J.-G.; Isaksson, E. Measuring snow and glacier ice properties from satellite. Rev. Geophys. 2001, 39, 1–27. [Google Scholar] [CrossRef]
- Bamber, J.L.; Rivera, A. A review of remote sensing methods for glacier mass balance determination. Glob. Planet. Chang. 2007, 59, 138–148. [Google Scholar] [CrossRef]
- Racoviteanu, A.E.; Williams, M.W.; Barry, R.G. Optical Remote Sensing of Glacier Characteristics: A Review with Focus on the Himalaya. Sensors 2008, 8, 3355–3383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pitcher, L.H.; Smith, L.C. Supraglacial Streams and Rivers. Annu. Rev. Earth Planet. Sci. 2019, 47, 421–452. [Google Scholar] [CrossRef] [Green Version]
- Chu, V.W. Greenland ice sheet hydrology: A review. Prog. Phys. Geogr. Earth Environ. 2014, 38, 19–54. [Google Scholar] [CrossRef]
- Rennermalm, A.K.; Moustafa, S.E.; Mioduszewski, J.; Chu, V.W.; Forster, R.R.; Hagedorn, B.; Harper, J.T.; Mote, T.L.; Robinson, D.A.; Shuman, C.A.; et al. Understanding Greenland ice sheet hydrology using an integrated multi-scale approach. Environ. Res. Lett. 2013, 8, 015017. [Google Scholar] [CrossRef]
- Irvine-Fynn, T.D.L.; Hodson, A.J.; Moorman, B.J.; Vatne, G.; Hubbard, A.L. Polythermal Glacier Hydrology: A Review. Rev. Geophys. 2011, 49, RG4002. [Google Scholar] [CrossRef]
- Nolin, A.W. Recent advances in remote sensing of seasonal snow. J. Glaciol. 2010, 56, 1141–1150. [Google Scholar] [CrossRef] [Green Version]
- Gardner, A.S.; Sharp, M.J. A review of snow and ice albedo and the development of a new physically based broadband albedo parameterization. J. Geophys. Res. 2010, 115, F01009. [Google Scholar] [CrossRef]
- Bell, R.E. The role of subglacial water in ice-sheet mass balance. Nat. Geosci. 2008, 1, 297–304. [Google Scholar] [CrossRef]
- Warren, S.G. Optical properties of snow. Rev. Geophys. 1982, 20, 67–89. [Google Scholar] [CrossRef]
- Carsey, F. Remote sensing of ice and snow: Review and status. Int. J. Remote Sens. 1992, 13, 5–11. [Google Scholar] [CrossRef]
- Deems, J.S.; Painter, T.H.; Finnegan, D.C. Lidar measurement of snow depth: A review. J. Glaciol. 2013, 59, 467–479. [Google Scholar] [CrossRef]
- Frei, A.; Tedesco, M.; Lee, S.; Foster, J.; Hall, D.K.; Kelly, R.; Robinson, D.A. A review of global satellite-derived snow products. Adv. Space Res. 2012, 50, 1007–1029. [Google Scholar] [CrossRef]
- Richter-Menge, J.A.; Colbeck, S.C.; Jezek, K.C. Recent Progress in Snow and Ice Research. Rev. Geophys. 1991, 29, 218–226. [Google Scholar] [CrossRef]
- Dietz, A.J.; Kuenzer, C.; Gessner, U.; Dech, S. Remote sensing of snow—A review of available methods. Int. J. Remote Sens. 2012, 33, 4094–4134. [Google Scholar] [CrossRef]
- Dozier, J.; Painter, T.H. Multispectral and Hyperspectral Remote Sensing of Alpine Snow Properties. Ann. Rev. Earth Planet. Sci. 2004, 32, 465–494. [Google Scholar] [CrossRef]
- Box, J.E.; Steffen, K. Sublimation on the Greenland Ice Sheet from automated weather station observations. J. Geophys. Res. Atmos. 2001, 106, 33965–33981. [Google Scholar] [CrossRef]
- Forster, R.R.; Box, J.E.; van den Broeke, M.R.; Miège, C.; Burgess, E.W.; van Angelen, J.H.; Lenaerts, J.T.M.; Koenig, L.S.; Paden, J.; Lewis, C.; et al. Extensive liquid meltwater storage in firn within the Greenland ice sheet. Nature Geosci 2014, 7, 95–98. [Google Scholar] [CrossRef]
- Rennermalm, A.K.; Smith, L.C.; Chu, V.W.; Box, J.E.; Forster, R.R.; Van den Broeke, M.R.; Van As, D.; Moustafa, S.E. Evidence of meltwater retention within the Greenland ice sheet. Cryosphere 2013, 7, 1433–1445. [Google Scholar] [CrossRef] [Green Version]
- Cooper, M.G.; Smith, L.C.; Rennermalm, A.K.; Miège, C.; Pitcher, L.H.; Ryan, J.C.; Yang, K.; Cooley, S.W. Meltwater storage in low-density near-surface bare ice in the Greenland ice sheet ablation zone. Cryosphere 2018, 12, 955–970. [Google Scholar] [CrossRef] [Green Version]
- Sørensen, L.S.; Simonsen, S.B.; Nielsen, K.; Lucas-Picher, P.; Spada, G.; Adalgeirsdottir, G.; Forsberg, R.; Hvidberg, C.S. Mass balance of the Greenland ice sheet (2003–2008) from ICESat data—The impact of interpolation, sampling and firn density. Cryosphere 2011, 5, 173–186. [Google Scholar] [CrossRef]
- Zwally, H.J.; Li, J.; Brenner, A.C.; Beckley, M.; Cornejo, H.G.; DiMarzio, J.; Giovinetto, M.B.; Neumann, T.A.; Robbins, J.; Saba, J.L.; et al. Greenland ice sheet mass balance: Distribution of increased mass loss with climate warming; 2003–07 versus 1992–2002. J. Glaciol. 2011, 57, 88–102. [Google Scholar] [CrossRef]
- Cuffey, K.M.; Paterson, W.S.B. The Physics of Glaciers, 4th ed.; Academic Press: Amsterdam, The Nederlands, 2010. [Google Scholar]
- Sutterley, T.C.; Velicogna, I.; Fettweis, X.; Rignot, E.; Noël, B.; van den Broeke, M.R. Evaluation of reconstructions of snow/ice melt in Greenland by regional atmospheric climate models using laser altimetry data. Geophys. Res. Lett. 2018, 45, 8324–8333. [Google Scholar] [CrossRef]
- Van den Broeke, M.; Smeets, P.; Ettema, J.; van der Veen, C.; van de Wal, R.; Oerlemans, J. Partitioning of melt energy and meltwater fluxes in the ablation zone of the west Greenland ice sheet. Cryosphere 2008, 2, 179–189. [Google Scholar] [CrossRef] [Green Version]
- Zwally, H.J.; Bindschadler, R.A.; Brenner, A.C.; Martin, T.V.; Thomas, R.H. Surface elevation contours of Greenland and Antarctic Ice Sheets. J. Geophys. Res. Oceans 1983, 88, 1589–1596. [Google Scholar] [CrossRef]
- Zwally, H.J.; Bindschadler, R.A.; Brenner, A.C.; Major, J.A.; Marsh, J.G. Growth of Greenland Ice Sheet: Measurement. Science 1989, 246, 1587–1589. [Google Scholar] [CrossRef]
- Helm, V.; Humbert, A.; Miller, H. Elevation and elevation change of Greenland and Antarctica derived from CryoSat-2. Cryosphere 2014, 8, 1539–1559. [Google Scholar] [CrossRef] [Green Version]
- Khvorostovsky, K.S. Merging and Analysis of Elevation Time Series Over Greenland Ice Sheet From Satellite Radar Altimetry. IEEE Trans. Geosci. Remote Sens. 2012, 50, 23–36. [Google Scholar] [CrossRef]
- Thomas, R.; Davis, C.; Frederick, E.; Krabill, W.; Li, Y.; Manizade, S.; Martin, C. A comparison of Greenland ice-sheet volume changes derived from altimetry measurements. J. Glaciol. 2008, 54, 203–212. [Google Scholar] [CrossRef] [Green Version]
- Bolch, T.; Sørensen, L.S.; Simonsen, S.B.; Mölg, N.; Machguth, H.; Rastner, P.; Paul, F. Mass loss of Greenland’s glaciers and ice caps 2003–2008 revealed from ICESat laser altimetry data. Geophys. Res. Lett. 2013, 40, 875–881. [Google Scholar] [CrossRef]
- Csatho, B.M.; Schenk, A.F.; van der Veen, C.J.; Babonis, G.; Duncan, K.; Rezvanbehbahani, S.; van den Broeke, M.R.; Simonsen, S.B.; Nagarajan, S.; van Angelen, J.H. Laser altimetry reveals complex pattern of Greenland Ice Sheet dynamics. Proc. Natl. Acad. Sci. USA 2014, 111, 18478–18483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ewert, H.; Groh, A.; Dietrich, R. Volume and mass changes of the Greenland ice sheet inferred from ICESat and GRACE. J. Geodyn. 2012, 59–60, 111–123. [Google Scholar] [CrossRef]
- Felikson, D.; Urban, T.J.; Gunter, B.C.; Pie, N.; Pritchard, H.D.; Harpold, R.; Schutz, B.E. Comparison of Elevation Change Detection Methods From ICESat Altimetry Over the Greenland Ice Sheet. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5494–5505. [Google Scholar] [CrossRef]
- Slobbe, D.C.; Lindenbergh, R.C.; Ditmar, P. Estimation of volume change rates of Greenland’s ice sheet from ICESat data using overlapping footprints. Remote Sens. Environ. 2008, 112, 4204–4213. [Google Scholar] [CrossRef]
- Zwally, H.J.; Schutz, B.; Abdalati, W.; Abshire, J.; Bentley, C.; Brenner, A.; Bufton, J.; Dezio, J.; Hancock, D.; Harding, D.; et al. ICESat’s laser measurements of polar ice, atmosphere, ocean, and land. J. Geodyn. 2002, 34, 405–445. [Google Scholar] [CrossRef]
- Sole, A.; Payne, T.; Bamber, J.; Nienow, P.; Krabill, W. Testing hypotheses of the cause of peripheral thinning of the Greenland Ice Sheet: Is land-terminating ice thinning at anomalously high rates? Cryosphere 2008, 2, 205–218. [Google Scholar] [CrossRef]
- Pritchard, H.D.; Arthern, R.J.; Vaughan, D.G.; Edwards, L.A. Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature 2009, 461, 971–975. [Google Scholar] [CrossRef]
- Zwally, H.J.; Giovinetto, M.B.; Li, J.; Cornejo, H.G.; Beckley, M.A.; Brenner, A.C.; Saba, J.L.; Yi, D. Mass changes of the Greenland and Antarctic ice sheets and shelves and contributions to sea-level rise: 1992–2002. J. Glaciol. 2005, 51, 509–527. [Google Scholar] [CrossRef]
- McMillan, M.; Leeson, A.; Shepherd, A.; Briggs, K.; Armitage, T.W.K.; Hogg, A.; Kuipers Munneke, P.; Broeke, M.; Noël, B.; Berg, W.J.; et al. A high-resolution record of Greenland mass balance. Geophys. Res. Lett. 2016, 43, 7002–7010. [Google Scholar] [CrossRef] [Green Version]
- Martin, T.V.; Zwally, H.J.; Brenner, A.C.; Bindschadler, R.A. Analysis and retracking of continental ice sheet radar altimeter waveforms. J. Geophys. Res. Oceans 1983, 88, 1608–1616. [Google Scholar] [CrossRef]
- Ekholm, S.; Forsberg, R.; Brozena, J.M. Accuracy of satellite altimeter elevations over the Greenland Ice Sheet. J. Geophys. Res. Oceans 1995, 100, 2687–2696. [Google Scholar] [CrossRef]
- Brenner, A.C.; Blndschadler, R.A.; Thomas, R.H.; Zwally, H.J. Slope-induced errors in radar altimetry over continental ice sheets. J. Geophys. Res. Oceans 1983, 88, 1617–1623. [Google Scholar] [CrossRef]
- Bamber, J.L.; Ekholm, S.; Krabill, W. The accuracy of satellite radar altimeter data over the Greenland Ice Sheet determined from airborne laser data. Geophys. Res. Lett. 1998, 25, 3177–3180. [Google Scholar] [CrossRef]
- Mätzler, C.; Wegmüller, U. Dielectric properties of freshwater ice at microwave frequencies. J. Phys. D Appl. Phys. 1987, 20, 1623–1630. [Google Scholar] [CrossRef]
- Ridley, J.K.; Partington, K.C. A model of satellite radar altimeter return from ice sheets. Int. J. Remote Sens. 1988, 9, 601–624. [Google Scholar] [CrossRef]
- Davis, C.H. The effect of sub-surface volume scattering on the accuracy of ice-sheet altimeter retracking algorithms. In Proceedings of the IGARSS ’93-IEEE International Geoscience and Remote Sensing Symposium, Tokyo, Japan, 18–21 August 1993; Volume 3, pp. 1053–1057. [Google Scholar]
- Davis, C.H. Temporal change in the extinction coefficient of snow on the Greenland ice sheet from an analysis of Seasat and Geosat altimeter data. IEEE Trans. Geosci. Remote Sens. 1996, 34, 1066–1073. [Google Scholar] [CrossRef]
- Davis, C.H.; Zwally, H.J. Geographic and seasonal variations in the surface properties of the ice sheets by satellite-radar altimetry. J. Glaciol. 1993, 39, 687–697. [Google Scholar] [CrossRef] [Green Version]
- Nghiem, S.V.; Steffen, K.; Neumann, G.; Huff, R. Mapping of ice layer extent and snow accumulation in the percolation zone of the Greenland ice sheet. J. Geophys. Res. Earth Surf. 2005, 110, F02017. [Google Scholar] [CrossRef]
- Nilsson, J.; Vallelonga, P.; Simonsen, S.B.; Sørensen, L.S.; Forsberg, R.; Dahl-Jensen, D.; Hirabayashi, M.; Goto-Azuma, K.; Hvidberg, C.S.; Kjær, H.A.; et al. Greenland 2012 melt event effects on CryoSat-2 radar altimetry. Geophys. Res. Lett. 2015, 42, 3919–3926. [Google Scholar] [CrossRef]
- Scott, J.B.T.; Nienow, P.; Mair, D.; Parry, V.; Morris, E.; Wingham, D.J. Importance of seasonal and annual layers in controlling backscatter to radar altimeters across the percolation zone of an ice sheet. Geophys. Res. Lett. 2006, 33, L24502. [Google Scholar] [CrossRef]
- Sørensen, L.S.; Simonsen, S.B.; Meister, R.; Forsberg, R.; Levinsen, J.F.; Flament, T. Envisat-derived elevation changes of the Greenland ice sheet, and a comparison with ICESat results in the accumulation area. Remote Sens. Environ. 2015, 160, 56–62. [Google Scholar] [CrossRef]
- Gray, L.; Burgess, D.; Copland, L.; Dunse, T.; Langley, K.; Moholdt, G. A revised calibration of the interferometric mode of the CryoSat-2 radar altimeter improves ice height and height change measurements in western Greenland. Cryosphere 2017, 11, 1041–1058. [Google Scholar] [CrossRef] [Green Version]
- Gourmelen, N.; Escorihuela, M.J.; Shepherd, A.; Foresta, L.; Muir, A.; Garcia-Mondéjar, A.; Roca, M.; Baker, S.G.; Drinkwater, M.R. CryoSat-2 swath interferometric altimetry for mapping ice elevation and elevation change. Adv. Space Res. 2018, 62, 1226–1242. [Google Scholar] [CrossRef] [Green Version]
- Partington, K.C.; Ridley, J.K.; Rapley, C.G.; Zwally, H.J. Observations of the Surface Properties of the Ice Sheets by Satellite Radar Altimetry. J. Glaciol. 1989, 35, 267–275. [Google Scholar] [CrossRef] [Green Version]
- Thomas, R.H.; Martin, T.V.; Zwally, H.J. Mapping Ice-Sheet Margins from Radar Altimetry Data. Ann. Glaciol. 1983, 4, 283–288. [Google Scholar] [CrossRef] [Green Version]
- Zwally, H.J. Growth of Greenland Ice Sheet: Interpretation. Science 1989, 246, 1589–1591. [Google Scholar] [CrossRef] [PubMed]
- Davis, C.H. A surface and volume scattering retracking algorithm for ice sheet satellite altimetry. IEEE Trans. Geosci. Remote Sens. 1993, 31, 811–818. [Google Scholar] [CrossRef]
- Davis, C.H. Growth of the Greenland ice sheet: A performance assessment of altimeter retracking algorithms. IEEE Trans. Geosci. Remote Sens. 1995, 33, 1108–1116. [Google Scholar] [CrossRef]
- Davis, C.H. A robust threshold retracking algorithm for measuring ice-sheet surface elevation change from satellite radar altimeters. IEEE Trans. Geosci. Remote Sens. 1997, 35, 974–979. [Google Scholar] [CrossRef]
- Davis, C.H.; Kluever, C.A.; Haines, B.J. Elevation Change of the Southern Greenland Ice Sheet. Science 1998, 279, 2086–2088. [Google Scholar] [CrossRef] [PubMed]
- Ekholm, S. A full coverage, high-resolution, topographic model of Greenland computed from a variety of digital elevation data. J. Geophys. Res. Solid Earth 1996, 101, 21961–21972. [Google Scholar] [CrossRef]
- Bamber, J.L.; Ekholm, S.; Krabill, W.B. A new, high-resolution digital elevation model of Greenland fully validated with airborne laser altimeter data. J. Geophys. Res. Solid Earth 2001, 106, 6733–6745. [Google Scholar] [CrossRef] [Green Version]
- Johannessen, O.M.; Khvorostovsky, K.; Miles, M.W.; Bobylev, L.P. Recent Ice-Sheet Growth in the Interior of Greenland. Science 2005, 310, 1013–1016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khvorostovsky, K.S.; Johannessen, O.M. Merging of ERS-1, ERS-2 and Envisat Altimeter Data over the Greenland Ice Sheet; Nansen Environmental and Remote Sensing Center: Bergen, Norway, 2009; pp. 1–34. [Google Scholar]
- Arthern, R.J.; Wingham, D.J.; Ridout, A.L. Controls on ERS altimeter measurements over ice sheets: Footprint-scale topography, backscatter fluctuations, and the dependence of microwave penetration depth on satellite orientation. J. Geophys. Res. Atmos. 2001, 106, 33471–33484. [Google Scholar] [CrossRef] [Green Version]
- Levinsen, J.F.; Khvorostovsky, K.; Ticconi, F.; Shepherd, A.; Forsberg, R.; Sørensen, L.S.; Muir, A.; Pie, N.; Felikson, D.; Flament, T.; et al. ESA ice sheet CCI: Derivation of the optimal method for surface elevation change detection of the Greenland ice sheet—Round robin results. Int. J. Remote Sens. 2015, 36, 551–573. [Google Scholar] [CrossRef]
- Su, X.; Shum, C.K.; Kuo, C.; Yi, Y. Improved Envisat Altimetry Ice Sheet Elevation Change Data Processing Algorithms Using Repeat-Track Analysis. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1099–1103. [Google Scholar] [CrossRef]
- Su, X.; Luo, Z.; Zhou, Z. Assessing backscatter change due to backscatter gradient over the Greenland ice sheet using Envisat and SARAL altimetry. J. Geodyn. 2018, 117, 41–48. [Google Scholar] [CrossRef]
- Wingham, D.J.; Francis, C.R.; Baker, S.; Bouzinac, C.; Brockley, D.; Cullen, R.; de Chateau-Thierry, P.; Laxon, S.W.; Mallow, U.; Mavrocordatos, C.; et al. CryoSat: A mission to determine the fluctuations in Earth’s land and marine ice fields. Adv. Space Res. 2006, 37, 841–871. [Google Scholar] [CrossRef]
- Gray, L.; Burgess, D.; Copland, L.; Cullen, R.; Galin, N.; Hawley, R.; Helm, V. Interferometric swath processing of Cryosat data for glacial ice topography. Cryosphere 2013, 7, 1857–1867. [Google Scholar] [CrossRef] [Green Version]
- Parrinello, T.; Shepherd, A.; Bouffard, J.; Badessi, S.; Casal, T.; Davidson, M.; Fornari, M.; Maestroni, E.; Scagliola, M. CryoSat: ESA’s ice mission—Eight years in space. Adv. Space Res. 2018, 62, 1178–1190. [Google Scholar] [CrossRef]
- Verron, J.; Sengenes, P.; Lambin, J.; Noubel, J.; Steunou, N.; Guillot, A.; Picot, N.; Coutin-Faye, S.; Sharma, R.; Gairola, R.M.; et al. The SARAL/AltiKa Altimetry Satellite Mission. Mar. Geod. 2015, 38, 2–21. [Google Scholar] [CrossRef]
- Rémy, F.; Flament, T.; Michel, A.; Verron, J. Ice sheet survey over Antarctica using satellite altimetry: ERS-2, Envisat, SARAL/AltiKa, the key importance of continuous observations along the same repeat orbit. Int. J. Remote Sens. 2014, 35, 5497–5512. [Google Scholar] [CrossRef]
- Rémy, F.; Flament, T.; Michel, A.; Blumstein, D. Envisat and SARAL/AltiKa Observations of the Antarctic Ice Sheet: A Comparison between the Ku-band and Ka-band. Mar. Geod. 2015, 38, 510–521. [Google Scholar] [CrossRef]
- Chander, S.; Mishra, S.K.; Chauhan, P.; Ajai. Ice Height and Backscattering Coefficient Variability over Greenland Ice Sheets Using SARAL Radar Altimeter. Mar. Geod. 2015, 38, 466–476. [Google Scholar] [CrossRef]
- Rajkumar, K.S.; Maheshwari, M.; Pallipad, J.; Rajak, D.R.; Kumar, R.; Oza, S.R. Concurrent Use of OSCAT and AltiKa to Characterize Antarctic Ice Surface Features. Mar. Geod. 2015, 38, 497–509. [Google Scholar] [CrossRef]
- DiMarzio, J.P. GLAS/ICESat 1 km Laser Altimetry Digital Elevation Model of Greenland; Version 1; NSIDC National Snow and Ice Data Center: Boulder, CO, USA, 2007. [Google Scholar]
- Suryawanshi, M.R.; Chander, S.; Oza, S.R.; Bahuguna, I.M. Volume loss of the Greenland ice sheet revealed by SARAL/AltiKa repeat passes radar altimetry. J. Earth Syst. Sci. 2019, 128, 187. [Google Scholar] [CrossRef] [Green Version]
- Helm, V.; Humbert, A.; Miller, H. Elevation Models of Antarctica and Greenland derived from CryoSat-2 in the period 2011 to 2013. Supplement to: Helm, V. Elevation and elevation change of Greenland and Antarctica derived from CryoSat-2. Cryosphere 2014, 8, 1539–1559. [Google Scholar] [CrossRef]
- Gray, L.; Burgess, D.; Copland, L.; Demuth, M.N.; Dunse, T.; Langley, K.; Schuler, T.V. CryoSat-2 delivers monthly and inter-annual surface elevation change for Arctic ice caps. Cryosphere 2015, 9, 1895–1913. [Google Scholar] [CrossRef] [Green Version]
- Schröder, L.; Horwath, M.; Dietrich, R.; Helm, V.; van den Broeke, M.R.; Ligtenberg, S.R.M. Four decades of Antarctic surface elevation changes from multi-mission satellite altimetry. Cryosphere 2019, 13, 427–449. [Google Scholar] [CrossRef] [Green Version]
- Davis, C.H.; Kluever, C.A.; Haines, B.J.; Perez, C.; Yoon, Y.T. Improved elevation-change measurement of the southern Greenland ice sheet from satellite radar altimetry. IEEE Trans. Geosci. Remote Sens. 2000, 38, 1367–1378. [Google Scholar] [CrossRef]
- Alley, R.B.; Spencer, M.K.; Anandakrishnan, S. Ice-sheet mass balance: Assessment, attribution and prognosis. Ann. Glaciol. 2007, 46, 1–7. [Google Scholar] [CrossRef]
- Rott, H.; Mätzler, C. Possibilities and Limits of Synthetic Aperture Radar for Snow and Glacier Surveying. Ann. Glaciol. 1987, 9, 195–199. [Google Scholar] [CrossRef] [Green Version]
- Rignot, E.; Echelmeyer, K.; Krabill, W. Penetration depth of interferometric synthetic-aperture radar signals in snow and ice. Geophys. Res. Lett. 2001, 28, 3501–3504. [Google Scholar] [CrossRef] [Green Version]
- Pettersson, R.; Jansson, P.; Blatter, H. Spatial variability in water content at the cold-temperate transition surface of the polythermal Storglaciären, Sweden. J. Geophys. Res. 2004, 109, F02009. [Google Scholar] [CrossRef]
- Irvine-Fynn, T.D.L.; Moorman, B.J.; Williams, J.L.M.; Walter, F.S.A. Seasonal changes in ground-penetrating radar signature observed at a polythermal glacier, Bylot Island, Canada. Earth Surf. Proc. Landf. 2006, 31, 892–909. [Google Scholar] [CrossRef]
- Warren, S.G.; Brandt, R.E. Optical constants of ice from the ultraviolet to the microwave: A revised compilation. J. Geophys. Res. 2008, 113, D14220. [Google Scholar] [CrossRef]
- Kendrick, A.K.; Schroeder, D.M.; Chu, W.; Young, T.J.; Christoffersen, P.; Todd, J.; Doyle, S.H.; Box, J.E.; Hubbard, A.; Hubbard, B.; et al. Surface Meltwater Impounded by Seasonal Englacial Storage in West Greenland. Geophys. Res. Lett. 2018, 45, 10474–10481. [Google Scholar] [CrossRef]
- Guerreiro, K.; Fleury, S.; Zakharova, E.; Rémy, F.; Kouraev, A. Potential for estimation of snow depth on Arctic sea ice from CryoSat-2 and SARAL/AltiKa missions. Remote Sens. Environ. 2016, 186, 339–349. [Google Scholar] [CrossRef]
- Vandecrux, B.; MacFerrin, M.; Machguth, H.; Colgan, W.T.; van As, D.; Heilig, A.; Stevens, C.M.; Charalampidis, C.; Fausto, R.S.; Morris, E.M.; et al. Firn data compilation reveals widespread decrease of firn air content in western Greenland. Cryosphere 2019, 13, 845–859. [Google Scholar] [CrossRef] [Green Version]
- Van As, D.; Box, J.E.; Fausto, R.S. Challenges of Quantifying Meltwater Retention in Snow and Firn: An Expert Elicitation. Front. Earth Sci. 2016, 4, 101. [Google Scholar] [CrossRef]
- Brenner, A.C.; Zwally, H.J.; Bentley, C.R.; Csatho, B.M.; Harding, D.J.; Hofton, M.A.; Minster, J.-B.; Roberts, L.; Saba, J.L.; Thomas, R.H.; et al. The Algorithm Theoretical Basis Document for the Derivation of Range and Range Distributions from Laser Pulse Waveform Analysis for Surface Elevations, Roughness, Slope, and Vegetation Heights; Goddard Space Flight Center: Greenbelt, MD, USA, 2012; pp. 1–134. [Google Scholar]
- Howat, I.M.; Smith, B.E.; Joughin, I.; Scambos, T.A. Rates of southeast Greenland ice volume loss from combined ICESat and ASTER observations. Geophys. Res. Lett. 2008, 35, L17505. [Google Scholar] [CrossRef]
- Winker, D.M.; Couch, R.H.; McCormick, M.P. An overview of LITE: NASA’s Lidar In-space Technology Experiment. Proc. IEEE 1996, 84, 164–180. [Google Scholar] [CrossRef]
- Shuman, C.A.; Zwally, H.J.; Schutz, B.E.; Brenner, A.C.; DiMarzio, J.P.; Suchdeo, V.P.; Fricker, H.A. ICESat Antarctic elevation data: Preliminary precision and accuracy assessment. Geophys. Res. Lett. 2006, 33, L07501. [Google Scholar] [CrossRef]
- Fricker, H.A.; Borsa, A.; Minster, B.; Carabajal, C.; Quinn, K.; Bills, B. Assessment of ICESat performance at the salar de Uyuni, Bolivia. Geophys. Res. Lett. 2005, 32, L21S06. [Google Scholar] [CrossRef]
- Siegfried, M.R.; Hawley, R.L.; Burkhart, J.F. High-Resolution Ground-Based GPS Measurements Show Intercampaign Bias in ICESat Elevation Data Near Summit, Greenland. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3393–3400. [Google Scholar] [CrossRef]
- Abshire, J.B.; Sun, X.; Riris, H.; Sirota, J.M.; McGarry, J.F.; Palm, S.; Yi, D.; Liiva, P. Geoscience Laser Altimeter System (GLAS) on the ICESat Mission: On-orbit measurement performance. Geophys. Res. Lett. 2005, 32, L21S02. [Google Scholar] [CrossRef]
- Schutz, B.E.; Zwally, H.J.; Shuman, C.A.; Hancock, D.; DiMarzio, J.P. Overview of the ICESat Mission. Geophys. Res. Lett. 2005, 32, L21S01. [Google Scholar] [CrossRef]
- Borsa, A.A.; Moholdt, G.; Fricker, H.A.; Brunt, K.M. A range correction for ICESat and its potential impact on ice-sheet mass balance studies. Cryosphere 2014, 8, 345–357. [Google Scholar] [CrossRef] [Green Version]
- Ewert, H.; Popov, S.V.; Richter, A.; Schwabe, J.; Scheinert, M.; Dietrich, R. Precise analysis of ICESat altimetry data and assessment of the hydrostatic equilibrium for subglacial Lake Vostok, East Antarctica. Geophys. J. Int. 2012, 191, 557–568. [Google Scholar] [CrossRef] [Green Version]
- Luthcke, S.B.; Rowlands, D.D.; Williams, T.A.; Sirota, M. Reduction of ICESat systematic geolocation errors and the impact on ice sheet elevation change detection. Geophys. Res. Lett. 2005, 32, L21S05. [Google Scholar] [CrossRef]
- Schenk, T.; Csatho, B. A New Methodology for Detecting Ice Sheet Surface Elevation Changes From Laser Altimetry Data. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3302–3316. [Google Scholar] [CrossRef]
- Alberti, M.; Biscaro, D. Height variation detection in polar regions from ICESat satellite altimetry. Comput. Geosci. 2010, 36, 1–9. [Google Scholar] [CrossRef]
- Yi, D.; Zwally, H.J.; Sun, X. ICESat measurement of Greenland ice sheet surface slope and roughness. Ann. Glaciol. 2005, 42, 83–89. [Google Scholar] [CrossRef] [Green Version]
- Schenk, T.; Csatho, B.; van der Veen, C.; McCormick, D. Fusion of multi-sensor surface elevation data for improved characterization of rapidly changing outlet glaciers in Greenland. Remote Sens. Environ. 2014, 149, 239–251. [Google Scholar] [CrossRef]
- Thomas, R.; Frederick, E.; Krabill, W.; Manizade, S.; Martin, C.; Mason, A. Elevation changes on the Greenland ice sheet from comparison of aircraft and ICESat laser-altimeter data. Ann. Glaciol. 2005, 42, 77–82. [Google Scholar] [CrossRef] [Green Version]
- Hofton, M.A.; Blair, J.B.; Luthcke, S.B.; Rabine, D.L. Assessing the performance of 20–25 m footprint waveform lidar data collected in ICESat data corridors in Greenland. Geophys. Res. Lett. 2008, 35, L24501. [Google Scholar] [CrossRef]
- Markus, T.; Neumann, T.; Martino, A.; Abdalati, W.; Brunt, K.; Csatho, B.; Farrell, S.; Fricker, H.; Gardner, A.; Harding, D.; et al. The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation. Remote Sens. Environ. 2017, 190, 260–273. [Google Scholar] [CrossRef]
- Smith, B.; Fricker, H.A.; Gardner, A.S.; Siegfried, M.R.; Adusumilli, S.; Csathó, B.M.; Holschuh, N.; Nilsson, J.; Paolo, F.S. ICESat-2 Science Team ATLAS/ICESat-2 L3A Land Ice Height, Version 1; NSIDC National Snow and Ice Data Center: Boulder, CO, USA, 2019. [Google Scholar]
- Pope, R.M.; Fry, E.S. Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements. Appl. Opt. AO 1997, 36, 8710–8723. [Google Scholar] [CrossRef]
- Hale, G.M.; Querry, M.R. Optical Constants of Water in the 200-nm to 200-μm Wavelength Region. Appl. Opt. AO 1973, 12, 555–563. [Google Scholar] [CrossRef]
- Brunt, K.M.; Neumann, T.A.; Amundson, J.M.; Kavanaugh, J.L.; Moussavi, M.S.; Walsh, K.M.; Cook, W.B.; Markus, T. MABEL photon-counting laser altimetry data in Alaska for ICESat-2 simulations and development. Cryosphere 2016, 10, 1707–1719. [Google Scholar] [CrossRef] [Green Version]
- Warren, S.G.; Brandt, R.E.; Grenfell, T.C. Visible and near-ultraviolet absorption spectrum of ice from transmission of solar radiation into snow. Appl. Opt. AO 2006, 45, 5320–5334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greeley, A.; Kurtz, N.T.; Neumann, T.; Markus, T. Estimating Surface Elevation Bias Due to Subsurface Scattered Photons from Visible Wavelength Laser Altimeters. In Proceedings of the AGU Fall Meeting Abstracts, New Orleans, LA, USA, 11–15 December 2017; Volume 51. [Google Scholar]
- Gardner, A.S.; Smith, B.E.; Brunt, K.M.; Harding, D.J.; Neumann, T.; Walsh, K. ICESat2 subsurface-scattering biases estimated based on the 2015 SIMPL/AVRIS campaign. In Proceedings of the AGU Fall Meeting Abstracts, San Francisco, CA, USA, 14–18 December 2015; Volume 41, p. C41C-0710. [Google Scholar]
- Howat, I.M.; Negrete, A.; Smith, B.E. The Greenland Ice Mapping Project (GIMP) land classification and surface elevation data sets. Cryosphere 2014, 8, 1509–1518. [Google Scholar] [CrossRef] [Green Version]
- Farrell, S.L.; Markus, T.; Kwok, R.; Connor, L. Laser altimetry sampling strategies over sea ice. Ann. Glaciol. 2011, 52, 69–76. [Google Scholar] [CrossRef] [Green Version]
- Brunt, K.M.; Neumann, T.A.; Walsh, K.M.; Markus, T. Determination of Local Slope on the Greenland Ice Sheet Using a Multibeam Photon-Counting Lidar in Preparation for the ICESat-2 Mission. IEEE Geosci. Remote Sens. Lett. 2014, 11, 935–939. [Google Scholar] [CrossRef]
- Brunt, K.M.; Hawley, R.L.; Lutz, E.R.; Studinger, M.; Sonntag, J.G.; Hofton, M.A.; Andrews, L.C.; Neumann, T.A. Assessment of NASA airborne laser altimetry data using ground-based GPS data near Summit Station, Greenland. Cryosphere 2017, 11, 681–692. [Google Scholar] [CrossRef] [Green Version]
- Larour, E.; Utke, J.; Csatho, B.; Schenk, A.; Seroussi, H.; Morlighem, M.; Rignot, E.; Schlegel, N.; Khazendar, A. Inferred basal friction and surface mass balance of the Northeast Greenland Ice Stream using data assimilation of ICESat (Ice Cloud and land Elevation Satellite) surface altimetry and ISSM (Ice Sheet System Model). Cryosphere 2014, 8, 2335–2351. [Google Scholar] [CrossRef] [Green Version]
- Nolin, A.W. Mapping snow grain size on the ice sheets with a laser altimeter. In Proceedings of the IEEE International Geoscience and Remote Sensing (IGARSS ’98) Symposium on Sensing and Managing the Environment, Seattle, WA, USA, 6–10 July 1998; Volume 4, pp. 2264–2266. [Google Scholar]
- Yang, Y.; Marshak, A.; Han, M.; Palm, S.P.; Harding, D.J. Snow grain size retrieval over the polar ice sheets with the Ice, Cloud, and land Elevation Satellite (ICESat) observations. J. Quant. Spectrosc. Radiat. Transf. 2017, 188, 159–164. [Google Scholar] [CrossRef]
- Mouginot, J.; Rignot, E.; Bjørk, A.A.; van den Broeke, M.; Millan, R.; Morlighem, M.; Noël, B.; Scheuchl, B.; Wood, M. Forty-six years of Greenland Ice Sheet mass balance from 1972 to 2018. Proc. Natl. Acad. Sci. USA 2019, 116, 9239–9244. [Google Scholar] [CrossRef] [Green Version]
- Kuipers Munneke, P.; Ligtenberg, S.R.M.; Noël, B.P.Y.; Howat, I.M.; Box, J.E.; Mosley-Thompson, E.; McConnell, J.R.; Steffen, K.; Harper, J.T.; Das, S.B.; et al. Elevation change of the Greenland Ice Sheet due to surface mass balance and firn processes, 1960–2014. Cryosphere 2015, 9, 2009–2025. [Google Scholar] [CrossRef]
- Li, J.; Zwally, H.J. Modeling of firn compaction for estimating ice-sheet mass change from observed ice-sheet elevation change. Ann. Glaciol. 2011, 52, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Fahnestock, M.; Abdalati, W.; Joughin, I.; Brozena, J.; Gogineni, P. High Geothermal Heat Flow, Basal Melt, and the Origin of Rapid Ice Flow in Central Greenland. Science 2001, 294, 2338–2342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Velicogna, I. Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE. Geophys. Res. Lett. 2009, 36, L19503. [Google Scholar] [CrossRef]
- Wouters, B.; Chambers, D.; Schrama, E.J.O. GRACE observes small-scale mass loss in Greenland. Geophys. Res. Lett. 2008, 35, L20501. [Google Scholar] [CrossRef]
- Thomas, R.; Frederick, E.; Krabill, W.; Manizade, S.; Martin, C. Progressive increase in ice loss from Greenland. Geophys. Res. Lett. 2006, 33, L10503. [Google Scholar] [CrossRef]
- Rignot, E.; Thomas, R.H. Mass Balance of Polar Ice Sheets. Science 2002, 297, 1502–1506. [Google Scholar] [CrossRef] [Green Version]
- Rignot, E.; Braaten, D.; Gogineni, S.P.; Krabill, W.B.; McConnell, J.R. Rapid ice discharge from southeast Greenland glaciers. Geophys. Res. Lett. 2004, 31, L10401. [Google Scholar] [CrossRef]
- Rignot, E.; Box, J.E.; Burgess, E.; Hanna, E. Mass balance of the Greenland ice sheet from 1958 to 2007. Geophys. Res. Lett. 2008, 35, L20502. [Google Scholar] [CrossRef]
- Lucchitta, B.K.; Ferguson, H.M. Antarctica: Measuring Glacier Velocity from Satellite Images. Science 1986, 234, 1105–1108. [Google Scholar] [CrossRef]
- Bindschadler, R.A.; Scambos, T.A. Satellite-Image-Derived Velocity Field of an Antarctic Ice Stream. Science 1991, 252, 242–246. [Google Scholar] [CrossRef] [Green Version]
- Rosenau, R.; Scheinert, M.; Dietrich, R. A processing system to monitor Greenland outlet glacier velocity variations at decadal and seasonal time scales utilizing the Landsat imagery. Remote Sens. Environ. 2015, 169, 1–19. [Google Scholar] [CrossRef]
- Fahnestock, M.; Scambos, T.; Moon, T.; Gardner, A.; Haran, T.; Klinger, M. Rapid large-area mapping of ice flow using Landsat 8. Remote Sens. Environ. 2016, 185, 84–94. [Google Scholar] [CrossRef] [Green Version]
- Joughin, I.; Smith, B.E.; Howat, I.M. A complete map of Greenland ice velocity derived from satellite data collected over 20 years. J. Glaciol. 2018, 64, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Rignot, E.; Jezek, K.C.; Sohn, H.G. Ice flow dynamics of the Greenland Ice Sheet from SAR interferometry. Geophys. Res. Lett. 1995, 22, 575–578. [Google Scholar] [CrossRef] [Green Version]
- Joughin, I.R.; Winebrenner, D.P.; Fahnestock, M.A. Observations of ice-sheet motion in Greenland using satellite radar interferometry. Geophys. Res. Lett. 1995, 22, 571–574. [Google Scholar] [CrossRef]
- Joughin, I.R.; Kwok, R.; Fahnestock, M.A. Interferometric estimation of three-dimensional ice-flow using ascending and descending passes. IEEE Trans. Geosci. Remote Sens. 1998, 36, 25–37. [Google Scholar] [CrossRef] [Green Version]
- Joughin, I.R.; Fahnestock, M.A.; Bamber, J.L. Ice flow in the northeast Greenland ice stream. Ann. Glaciol. 2000, 31, 141–146. [Google Scholar] [CrossRef] [Green Version]
- Joughin, I. Ice-sheet velocity mapping: A combined interferometric and speckle-tracking approach. Ann. Glaciol. 2002, 34, 195–201. [Google Scholar] [CrossRef]
- Mouginot, J.; Rignot, E.; Scheuchl, B.; Millan, R. Comprehensive Annual Ice Sheet Velocity Mapping Using Landsat-8, Sentinel-1, and RADARSAT-2 Data. Remote Sens. 2017, 9, 364. [Google Scholar] [CrossRef]
- Gogineni, S.; Tammana, D.; Braaten, D.; Leuschen, C.; Akins, T.; Legarsky, J.; Kanagaratnam, P.; Stiles, J.; Allen, C.; Jezek, K. Coherent radar ice thickness measurements over the Greenland ice sheet. J. Geophys. Res. 2001, 106, 33761–33772. [Google Scholar] [CrossRef] [Green Version]
- Gogineni, P.; Yan, J.-B. Remote sensing of ice thickness and surface velocity. In Remote Sensing of the Cryosphere; Wiley-Blackwell: Hoboken, NJ, USA, 2014; pp. 187–230. ISBN 978-1-118-36890-9. [Google Scholar]
- Bamber, J.L.; Griggs, J.A.; Hurkmans, R.T.W.L.; Dowdeswell, J.A.; Gogineni, S.P.; Howat, I.; Mouginot, J.; Paden, J.; Palmer, S.; Rignot, E.; et al. A new bed elevation dataset for Greenland. Cryosphere 2013, 7, 499–510. [Google Scholar] [CrossRef] [Green Version]
- Morlighem, M.; Rignot, E.; Seroussi, H.; Larour, E.; Dhia, H.B.; Aubry, D. A mass conservation approach for mapping glacier ice thickness. Geophys. Res. Lett. 2011, 38, L19503. [Google Scholar] [CrossRef]
- Morlighem, M.; Willis, J. Improving Bed Topography Mapping of Greenland Glaciers Using NASA’s Oceans Melting Greenland (OMG) Data. Oceanography 2016, 29, 62–71. [Google Scholar] [CrossRef]
- Morlighem, M.; Williams, C.N.; Rignot, E.; An, L.; Arndt, J.E.; Bamber, J.L.; Catania, G.; Chauché, N.; Dowdeswell, J.A.; Dorschel, B.; et al. BedMachine v3: Complete Bed Topography and Ocean Bathymetry Mapping of Greenland From Multibeam Echo Sounding Combined With Mass Conservation. Geophys. Res. Lett. 2017, 44, 11051–11061. [Google Scholar] [CrossRef] [PubMed]
- Millan, R.; Rignot, E.; Mouginot, J.; Wood, M.; Bjørk, A.A.; Morlighem, M. Vulnerability of Southeast Greenland Glaciers to Warm Atlantic Water From Operation IceBridge and Ocean Melting Greenland Data: Vulnerability of southeast greenland. Geophys. Res. Lett. 2018, 45, 2688–2696. [Google Scholar] [CrossRef] [PubMed]
- King, M.D.; Howat, I.M.; Jeong, S.; Noh, M.J.; Wouters, B.; Noël, B.; van den Broeke, M.R. Seasonal to decadal variability in ice discharge from the Greenland Ice Sheet. Cryosphere 2018, 12, 3813–3825. [Google Scholar] [CrossRef] [Green Version]
- Mankoff, K.D.; Colgan, W.; Solgaard, A.; Karlsson, N.B.; Ahlstrøm, A.P.; Van As, D.; Box, J.E.; Abbas Khan, S.; Kjeldsen, K.K.; Mouginot, J.; et al. Greenland Ice Sheet solid ice discharge from 1986 through 2017. Earth Syst. Sci. Data 2019, 11, 769–786. [Google Scholar] [CrossRef] [Green Version]
- Howat, I.M.; Ahn, Y.; Joughin, I.; van den Broeke, M.R.; Lenaerts, J.T.M.; Smith, B. Mass balance of Greenland’s three largest outlet glaciers, 2000–2010. Geophys. Res. Lett. 2011, 38, L12501. [Google Scholar] [CrossRef]
- Korsgaard, N.J.; Nuth, C.; Khan, S.A.; Kjeldsen, K.K.; Bjørk, A.A.; Schomacker, A.; Kjær, K.H. Digital elevation model and orthophotographs of Greenland based on aerial photographs from 1978–1987. Sci. Data 2016, 3, 160032. [Google Scholar] [CrossRef]
- Joughin, I.; Abdalati, W.; Fahnestock, M. Large fluctuations in speed on Greenland’s Jakobshavn Isbræ glacier. Nature 2004, 432, 608–610. [Google Scholar] [CrossRef]
- Luckman, A.; Murray, T. Seasonal variation in velocity before retreat of Jakobshavn Isbræ, Greenland. Geophys. Res. Lett. 2005, 32, L08501. [Google Scholar] [CrossRef]
- Alley, R.B. Ice-Sheet and Sea-Level Changes. Science 2005, 310, 456–460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joughin, I.; Howat, I.M.; Fahnestock, M.; Smith, B.; Krabill, W.; Alley, R.B.; Stern, H.; Truffer, M. Continued evolution of Jakobshavn Isbrae following its rapid speedup. J. Geophys. Res. 2008, 113, F04006. [Google Scholar] [CrossRef]
- Moon, T.; Joughin, I. Changes in ice front position on Greenland’s outlet glaciers from 1992 to 2007. J. Geophys. Res. Earth Surf. 2008, 113, F02022. [Google Scholar] [CrossRef]
- Andersen, J.K.; Hansen, K.; Box, J.E.; Andersen, S.B.; Ahlstrøm, A.P.; van As, D.; Citterio, M.; Colgan, W.; Karlsson, N.B.; Kjeldsen, K.K.; et al. Update of annual calving front lines for 47 marine terminating outlet glaciers in Greenland (1999–2018). GEUS Bull. 2019, 43, e2019430202. [Google Scholar] [CrossRef]
- Tedesco, M. Remote sensing and the cryosphere. In Remote Sensing of the Cryosphere; Wiley-Blackwell: Hoboken, NJ, USA, 2014; pp. 1–16. ISBN 978-1-118-36890-9. [Google Scholar]
- Ramillien, G.; Lombard, A.; Cazenave, A.; Ivins, E.R.; Llubes, M.; Remy, F.; Biancale, R. Interannual variations of the mass balance of the Antarctica and Greenland ice sheets from GRACE. Glob. Planet. Chang. 2006, 53, 198–208. [Google Scholar] [CrossRef]
- Ramillien, G.; Famiglietti, J.S.; Wahr, J. Detection of Continental Hydrology and Glaciology Signals from GRACE: A Review. Surv. Geophys. 2008, 29, 361–374. [Google Scholar] [CrossRef]
- Velicogna, I.; Wahr, J. Acceleration of Greenland ice mass loss in spring 2004. Nature 2006, 443, 329–331. [Google Scholar] [CrossRef] [Green Version]
- Simonsen, S.B.; Sørensen, L.S. Implications of changing scattering properties on Greenland ice sheet volume change from Cryosat-2 altimetry. Remote Sens. Environ. 2017, 190, 207–216. [Google Scholar] [CrossRef]
- Barletta, V.R.; Sabadini, R.; Bordoni, A. Isolating the PGR signal in the GRACE data: Impact on mass balance estimates in Antarctica and Greenland. Geophys. J. Int. 2008, 172, 18–30. [Google Scholar] [CrossRef]
- Kjeldsen, K.K.; Khan, S.A.; Wahr, J.; Korsgaard, N.J.; Kjær, K.H.; Bjørk, A.A.; Hurkmans, R.; van den Broeke, M.R.; Bamber, J.L.; van Angelen, J.H. Improved ice loss estimate of the northwestern Greenland ice sheet. J. Geophys. Res. Solid Earth 2013, 118, 698–708. [Google Scholar] [CrossRef] [Green Version]
- Su, X.; Shum, C.K.; Guo, J.; Duan, J.; Howat, I.; Yi, Y. High resolution Greenland ice sheet inter-annual mass variations combining GRACE gravimetry and Envisat altimetry. Earth Planet. Sci. Lett. 2015, 422, 11–17. [Google Scholar] [CrossRef]
- Hall, D.K.; Williams, R.S.; Luthcke, S.B.; Digirolamo, N.E. Greenland ice sheet surface temperature, melt and mass loss: 2000–2006. J. Glaciol. 2008, 54, 81–93. [Google Scholar] [CrossRef]
- Sasgen, I.; van den Broeke, M.; Bamber, J.L.; Rignot, E.; Sørensen, L.S.; Wouters, B.; Martinec, Z.; Velicogna, I.; Simonsen, S.B. Timing and origin of recent regional ice-mass loss in Greenland. Earth Planet. Sci. Lett. 2012, 333–334, 293–303. [Google Scholar] [CrossRef]
- Velicogna, I.; Wahr, J. Time-variable gravity observations of ice sheet mass balance: Precision and limitations of the GRACE satellite data. Geophys. Res. Lett. 2013, 40, 3055–3063. [Google Scholar] [CrossRef] [Green Version]
- Harig, C.; Simons, F.J. Ice mass loss in Greenland, the Gulf of Alaska, and the Canadian Archipelago: Seasonal cycles and decadal trends. Geophys. Res. Lett. 2016, 43, 3150–3159. [Google Scholar] [CrossRef]
- Harig, C.; Simons, F.J. Mapping Greenland’s mass loss in space and time. Proc. Natl. Acad. Sci. USA 2012, 109, 19934–19937. [Google Scholar] [CrossRef]
- Wahr, J.; Swenson, S.; Velicogna, I. Accuracy of GRACE mass estimates. Geophys. Res. Lett. 2006, 33, L06401. [Google Scholar] [CrossRef]
- Watkins, M.M.; Wiese, D.N.; Yuan, D.-N.; Boening, C.; Landerer, F.W. Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons. J. Geophys. Res. Solid Earth 2015, 120, 2648–2671. [Google Scholar] [CrossRef]
- Swenson, S.; Wahr, J. Post-processing removal of correlated errors in GRACE data. Geophys. Res. Lett. 2006, 33, L08402. [Google Scholar] [CrossRef]
- Velicogna, I.; Wahr, J. Greenland mass balance from GRACE. Geophys. Res. Lett. 2005, 32, L18505. [Google Scholar] [CrossRef]
- Sasgen, I.; Klemann, V.; Martinec, Z. Towards the inversion of GRACE gravity fields for present-day ice-mass changes and glacial-isostatic adjustment in North America and Greenland. J. Geodyn. 2012, 59–60, 49–63. [Google Scholar] [CrossRef]
- Flechtner, F.; Morton, P.; Watkins, M.; Webb, F. Status of the GRACE Follow-On Mission. In Proceedings of the Gravity, Geoid and Height Systems; Marti, U., Ed.; Springer International Publishing: Cham, Switzerland, 2014; pp. 117–121. [Google Scholar]
- Greicius, T. GRACE-FO Resumes Data Collection. Available online: http://www.nasa.gov/feature/jpl/grace-fo-resumes-data-collection (accessed on 15 January 2019).
- NASA/JPL-Caltech GRACE-FO First Gravity Field Data Now. Available online: https://gracefo.jpl.nasa.gov/news/145/grace-fo-first-gravity-field-data-now-available (accessed on 2 July 2019).
- Schaaf, C.B.; Gao, F.; Strahler, A.H.; Lucht, W.; Li, X.; Tsang, T.; Strugnell, N.C.; Zhang, X.; Jin, Y.; Muller, J.-P.; et al. First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sens. Environ. 2002, 83, 135–148. [Google Scholar] [CrossRef] [Green Version]
- Nolin, A.W.; Stroeve, J. The changing albedo of the Greenland ice sheet: Implications for climate modeling. Ann. Glaciol. 1997, 25, 51–57. [Google Scholar] [CrossRef]
- Tedesco, M.; Doherty, S.; Fettweis, X.; Alexander, P.; Jeyaratnam, J.; Stroeve, J. The darkening of the Greenland ice sheet: Trends, drivers, and projections (1981–2100). Cryosphere 2016, 10, 477–496. [Google Scholar] [CrossRef]
- Van Angelen, J.H.; Lenaerts, J.T.M.; Lhermitte, S.; Fettweis, X.; Kuipers Munneke, P.; van den Broeke, M.R.; van Meijgaard, E.; Smeets, C.J.P.P. Sensitivity of Greenland Ice Sheet surface mass balance to surface albedo parameterization: A study with a regional climate model. Cryosphere 2012, 6, 1175–1186. [Google Scholar] [CrossRef]
- Nicodemus, F.E.; Richmond, J.C.; Hsia, J.J.; Ginsberg, I.W.; Limperis, T. Geometrical Considerations and Nomenclature for Reflectance; National Bureau of Standards: Washington, DC, USA, 1977; pp. 1–51.
- Martonchik, J.V.; Bruegge, C.J.; Strahler, A.H. A review of reflectance nomenclature used in remote sensing. Remote Sens. Rev. 2000, 19, 9–20. [Google Scholar] [CrossRef]
- Snyder, W.C. Definition and invariance properties of structured surface BRDF. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1032–1037. [Google Scholar] [CrossRef]
- Di Girolamo, L. Generalizing the definition of the bi-directional reflectance distribution function. Remote Sens. Environ. 2003, 88, 479–482. [Google Scholar] [CrossRef]
- Schaepman-Strub, G.; Schaepman, M.E.; Painter, T.H.; Dangel, S.; Martonchik, J.V. Reflectance quantities in optical remote sensing—definitions and case studies. Remote Sens. Environ. 2006, 103, 27–42. [Google Scholar] [CrossRef]
- Nolin, A.W.; Fetterer, F.M.; Scambos, T.A. Surface roughness characterizations of sea ice and ice sheets: Case studies with MISR data. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1605–1615. [Google Scholar] [CrossRef]
- Stroeve, J.C.; Nolin, A.W. New methods to infer snow albedo from the MISR instrument with applications to the Greenland ice sheet. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1616–1625. [Google Scholar] [CrossRef]
- Bindschadler, R.; Dowdeswell, J.; Hall, D.; Winther, J.-G. Glaciological applications with Landsat-7 imagery: Early assessments. Remote Sens. Environ. 2001, 78, 163–179. [Google Scholar] [CrossRef]
- Stroeve, J.C.; Box, J.E.; Haran, T. Evaluation of the MODIS (MOD10A1) daily snow albedo product over the Greenland ice sheet. Remote Sens. Environ. 2006, 105, 155–171. [Google Scholar] [CrossRef]
- Stroeve, J. Assessment of Greenland albedo variability from the advanced very high resolution radiometer Polar Pathfinder data set. J. Geophys. Res. 2001, 106, 33989–34006. [Google Scholar] [CrossRef]
- Arnold, N.S.; Banwell, A.F.; Willis, I.C. High-resolution modelling of the seasonal evolution of surface water storage on the Greenland Ice Sheet. Cryosphere 2014, 8, 1149–1160. [Google Scholar] [CrossRef] [Green Version]
- Pope, A.; Scambos, T.A.; Moussavi, M.; Tedesco, M.; Willis, M.; Shean, D.; Grigsby, S. Estimating supraglacial lake depth in West Greenland using Landsat 8 and comparison with other multispectral methods. Cryosphere 2016, 10, 15–27. [Google Scholar] [CrossRef] [Green Version]
- Yang, K.; Smith, L.C.; Sole, A.; Livingstone, S.J.; Cheng, X.; Chen, Z.; Li, M. Supraglacial rivers on the northwest Greenland Ice Sheet, Devon Ice Cap, and Barnes Ice Cap mapped using Sentinel-2 imagery. Int. J. Appl. Earth Obs. Geoinf. 2019, 78, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Sohn, H.-G.; Jezek, K.C. Mapping ice sheet margins from ERS-1 SAR and SPOT imagery. Int. J. Remote Sens. 1999, 20, 3201–3216. [Google Scholar] [CrossRef]
- Wang, S.; Tedesco, M.; Xu, M.; Alexander, P.M. Mapping Ice Algal Blooms in Southwest Greenland From Space. Geophys. Res. Lett. 2018, 45, 11779–11788. [Google Scholar] [CrossRef]
- Georgiou, S.; Shepherd, A.; McMillan, M.; Nienow, P. Seasonal evolution of supraglacial lake volume from ASTER imagery. Ann. Glaciol. 2009, 50, 95–100. [Google Scholar] [CrossRef] [Green Version]
- Hori, M.; Aoki, T.; Stamnes, K.; Li, W. ADEOS-II/GLI snow/ice products—Part III: Retrieved results. Remote Sens. Environ. 2007, 111, 291–336. [Google Scholar] [CrossRef]
- Key, J.; Wang, X.; Liu, Y. NOAA Climate Data Record of AVHRR Polar Pathfinder Extended (APP-X), Version 1; NOAA National Centers for Environmental Information: Asheville, NC, USA, 2014.
- Knap, W.H.; Oerlemans, J. The surface albedo of the Greenland ice sheet: Satellite-derived and in situ measurements in the Søndre Strømfjord area during the 1991 melt season. J. Glaciol. 1996, 42, 364–374. [Google Scholar] [CrossRef]
- Stroeve, J.C.; Box, J.E.; Fowler, C.; Haran, T.; Key, J. Intercomparison between In Situ and AVHRR Polar Pathfinder-Derived Surface Albedo over Greenland. Remote Sens. Environ. 2001, 75, 360–374. [Google Scholar] [CrossRef] [Green Version]
- Box, J.E.; Bromwich, D.H.; Veenhuis, B.A.; Bai, L.-S.; Stroeve, J.C.; Rogers, J.C.; Steffen, K.; Haran, T.; Wang, S.-H. Greenland Ice Sheet Surface Mass Balance Variability (1988–2004) from Calibrated Polar MM5 Output. J. Clim. 2006, 19, 2783–2800. [Google Scholar] [CrossRef]
- Liang, S. Narrowband to broadband conversions of land surface albedo I: Algorithms. Remote Sens. Environ. 2001, 76, 213–238. [Google Scholar] [CrossRef]
- Greuell, W.; Oerlemans, J. Narrowband-to-broadband albedo conversion for glacier ice and snow: Equations based on modeling and ranges of validity of the equations. Remote Sens. Environ. 2004, 89, 95–105. [Google Scholar] [CrossRef]
- Stroeve, J.; Box, J.E.; Wang, Z.; Schaaf, C.; Barrett, A. Re-evaluation of MODIS MCD43 Greenland albedo accuracy and trends. Remote Sens. Environ. 2013, 138, 199–214. [Google Scholar] [CrossRef]
- Klein, A.G.; Stroeve, J. Development and validation of a snow albedo algorithm for the MODIS instrument. Ann. Glaciol. 2002, 34, 45–52. [Google Scholar] [CrossRef] [Green Version]
- Ryan, J.C.; Hubbard, A.L.; Irvine-Fynn, T.D.; Doyle, S.H.; Cook, J.M.; Stibal, M.; Box, J.E. How robust are in situ observations for validating satellite-derived albedo over the dark zone of the Greenland Ice Sheet? Geophys. Res. Lett. 2017, 44, 6218–6225. [Google Scholar] [CrossRef]
- Schaaf, C.B.; Wang, Z.; Strahler, A.H. Commentary on Wang and Zender—MODIS snow albedo bias at high solar zenith angles relative to theory and to in situ observations in Greenland. Remote Sens. Environ. 2011, 115, 1296–1300. [Google Scholar] [CrossRef]
- Steffen, K.; Box, J.E.; Abdalati, W. Greenland Climate Network: GC-Net. In Special Report 96-27 Glaciers, Ice Sheets and Volcanoes: A Tribute to Mark F. Meier; Colbeck, S.C., Ed.; CRREL: Hanover, NH, USA, 1996; pp. 98–103. [Google Scholar]
- Stroeve, J.; Box, J.E.; Gao, F.; Liang, S.; Nolin, A.; Schaaf, C. Accuracy assessment of the MODIS 16-day albedo product for snow: Comparisons with Greenland in situ measurements. Remote Sens. Environ. 2005, 94, 46–60. [Google Scholar] [CrossRef]
- Wang, X.; Zender, C.S. MODIS snow albedo bias at high solar zenith angles relative to theory and to in situ observations in Greenland. Remote Sens. Environ. 2010, 114, 563–575. [Google Scholar] [CrossRef] [Green Version]
- Moustafa, S.E.; Rennermalm, A.K.; Román, M.O.; Wang, Z.; Schaaf, C.B.; Smith, L.C.; Koenig, L.S.; Erb, A. Evaluation of satellite remote sensing albedo retrievals over the ablation area of the southwestern Greenland ice sheet. Remote Sens. Environ. 2017, 198, 115–125. [Google Scholar] [CrossRef]
- Moustafa, S.E.; Rennermalm, A.K.; Smith, L.C.; Miller, M.A.; Mioduszewski, J.R.; Koenig, L.S.; Hom, M.G.; Shuman, C.A. Multi-modal albedo distributions in the ablation area of the southwestern Greenland Ice Sheet. Cryosphere 2015, 9, 905–923. [Google Scholar] [CrossRef] [Green Version]
- Nghiem, S.V.; Hall, D.K.; Mote, T.L.; Tedesco, M.; Albert, M.R.; Keegan, K.; Shuman, C.A.; DiGirolamo, N.E.; Neumann, G. The extreme melt across the Greenland ice sheet in 2012. Geophys. Res. Lett. 2012, 39, L20502. [Google Scholar] [CrossRef]
- Alexander, P.M.; Tedesco, M.; Fettweis, X.; van de Wal, R.S.W.; Smeets, C.J.P.P.; van den Broeke, M.R. Assessing spatio-temporal variability and trends in modelled and measured Greenland Ice Sheet albedo (2000–2013). Cryosphere 2014, 8, 2293–2312. [Google Scholar] [CrossRef]
- Dadic, R.; Mullen, P.C.; Schneebeli, M.; Brandt, R.E.; Warren, S.G. Effects of bubbles, cracks, and volcanic tephra on the spectral albedo of bare ice near the Transantarctic Mountains: Implications for sea glaciers on Snowball Earth. J. Geophys. Res. Earth Surf. 2013, 118, 1658–1676. [Google Scholar] [CrossRef] [Green Version]
- Benning, L.G.; Anesio, A.M.; Lutz, S.; Tranter, M. Biological impact on Greenland’s albedo. Nat. Geosci. 2014, 7, 691. [Google Scholar] [CrossRef]
- Yallop, M.L.; Anesio, A.M.; Perkins, R.G.; Cook, J.; Telling, J.; Fagan, D.; MacFarlane, J.; Stibal, M.; Barker, G.; Bellas, C.; et al. Photophysiology and albedo-changing potential of the ice algal community on the surface of the Greenland ice sheet. ISME J. 2012, 6, 2302–2313. [Google Scholar] [CrossRef] [Green Version]
- Goelles, T.; Bøggild, C.E. Albedo reduction of ice caused by dust and black carbon accumulation: A model applied to the K-transect, West Greenland. J. Glaciol. 2017, 63, 1063–1076. [Google Scholar] [CrossRef]
- Greuell, W.; Knap, W.H. Remote sensing of the albedo and detection of the slush line on the Greenland ice sheet. J. Geophys. Res. Atmos. 2000, 105, 15567–15576. [Google Scholar] [CrossRef]
- Wientjes, I.G.M.; De Van Wal, R.S.W.; Schwikowski, M.; Zapf, A.; Fahrni, S.; Wacker, L. Carbonaceous particles reveal that Late Holocene dust causes the dark region in the western ablation zone of the Greenland ice sheet. J. Glaciol. 2012, 58, 787–794. [Google Scholar] [CrossRef] [Green Version]
- Wientjes, I.G.M.; Van de Wal, R.S.W.; Reichart, G.J.; Sluijs, A.; Oerlemans, J. Dust from the dark region in the western ablation zone of the Greenland ice sheet. Cryosphere 2011, 5, 589–601. [Google Scholar] [CrossRef] [Green Version]
- Bøggild, C.E.; Oerter, H.; Tukiainen, T. Increased ablation of Wisconsin ice in eastern north Greenland: Observations and modelling. Ann. Glaciol. 1996, 23, 144–148. [Google Scholar] [CrossRef]
- Shimada, R.; Takeuchi, N.; Aoki, T. Inter-Annual and Geographical Variations in the Extent of Bare Ice and Dark Ice on the Greenland Ice Sheet Derived from MODIS Satellite Images. Front. Earth Sci. 2016, 4, 43. [Google Scholar] [CrossRef]
- Hodson, A.; Bøggild, C.; Hanna, E.; Huybrechts, P.; Langford, H.; Cameron, K.; Houldsworth, A. The cryoconite ecosystem on the Greenland ice sheet. Ann. Glaciol. 2010, 51, 123–129. [Google Scholar] [CrossRef] [Green Version]
- Uetake, J.; Naganuma, T.; Hebsgaard, M.B.; Kanda, H.; Kohshima, S. Communities of algae and cyanobacteria on glaciers in west Greenland. Polar Science 2010, 4, 71–80. [Google Scholar] [CrossRef] [Green Version]
- Stibal, M.; Box, J.E.; Cameron, K.A.; Langen, P.L.; Yallop, M.L.; Mottram, R.H.; Khan, A.L.; Molotch, N.P.; Chrismas, N.A.M.; Quaglia, F.C.; et al. Algae Drive Enhanced Darkening of Bare Ice on the Greenland Ice Sheet. Geophys. Res. Lett. 2017, 44, 11463–11471. [Google Scholar] [CrossRef]
- Cook, J.M.; Hodson, A.J.; Gardner, A.S.; Flanner, M.; Tedstone, A.J.; Williamson, C.; Irvine-Fynn, T.D.L.; Nilsson, J.; Bryant, R.; Tranter, M. Quantifying bioalbedo: A new physically based model and discussion of empirical methods for characterising biological influence on ice and snow albedo. Cryosphere 2017, 11, 2611–2632. [Google Scholar] [CrossRef]
- Chandler, D.M.; Alcock, J.D.; Wadham, J.L.; Mackie, S.L.; Telling, J. Seasonal changes of ice surface characteristics and productivity in the ablation zone of the Greenland Ice Sheet. Cryosphere 2015, 9, 487–504. [Google Scholar] [CrossRef] [Green Version]
- Dumont, M.; Brun, E.; Picard, G.; Michou, M.; Libois, Q.; Petit, J.-R.; Geyer, M.; Morin, S.; Josse, B. Contribution of light-absorbing impurities in snow to Greenland’s darkening since 2009. Nat. Geosci. 2014, 7, 509. [Google Scholar] [CrossRef]
- Tedesco, M.; Doherty, S.; Warren, S.G.; Tranter, M.; Stroeve, J.C.; Fettweis, X.; Alexander, P. What Darkens the Greenland Ice Sheet? Eos 2015, 96. [Google Scholar] [CrossRef] [Green Version]
- Zege, E.; Katsev, I.; Malinka, A.; Prikhach, A.; Polonsky, I. New algorithm to retrieve the effective snow grain size and pollution amount from satellite data. Ann. Glaciol. 2008, 49, 139–144. [Google Scholar] [CrossRef] [Green Version]
- Warren, S.G. Can black carbon in snow be detected by remote sensing? J. Geophys. Res. Atmos. 2013, 118, 779–786. [Google Scholar] [CrossRef] [Green Version]
- Painter, T.H.; Duval, B.; Thomas, W.H.; Mendez, M.; Heintzelman, S.; Dozier, J. Detection and Quantification of Snow Algae with an Airborne Imaging Spectrometer. Appl. Environ. Microbiol. 2001, 67, 5267–5272. [Google Scholar] [CrossRef] [Green Version]
- Takeuchi, N.; Dial, R.; Kohshima, S.; Segawa, T.; Uetake, J. Spatial distribution and abundance of red snow algae on the Harding Icefield, Alaska derived from a satellite image. Geophys. Res. Lett. 2006, 33, L21502. [Google Scholar] [CrossRef]
- Transon, J.; d’Andrimont, R.; Maugnard, A.; Defourny, P. Survey of Hyperspectral Earth Observation Applications from Space in the Sentinel-2 Context. Remote Sens. 2018, 10, 157. [Google Scholar] [CrossRef]
- Cook, J.M.; Hodson, A.J.; Taggart, A.J.; Mernild, S.H.; Tranter, M. A predictive model for the spectral “bioalbedo” of snow. J. Geophys. Res. Earth Surf. 2017, 122, 434–454. [Google Scholar] [CrossRef]
- Long, D.G.; Drinkwater, M.R. Greenland ice-sheet surface properties observed by the Seasat-A scatterometer at enhanced resolution. J. Glaciol. 1994, 40, 213–230. [Google Scholar] [CrossRef] [Green Version]
- Forster, R.R.; Isacks, B.L.; Das, S.B. Shuttle imaging radar (SIR-C/X-SAR) reveals near-surface properties of the South Patagonian Icefield. J. Geophys. Res. Planets 1996, 101, 23169–23180. [Google Scholar] [CrossRef]
- Smith, L.C.; Forster, R.R.; Isacks, B.L.; Hall, D.K. Seasonal climatic forcing of alpine glaciers revealed with orbital synthetic aperture radar. J. Glaciol. 1997, 43, 480–488. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.; Zheng, L. Mapping Radar Glacier Zones and Dry Snow Line in the Antarctic Peninsula Using Sentinel-1 Images. Remote Sens. 2017, 9, 1171. [Google Scholar] [CrossRef]
- Abdalati, W.; Steffen, K. Passive microwave-derived snow melt regions on the Greenland Ice Sheet. Geophys. Res. Lett. 1995, 22, 787–790. [Google Scholar] [CrossRef]
- Jezek, K.C.; Gogineni, P.; Shanableh, M. Radar measurements of melt zones on the Greenland Ice Sheet. Geophys. Res. Lett. 1994, 21, 33–36. [Google Scholar] [CrossRef]
- Mote, T.L. Greenland surface melt trends 1973–2007: Evidence of a large increase in 2007. Geophys. Res. Lett. 2007, 34, L22507. [Google Scholar] [CrossRef]
- Fettweis, X.; Tedesco, M.; van den Broeke, M.; Ettema, J. Melting trends over the Greenland ice sheet (1958–2009) from spaceborne microwave data and regional climate models. Cryosphere 2011, 5, 359–375. [Google Scholar] [CrossRef]
- Shi, J.; Dozier, J. Measurements of snow- and glacier-covered areas with single-polarization SAR. Ann. Glaciol. 1993, 17, 72–76. [Google Scholar] [CrossRef] [Green Version]
- Ashcraft, I.S.; Long, D.G. Comparison of methods for melt detection over Greenland using active and passive microwave measurements. Int. J. Remote Sens. 2006, 27, 2469–2488. [Google Scholar] [CrossRef]
- Partington, K.C. Discrimination of glacier facies using multi-temporal SAR data. J. Glaciol. 1998, 44, 42–53. [Google Scholar] [CrossRef] [Green Version]
- Nghiem, S.V.; Steffen, K.; Kwok, R.; Tsai, W.Y. Detection of snowmelt regions on the Greenland ice sheet using diurnal backscatter change. J. Glaciol. 2001, 47, 539–547. [Google Scholar] [CrossRef] [Green Version]
- Early, D.S.; Long, D.G. Image reconstruction and enhanced resolution imaging from irregular samples. IEEE Trans. Geosci. Remote Sens. 2001, 39, 291–302. [Google Scholar] [CrossRef] [Green Version]
- Wismann, V. Monitoring of seasonal snowmelt on Greenland with ERS scatterometer data. IEEE Trans. Geosci. Remote Sens. 2000, 38, 1821–1826. [Google Scholar] [CrossRef]
- Smith, L.C.; Sheng, Y.; Forster, R.R.; Steffen, K.; Frey, K.E.; Alsdorf, D.E. Melting of small Arctic ice caps observed from ERS scatterometer time series. Geophys. Res. Lett. 2003, 30, 2034. [Google Scholar] [CrossRef]
- Hicks, B.R.; Long, D.G. Inferring Greenland melt and refreeze severity from SeaWinds scatterometer data. Int. J. Remote Sens. 2011, 32, 8053–8080. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhang, Y.; Liang, L. Snowmelt detection on the Greenland ice sheet using microwave scatterometer measurements. Int. J. Remote Sens. 2017, 38, 796–807. [Google Scholar] [CrossRef]
- Wang, L.; Sharp, M.; Rivard, B.; Steffen, K. Melt season duration and ice layer formation on the Greenland ice sheet, 2000–2004. J. Geophys. Res. 2007, 112, F04013. [Google Scholar] [CrossRef]
- Long, D.G.; Hicks, B.R. SeaWinds on QuikScat Enhanced Resolution Image Products (Version 2); Brigham Young University: Provo, UT, USA, 2005. [Google Scholar]
- Wan, Z.; Dozier, J. Land-surface temperature measurement from space: Physical principles and inverse modeling. IEEE Trans. Geosci. Remote Sens. 1989, 27, 268–278. [Google Scholar]
- Chang, T.C.; Gloersen, P.; Schmugge, T.; Wilheit, T.T.; Zwally, H.J. Microwave Emission From Snow and Glacier Ice. J. Glaciol. 1976, 16, 23–39. [Google Scholar] [CrossRef] [Green Version]
- Mote, T.L.; Anderson, M.R.; Kuivinen, K.C.; Rowe, C.M. Passive microwave-derived spatial and temporal variations of summer melt on the Greenland ice sheet. Ann. Glaciol. 1993, 17, 233–238. [Google Scholar] [CrossRef] [Green Version]
- Mote, T.L.; Anderson, M.R. Variations in snowpack melt on the Greenland ice sheet based on passive-microwave measurements. J. Glaciol. 1995, 41, 51–60. [Google Scholar] [CrossRef] [Green Version]
- Abdalati, W.; Steffen, K. Greenland Ice Sheet melt extent: 1979–1999. J. Geophys. Res. Atmos. 2001, 106, 33983–33988. [Google Scholar] [CrossRef]
- Ramage, J.M.; Isacks, B.L. Determination of melt-onset and refreeze timing on southeast Alaskan icefields using SSM/I diurnal amplitude variations. Ann. Glaciol. 2002, 34, 391–398. [Google Scholar] [CrossRef] [Green Version]
- Tedesco, M. Snowmelt detection over the Greenland ice sheet from SSM/I brightness temperature daily variations. Geophys. Res. Lett. 2007, 34, L02504. [Google Scholar] [CrossRef]
- Remote Sensing of the Cryosphere; Tedesco, M. (Ed.) The Cyrosphere Science Series; Wiley Blackwell: Hoboken, NJ, USA, 2015; ISBN 978-1-118-36885-5. [Google Scholar]
- Bhattacharya, I.; Jezek, K.C.; Wang, L.; Liu, H. Surface melt area variability of the Greenland ice sheet: 1979–2008. Geophys. Res. Lett. 2009, 36, L20502. [Google Scholar] [CrossRef]
- Tedesco, M.; Fettweis, X.; Mote, T.; Wahr, J.; Alexander, P.; Box, J.E.; Wouters, B. Evidence and analysis of 2012 Greenland records from spaceborne observations, a regional climate model and reanalysis data. Cryosphere 2013, 7, 615–630. [Google Scholar] [CrossRef] [Green Version]
- Abdalati, W.; Steffen, K. The apparent effects of the Mt. Pinatubo Eruption on the Greenland Ice Sheet melt extent. Geophys. Res. Lett. 1997, 24, 1795–1797. [Google Scholar] [CrossRef]
- Chu, V.W.; Smith, L.C.; Rennermalm, A.K.; Forster, R.R.; Box, J.E.; Reeh, N. Sediment plume response to surface melting and supraglacial lake drainages on the Greenland ice sheet. J. Glaciol. 2009, 55, 1072–1082. [Google Scholar] [CrossRef] [Green Version]
- Mernild, S.H.; Liston, G.E.; Hiemstra, C.A.; Christensen, J.H. Greenland Ice Sheet Surface Mass-Balance Modeling in a 131-Yr Perspective, 1950–2080. J. Hydrometeor. 2010, 11, 3–25. [Google Scholar] [CrossRef]
- Mernild, S.H.; Mote, T.L.; Liston, G.E. Greenland ice sheet surface melt extent and trends: 1960–2010. J. Glaciol. 2011, 57, 621–628. [Google Scholar] [CrossRef]
- Mote, T.L. MEaSUREs Greenland Surface Melt Daily 25km EASE-Grid 2.0; NASA DAAC at the National Snow and Ice Data Center: Boulder, CO, USA, 2014. [Google Scholar]
- Stroeve, J.; Haefliger, M.; Steffen, K. Surface Temperature from ERS-1 ATSR Infrared Thermal Satellite Data in Polar Regions. J. Appl. Meteor. 1996, 35, 1231–1239. [Google Scholar] [CrossRef]
- Hall, D.K.; Ormsby, J.P.; Bindschadler, R.A.; Siddalingaiah, H. Characterization of Snow and Ice Reflectance Zones On Glaciers Using Landsat Thematic Mapper Data. Ann. Glaciol. 1987, 9, 104–108. [Google Scholar] [CrossRef] [Green Version]
- Hall, D.K.; Nghiem, S.V.; Schaaf, C.B.; DiGirolamo, N.E.; Neumann, G. Evaluation of surface and near-surface melt characteristics on the Greenland ice sheet using MODIS and QuikSCAT data. J. Geophys. Res. Earth Surf. 2009, 114, F04006. [Google Scholar] [CrossRef]
- Välisuo, I.; Vihma, T.; Pirazzini, R.; Schäfer, M. Interannual Variability of Atmospheric Conditions and Surface Melt in Greenland in 2000–2014. J. Geophys. Res. Atmos. 2018, 123, 10443–10463. [Google Scholar] [CrossRef]
- Hall, D.K.; Comiso, J.C.; DiGirolamo, N.E.; Shuman, C.A.; Box, J.E.; Koenig, L.S. Variability in the surface temperature and melt extent of the Greenland ice sheet from MODIS. Geophys. Res. Lett. 2013, 40, 2114–2120. [Google Scholar] [CrossRef]
- Hall, D.K.; Box, J.E.; Casey, K.A.; Hook, S.J.; Shuman, C.A.; Steffen, K. Comparison of satellite-derived and in-situ observations of ice and snow surface temperatures over Greenland. Remote Sens. Environ. 2008, 112, 3739–3749. [Google Scholar] [CrossRef] [Green Version]
- Hall, D.K.; Comiso, J.C.; DiGirolamo, N.E.; Shuman, C.A.; Key, J.R.; Koenig, L.S. A Satellite-Derived Climate-Quality Data Record of the Clear-Sky Surface Temperature of the Greenland Ice Sheet. J. Clim. 2012, 25, 4785–4798. [Google Scholar] [CrossRef]
- Wan, Z.; Li, Z.-L. Radiance-based validation of the V5 MODIS land-surface temperature product. Int. J. Remote Sens. 2008, 29, 5373–5395. [Google Scholar] [CrossRef]
- Shuman, C.A.; Hall, D.K.; DiGirolamo, N.E.; Mefford, T.K.; Schnaubelt, M.J. Comparison of Near-Surface Air Temperatures and MODIS Ice-Surface Temperatures at Summit, Greenland (2008–13). J. Appl. Meteor. Climatol. 2014, 53, 2171–2180. [Google Scholar] [CrossRef]
- Koenig, L.S.; Hall, D.K. Comparison of satellite, thermochron and air temperatures at Summit, Greenland, during the winter of 2008/09. J. Glaciol. 2010, 56, 735–741. [Google Scholar] [CrossRef] [Green Version]
- Stroeve, J.; Steffen, K. Variability of AVHRR-Derived Clear-Sky Surface Temperature over the Greenland Ice Sheet. J. Appl. Meteor. 1998, 37, 23–31. [Google Scholar] [CrossRef]
- Nolin, A.W.; Mar, E. Arctic Sea Ice Surface Roughness Estimated from Multi-Angular Reflectance Satellite Imagery. Remote Sens. 2019, 11, 50. [Google Scholar] [CrossRef]
- Boisvert, L.N.; Lee, J.N.; Lenaerts, J.T.M.; Noël, B.; Broeke, M.R.; Nolin, A.W. Using remotely sensed data from AIRS to estimate the vapor flux on the Greenland ice sheet: Comparisons with observations and a regional climate model. J. Geophys. Res. Atmos. 2017, 122, 202–229. [Google Scholar] [CrossRef]
- Li, X.; Xu, K.; Xu, L. Surface slope and roughness measurement using ICESat/GLAS elevation and laser waveform. Meas. Sci. Technol. 2016, 27, 095202. [Google Scholar] [CrossRef]
- Van der Veen, C.J.; Ahn, Y.; Csatho, B.M.; Mosley-Thompson, E.; Krabill, W.B. Surface roughness over the northern half of the Greenland Ice Sheet from airborne laser altimetry. J. Geophys. Res. Earth Surf. 2009, 114, F01001. [Google Scholar] [CrossRef]
- Poinar, K.; Joughin, I.; Das, S.B.; Behn, M.D.; Lenaerts, J.T.M.; van den Broeke, M.R. Limits to future expansion of surface-melt-enhanced ice flow into the interior of western Greenland. Geophys. Res. Lett. 2015, 42, 1800–1807. [Google Scholar] [CrossRef]
- Hoffman, M.J.; Perego, M.; Andrews, L.C.; Price, S.F.; Neumann, T.A.; Johnson, J.V.; Catania, G.; Lüthi, M.P. Widespread Moulin Formation During Supraglacial Lake Drainages in Greenland. Geophys. Res. Lett. 2018, 45, 778–788. [Google Scholar] [CrossRef] [Green Version]
- Koenig, L.S.; Lampkin, D.J.; Montgomery, L.N.; Hamilton, S.L.; Turrin, J.B.; Joseph, C.A.; Moutsafa, S.E.; Panzer, B.; Casey, K.A.; Paden, J.D.; et al. Wintertime storage of water in buried supraglacial lakes across the Greenland Ice Sheet. Cryosphere 2015, 9, 1333–1342. [Google Scholar] [CrossRef] [Green Version]
- Miles, K.E.; Willis, I.C.; Benedek, C.L.; Williamson, A.G.; Tedesco, M. Toward Monitoring Surface and Subsurface Lakes on the Greenland Ice Sheet Using Sentinel-1 SAR and Landsat-8 OLI Imagery. Front. Earth Sci. 2017, 5, 58. [Google Scholar] [CrossRef]
- Cooley, S.W.; Christoffersen, P. Observation Bias Correction Reveals More Rapidly Draining Lakes on the Greenland Ice Sheet. J. Geophys. Res. Earth Surf. 2017, 122, 1867–1881. [Google Scholar] [CrossRef]
Platform * | Instrument Ŧ | Temporal Coverage | Observed Wavelength | Agency §,Ɣ |
---|---|---|---|---|
Radar altimeters | ||||
GEOS-3 | ALT | 1975–1978 | 13.9 GHz (Ku) | NASA |
Seasat | ALT | 1978 (110 days) | 13.6 GHz (Ku) | NASA |
Geosat | GRA | 1985–1990 | 13.5 GHz (Ku) | DoD/NASA |
ERS-1 | RA | 1991–2006 | 13.8 GHz (Ku) | ESA |
ERS-2 | RA-2 | 1995–2011 | 13.6 GHz (Ku), 3.2 GHz (S) | ESA |
GFO | GFO-RA | 1998–2008 | 13.5 GHz (Ku) | DoD/NASA |
EnviSat | RA-2 | 2002–2012 | 13.6 GHz (Ku), 3.2 GHz (S) | ESA |
CryoSat-2 | SIRAL | 2010–present | 13.9 GHz (Ku) | ESA |
SARAL | ALtiKa | 2013–present | 36 GHz (Ka) | ISRO/CNES |
Sentinel-3A/B | SRAL | 2016–present | 13.6 GHz (Ku), 5.4 GHz (C) | ESA |
Laser altimeters | ||||
ICESat | GLAS | 2003–2009 | 1.064 μm, 0.532 μm | NASA |
ICESat-2 | ATLAS | 2018–present | 1.064 μm, 0.532 μm | NASA |
Aircraft | ATM | 1977–present | 1.064 μm | NASA |
Aircraft | LVIS | 1998–present | 1.064 μm | NASA |
Aircraft | MABEL | 2012–2014 | 1.064 μm, 0.532 μm | NASA |
Platform * | Instrument Ŧ | Temporal Coverage | Observed Wavelength | Agency §,Ɣ |
---|---|---|---|---|
Nimbus 1-4 | AVCS/IDCS | 1964–1980 | (1 band) 0.45–0.65 μm | NASA |
Landsat 1-5 | MSS | 1972–2013 | (4 bands): 0.55–0.955 μm | NASA/USGS |
GOES 1-15 | VISSR | 1975–present | (5 bands): 0.62–12 μm | NASA/NOAA |
Seasat | VIRR | 1978 (110 days) | (2 bands): 0.49-0.94, 10.5–12.5 μm | NASA |
TIROS-N, NOAA-6,8,10 | AVHRR | 1978–2001 | (4 bands): 0.63–11 μm | NOAA/NASA |
NOAA-7,9,11-14 | AVHRR/2 | 1981–present | (5 bands): 0.63–12 μm | NOAA |
Landsat 4-5 | TM | 1982–2013 | (7 bands): 0.485–11.45 μm | NASA |
Spot 1-3 | HRV | 1985–2009 | (3 bands): 0.55–0.83 μm | CNES/Spot Image |
ERS-1 | ATSR | 1991–2000 | (4 bands): 1.6–12.0 μm | ESA |
JERS-1 | OPS | 1992–1998 | (8 bands): 0.52–2.40 μm | JAXA |
ERS-2 | ATSR-2 | 1995–2011 | (7 bands): 0.55–12.0 μm | ESA |
ADEOS | POLDER | 1996–1997 | (9 bands): 0.44–0.91 μm | CNES |
ADEOS | AVNIR | 1996–1997 | (4 bands): 0.42–0.89 μm | JAXA |
Spot 4 | HRVIR | 1998–2013 | (4 bands): 0.55–1.63 μm | CNES/Spot Image |
NOAA-15-19, MetOp A-C | AVHRR/3 | 1998–present | (6 bands): 0.63–12.0 μm | NOAA/EMSO |
Landsat 7 | ETM+ | 1999–present | (7 bands): 0.49–11.45 μm | NASA/USGS |
Ikonos-2 | OSA | 1999–present | (4 bands): 0.45–0.86 μm | DigitalGlobe |
EO-1 | Hyperion | 2000–2017 | (242 channels): 0.35–2.5 μm | NASA/USGS |
EO-1 | ALI | 2000–2017 | (9 bands): 0.44–2.2 μm | NASA/USGS |
Aqua, Terra | MODIS | 2000–present | (36 bands): 0.412–14.2 μm | NASA |
Terra | MISR | 2000–present | (4 bands) ¥: 0.446–0.867 μm | NASA |
Terra | ASTER | 2000–present | (14 bands): 0.56–11.3 μm | NASA |
QuickBird-2 | BGIS2000 | 2001–2015 | (4 bands): 0.45–0.9 μm | DigitalGlobe |
ADEOS-2 | POLDER | 2002–2003 | (9 bands): 0.44–0.91 μm | CNES |
ADEOS-2 | GLI | 2002–2003 | (36 bands): 0.38–11.95 μm | JAXA |
EnviSat | MERIS | 2002–2012 | (15 bands): 0.39–1.04 μm | ESA |
EnviSat | AATSR | 2002–2012 | (7 bands): 0.55–12.0 μm | ESA |
Spot 5 | HRG/HRS | 2002–2015 | (4 bands): 0.55–1.63 μm | CNES/Spot Image |
ALOS | AVNIR-2 | 2006–2011 | (4 bands): 0.46–0.82 μm | JAXA |
WorldView-1 | WV60 | 2007–present | (1 band): 0.45–0.90 μm | DigitalGlobe |
GeoEye-1 | GIS | 2008–present | (4 bands): 0.45–9.2 μm | DigitalGlobe |
WorldView-2 | WV110 | 2009–present | (8 bands): 0.40–1.04 μm | DigitalGlobe |
Suomi NPP | VIIRS | 2011–present | (22 bands): 0.41–12.01 μm | NASA |
Spot 6 | NAOMI | 2012–present | (4 bands): 0.48–0.82 μm | CNES/Spot Image |
Landsat 8 | OLI | 2013–present | (9 bands): 0.44–2.19 μm | USGS/NASA |
Landsat 8 | TIRS | 2013–present | (2 bands): 10.9, 12 μm | USGS/NASA |
Spot 7 | NAOMI | 2014–present | (4 bands): 0.48–0.82 μm | CNES/Spot Image |
WorldView-3 | WV-3 Imager | 2014–present | (29 bands): 0.40–2.365 μm | DigitalGlobe |
Sentinel-2A/B | MSI | 2015–present | (13 bands): 0.444–2.202 μm | ESA |
GeoEye-2 | SpaceViewTM 110 | 2016–present | (4 bands): 0.45–9.2 μm | DigitalGlobe |
Sentinel-3A/B | OLCI | 2016–present | (21 bands): 0.40–1.02 μm | ESA |
GCOM-C1 | SGLI | 2017–present | (19 bands): 0.38–12.0 μm | JAXA |
Platform * | Instrument Ŧ | Temporal Coverage | Observed Frequency | Agency § |
---|---|---|---|---|
Synthetic Aperture Radar | ||||
Seasat | SAR | 1978 (110 days) | 1.275 GHz (L) | NASA |
ERS-1 | AMI-SAR | 1991–2006 | 5.3 GHz (C) | ESA |
JERS-1 | SAR | 1992–1998 | 1.2 GHz (L) | JAXA |
ERS-2 | AMI-SAR | 1995–2011 | 5.3 GHz (C) | ESA |
RADARSAT-1 | SAR | 1995–2013 | 5.3 GHz (C) | CSA |
EnviSat | ASAR | 2002–2012 | 3.2 (S), 5.3 (C), 13.6 GHz (Ku) | ESA |
ALOS | PALSAR | 2006–2011 | 1.2 GHz (L) | JAXA |
RADARSAT-2 | SAR | 2007–present | 5.3 GHz (C) | CSA |
TerraSAR-X | SAR-X | 2007–present | 9.6 GHz (X) | DLR/EADS |
TanDEM-X | SAR-X | 2010–present | 9.6 GHz (X) | DLR/EADS |
CryoSat-2 | SIRAL | 2010–present | 13.9 GHz (Ku) | ESA |
Sentinel-1A | SAR-C | 2014–present | 5.4 GHz (C) | ESA |
ALOS-2 | PALSAR-2 | 2014–present | 1.2 GHz (L) | JAXA |
Sentinel-1B | SAR-C | 2016–present | 5.4 GHz (C) | ESA |
Scatterometers | ||||
Seasat | SASS | 1978 (110 days) | 14.6 GHz (Ku) | NASA |
ERS-1 | AMI-SCAT | 1991–2006 | 5.3 GHz (C) | ESA |
ERS-2 | AMI-SCAT | 1995–2011 | 5.3 GHz (C) | ESA |
ADEOS | NSCAT | 1996–1997 | 14.0 GHz (Ku) | JAXA |
QuikSCAT | SeaWinds | 1999–2009 | 13.4 GHz (Ku) | NASA |
ADEOS-2 | SeaWinds | 2002–2003 | 13.4 GHz (Ku) | JAXA/NASA |
MetOp A-C | ASCAT | 2006–present | 5.3 GHz (C) | EOMS/ESA |
Platform * | Instrument Ŧ | Temporal Coverage | Observed Frequency | Agency § |
---|---|---|---|---|
Nimbus-5 | ESMR | 1972–1983 | 19 GHz | NASA |
Nimbus-6 | ESMR | 1975–1983 | 37 GHz | NASA |
Seasat | SMMR | 1978 (110 days) | 7, 10, 18, 21, 37 | NASA |
Nimbus-7 | SMMR | 1978–1994 | 7, 10, 19, 37 GHz | NASA/NOAA |
DMSP F08,10-15,18 | SSM/I | 1987–present | 19, 22, 37, 86 GHz | DoD/NOAA |
DMSP F16-19 | SSMIS | 1987–present | 19, 22, 37, 92 GHz | DoD/NOAA |
ERS-1 | ATSR | 1991–2006 | 24, 37 GHz | ESA |
GFO | WVR | 1998–2008 | 22, 37 GHz | DoD/NASA |
ADEOS-2 | AMSR | 2002–2003 | 7, 10, 19, 24, 37, 89A, 89B GHz | JAXA/NASA |
Aqua | AMSR-E | 2002–2011 | 7, 10, 19, 24, 37, 89 GHz | NASA |
ERS-2, EnviSat | MWR | 2002–2012 | 24, 37 GHz | ESA |
GCOM-W1 | AMSR-2 | 2012–present | 7 (dual), 10, 19, 37, 89 GHz | NASA/JAXA |
Sentinel 3A/B | MWR | 2016–present | 24, 37 GHz | ESA |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cooper, M.G.; Smith, L.C. Satellite Remote Sensing of the Greenland Ice Sheet Ablation Zone: A Review. Remote Sens. 2019, 11, 2405. https://doi.org/10.3390/rs11202405
Cooper MG, Smith LC. Satellite Remote Sensing of the Greenland Ice Sheet Ablation Zone: A Review. Remote Sensing. 2019; 11(20):2405. https://doi.org/10.3390/rs11202405
Chicago/Turabian StyleCooper, Matthew G., and Laurence C. Smith. 2019. "Satellite Remote Sensing of the Greenland Ice Sheet Ablation Zone: A Review" Remote Sensing 11, no. 20: 2405. https://doi.org/10.3390/rs11202405
APA StyleCooper, M. G., & Smith, L. C. (2019). Satellite Remote Sensing of the Greenland Ice Sheet Ablation Zone: A Review. Remote Sensing, 11(20), 2405. https://doi.org/10.3390/rs11202405