Statistical Characteristics of Cyclonic Warm-Core Eddies and Anticyclonic Cold-Core Eddies in the North Pacific Based on Remote Sensing Data
Abstract
1. Introduction
2. Data and Methods
2.1. Data
2.2. Methods
2.2.1. Eddy Detection Method
2.2.2. Definition of Cyclonic Warm-Core and Anticyclonic Cold-Core Eddies
3. Results
3.1. Cyclonic Warm-Core and Anticyclonic Cold-Core Eddy Cases
3.2. Spatial Distribution Characteristics
3.3. General Characteristic of Cyclonic Warm-Core and Anticyclonic Cold-Core Eddy
3.3.1. Cyclonic Warm-Core and Anticyclonic Cold-Core Eddy Generation Time
3.3.2. Cyclonic Warm-Core and Anticyclonic Cold-Core Eddy Survival Time
3.4. Inter-Annual and Seasonal Variation
3.5. The Regional Dependence
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A: Subregions in the North Pacific
Appendix B: Eddy Detection Scheme
References
- Chelton, D.B.; Schlax, M.G.; Samelson, R.M.; Szoeke, R.A. Global observations of large oceanic eddies. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Chelton, D.B.; Schlax, M.G.; Samelson, R.M. Global observations of non-linear mesoscale eddies. Prog. Oceanogr. 2011, 91, 167–216. [Google Scholar] [CrossRef]
- Morrow, R.; LeTraon, P.Y. Recent advances in observing mesoscale ocean dynamics with satellite altimetry. Adv. Space Res. 2012, 50, 1062–1076. [Google Scholar] [CrossRef]
- Frenger, I.; Münnich, M.; Gruber, N.; Knutti, R. Southern Ocean eddy phenomenology. J. Geophys. Res. 2016, 120, 7413–7449. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, W.; Qiu, B. Oceanic mass transport by mesoscale eddies. Science 2014, 345, 322–324. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Yu, W.; Yuan, Y.; Zhao, X.; Wang, F.; Chen, G.; Liu, L.; Duan, Y. Characteristics, vertical structures, and heat/salt transports of mesoscale eddies in the southeastern tropical Indian Ocean. J. Geophys. Res. 2015, 120, 6733–6750. [Google Scholar] [CrossRef]
- Pegliasco, C.; Chaigneau, A.; Morrow, R. Main eddy vertical structures observed in the four major Eastern Boundary Upwelling Systems. J. Geophys. Res. 2015, 120, 6008–6033. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Y.; Wang, W. Three-compartment structure of subsurface-intensified mesoscale eddies in the ocean. J. Geophys. Res. 2017, 122, 1653–1664. [Google Scholar] [CrossRef]
- He, Q.; Zhan, H.; Cai, S.; He, Y.; Huang, G.; Zhan, W. A new assessment of mesoscale eddies in the South China Sea: Surface features, three-dimensional structures, and thermohaline transports. J. Geophys. Res. 2018, 123, 4906–4929. [Google Scholar] [CrossRef]
- Qiu, B.; Chen, S. Eddy-induced heat transport in the subtropical north pacific from Argo, TMI and altimetry measurements. J. Phys. Oceanogr. 2004, 68, 458–473. [Google Scholar] [CrossRef]
- Meijers, A.J.; Bindoff, N.L.; Roberts, J.L. On the total, mean, and eddy heat and freshwater transports in the southern hemisphere of a global ocean model. J. Phys. Oceanogr. 2007, 37, 277–295. [Google Scholar] [CrossRef]
- Chen, G.; Gan, J.; Xie, Q.; Chu, X.; Wang, D.; Hou, Y. Eddy heat and salt transports in the South China Sea and their seasonal modulations. J. Geophys. Res. 2012, 117, 78–91. [Google Scholar] [CrossRef]
- Treguier, A.M.; Deshayes, J.; Lique, C.; Dussin, R.; Molines, J.M. Eddy contributions to the meridional transport of salt in the North Atlantic. J. Geophys. Res. 2012, 117. [Google Scholar] [CrossRef]
- Wang, X.; Wu, L.; Qi, Y.; Han, G. Heat, salt and volume transports by eddies in the vicinity of the Luzon Strait. Deep Sea Res. 2012, 61, 21–33. [Google Scholar] [CrossRef]
- Dong, C.; Mcwilliams, J.C.; Liu, Y.; Chen, D. Global heat and salt transports by eddy movement. Nat. Commun. 2014, 5, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Li, P.; Xie, S.P.; Liu, Q.; Liu, C.; Gao, W. Observing mesoscale eddy effects on mode-water subduction and transport in the North Pacific. Nat. Commun. 2015, 7, 10505. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Jing, Z.; Chang, P.; Liu, X.; Montuoro, R.; Small, R.J.; Bryan, F.O.; Greatbatch, R.J.; Brandt, P.; Wu, D.; et al. Western boundary currents regulated by interaction between ocean eddies and the atmosphere. Nature 2016, 535, 533–537. [Google Scholar] [CrossRef]
- Kamidaira, Y.; Uchiyama, Y.; Mitarai, S. Eddy-induced transport of the Kuroshio warm water around the Ryukyu Islands in the East China Sea. Cont. Shelf Res. 2017, 143, 206–218. [Google Scholar] [CrossRef]
- Dong, D.; Brandt, P.; Chang, P.; Schütte, F.; Yang, X.; Yan, J.; Zeng, J. Mesoscale eddies in the Northwestern Pacific Ocean: Three-dimensional eddy structures and heat/salt transports. J. Geophys. Res. 2017, 122, 9795–9813. [Google Scholar] [CrossRef]
- Nurser, A.; Zhang, J. Eddy-induced mixed layer shallowing and mixed layer/thermocline exchange. J. Geophys. Res. 2000, 105, 21851–21868. [Google Scholar] [CrossRef]
- Martin, A.P.; Richards, K.J. Mechanisms for vertical nutrient transport within a North Atlantic mesoscale eddy. Deep Sea Res. 2001, 48, 757–773. [Google Scholar] [CrossRef]
- Kahru, M.; Mitchell, B.G.; Gille, S.T.; Hewes, C.D.; Holm Hansen, O. Eddies enhance biological production in the Weddell-Scotia Confluence of the Southern Ocean. Geophys. Res. Lett. 2007, 34, 116–130. [Google Scholar] [CrossRef]
- Klein, P.; Lapeyre, G. The oceanic vertical pump induced by mesoscale and submesoscale turbulence. Ann. Rev. Mar. Sci. 2009, 1, 351–375. [Google Scholar] [CrossRef] [PubMed]
- Kouketsu, S.; Tomita, H.; Oka, E.; Hosoda, S.; Kobayashi, T.; Sato, K. The role of mesoscale eddies in mixed layer deepening and mode water formation in the western North Pacific. J. Oceanogr. 2012, 68, 63–77. [Google Scholar] [CrossRef]
- Gaube, P.; Chelton, D.B.; Samelson, R.M.; Schlax, M.G.; O’Neill, L.W. Satellite observations of mesoscale eddy-induced Ekman pumping. J. Phys. Oceanogr. 2015, 45, 104–132. [Google Scholar] [CrossRef]
- Zhang, W.; Xue, H.; Chai, F.; Ni, Q. Dynamical processes within an anticyclonic eddy revealed from Argo floats. Geophys. Res. Lett. 2015, 42, 2342–2350. [Google Scholar] [CrossRef]
- Luneva, M.V.; Clayson, C.A.; Dubovikov, M.S. Effects of mesoscale eddies in the active mixed layer: Test of the parametrisation in eddy resolving simulations. Geophys. Astrophys. Fluid Dyn. 2015, 109, 1–30. [Google Scholar] [CrossRef]
- Bracco, A.; Clayton, S.; Pasquero, C. Horizontal advection, diffusion, and plankton spectra at the sea surface. J. Geophys. Res. 2009, 114, C02001. [Google Scholar] [CrossRef]
- Gruber, N.; Lachkar, Z.; Frenzel, H.; Marchesiello, P.; Münnich, M.; McWilliams, J.C.; Nagai, T.; Plattner, G. Eddy-induced reduction of biological production in eastern boundary upwelling systems. Nat. Geosci. 2011, 4, 787–792. [Google Scholar] [CrossRef]
- Chelton, D.B.; Peter, G.; Schlax, M.G.; Early, J.J.; Samelson, R.M. The influence of nonlinear mesoscale eddies on near-surface oceanic chlorophyll. Science 2011, 334, 328–332. [Google Scholar] [CrossRef]
- Mahadevan, A.; Asaro, E.D.; Lee, C.; Perry, M.J. Eddy-driven stratification initiates North Atlantic spring phytoplankton blooms. Science 2012, 337, 54–58. [Google Scholar] [CrossRef]
- Gaube, P.; Chelton, D.B.; Strutton, P.G.; Behrenfeld, M.J. Satellite observations of chlorophyll, phytoplankton biomass, and Ekman pumping in nonlinear mesoscale eddies. J. Geophys. Res. 2013, 118, 6349–6370. [Google Scholar] [CrossRef]
- Dufour, C.O.; Griffies, S.M.; de Souza, G.F.; Frenger, I.; Morrison, A.K.; Palter, J.B.; Sarmiento, J.L.; Galbraith, E.D.; Dunne, J.P.; Anderson, W.G. Role of mesoscale eddies in cross-frontal transport of heat and biogeochemical tracers in the Southern Ocean. J. Phys. Oceanogr. 2015, 45, 3057–3081. [Google Scholar] [CrossRef]
- Mahadevan, A. The impact of submesoscale physical on primary productivity of plankton. Ann. Rev. Mar. Sci. 2016, 8, 161–184. [Google Scholar] [CrossRef] [PubMed]
- McGillicuddy, D.J. Mechanisms of physical-biological-biogeochemical interaction at the oceanic mesoscale. Ann. Rev. Mar. Sci. 2016, 8, 125–159. [Google Scholar] [CrossRef] [PubMed]
- Brannigan, L. Intense submesoscale upwelling in anticyclonic eddies. Geophys. Res. Lett. 2016, 43, 3360–3369. [Google Scholar] [CrossRef]
- Frenger, I.; Münnich, M.; Gruber, N. Imprint of Southern Ocean eddies on chlorophyll. Biogeosciences 2018, 15, 4781–4798. [Google Scholar] [CrossRef]
- Lu, J.; Speer, K. Topography, jets, and eddy mixing in the Southern Ocean. J. Mar. Res. 2010, 68, 479–502. [Google Scholar] [CrossRef]
- Beron-Vera, F.J.; Olascoaga, M.J.; Goni, G.J. Surface ocean mixing inferred from different multisatellite altimetry measurements. J. Phys. Oceanogr. 2010, 40, 2466–2480. [Google Scholar] [CrossRef]
- Peterson, T.D.; Crawford, D.W.; Harrison, P.J. Mixing and biological production at eddy margins in the eastern Gulf of Alaska. Deep Sea Res. 2011, 58, 377–389. [Google Scholar] [CrossRef]
- Brearley, J.A.; Sheen, K.L.; Garabato, A.C.N.; Smeed, D.A.; Waterman, S. Eddy-induced modulation of turbulent mixing over rough topography in the Southern Ocean. J. Phys. Oceanogr. 2013, 43, 2288–2308. [Google Scholar] [CrossRef]
- Stanley, G.J.; Saenko, O.A. Bottom-enhanced diapycnal mixing driven by mesoscale eddies: Sensitivity to wind energy supply. J. Phys. Oceanogr. 2014, 44, 68–85. [Google Scholar] [CrossRef]
- Sheen, K.L.; Garabato, A.C.N.; Brearley, J.A.; Meredith, M.P.; Polzin, K.L.; Smeed, D.A.; Forryan, A.; King, B.A.; Sallée, J.B.; Laurent, L.S. Eddy-induced variability in Southern Ocean abyssal mixing on climatic timescales. Nat. Geosci. 2014, 7, 577–582. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Z.; Zhao, Y.; Li, J.; Liang, X. Effect of surface mesoscale eddies on deep-sea currents and mixing in the northeastern South China Sea. Deep Sea Res. 2015, 122, 6–14. [Google Scholar] [CrossRef]
- Lu, J.; Wang, F.; Liu, H.; Lin, P. Stationary mesoscale eddies, up-gradient eddy fluxes and the anisotropy of eddy diffusivity. Geophys. Res. Lett. 2016, 43, 743–751. [Google Scholar] [CrossRef]
- Liu, Y.; Dong, C.; Liu, X.; Dong, J. Antisymmetry of oceanic eddies across the Kuroshio over a shelfbreak. Sci. Rep. 2017, 7, 6761. [Google Scholar] [CrossRef]
- Yang, Q.; Zhao, W.; Liang, X.; Dong, J.; Tian, J. Elevated mixing in the periphery of mesoscale eddies in the South China Sea. J. Phys. Oceanogr. 2017, 47, 895–907. [Google Scholar] [CrossRef]
- Wunsch, C.; Ferrari, R. Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech. 2004, 36, 281–314. [Google Scholar] [CrossRef]
- Chelton, D.B.; Xie, S.P. Coupled ocean-atmosphere interaction at oceanic mesoscales. Oceanogr. Mag. 2010, 23, 52–69. [Google Scholar] [CrossRef]
- Cardona, Y.; Bracco, A. Enhanced vertical mixing within mesoscale eddies due to high frequency winds in the South China Sea. Ocean Model. 2012, 42, 1–15. [Google Scholar] [CrossRef]
- Chelton, D.B. Ocean–atmosphere coupling: Mesoscale eddy effects. Nat. Geosci. 2013, 6, 594–595. [Google Scholar] [CrossRef]
- Frenger, I.; Gruber, N.; Knutti, R.; Münnich, M. Imprint of southern ocean eddies on winds clouds and rainfall. Nat. Geosci. 2013, 6, 608–612. [Google Scholar] [CrossRef]
- Ma, J.; Xu, H.; Dong, C.; Lin, P.; Liu, Y. Atmospheric responses to oceanic eddies in the Kuroshio Extension based on composite analyses. J. Geophys. Res. 2015, 120, 6313–6330. [Google Scholar] [CrossRef]
- McGillicuddy Jr, D.J. Formation of intrathermocline lenses by eddy–wind interaction. J. Phys. Oceanogr. 2015, 45, 606–612. [Google Scholar] [CrossRef]
- Yasuda, I.; Ito, S.I.; Shimizu, Y.; Ichikawa, K.; Ueda, K.I.; Honma, T.; Uchiyama, M.; Watanabe, K.; Sunou, N.; Tanaka, K. Cold-core anticyclonic eddies south of the Bussol’ Strait in the northwestern subarctic Pacific. J. Phys. Oceanogr. 1999, 30, 1137–1157. [Google Scholar] [CrossRef]
- Rogachev, K.A. Recent variability in the Pacific western subarctic boundary currents and Sea of Okhotsk. Prog. Oceanogr. 2000, 47, 299–336. [Google Scholar] [CrossRef]
- Mathis, J.T.; Pickart, R.S.; Hansell, D.A.; Kadko, D.; Bates, N.R. Eddy transport of organic carbon and nutrients from the Chukchi shelf: Impact on the upper halocline of the western Arctic Ocean. J. Geophys. Res. 2007, 112, C05011. [Google Scholar] [CrossRef]
- Itoh, S.; Yasuda, I. Water mass structure of warm and cold anticyclonic eddies in the western boundary region of the Subarctic North Pacific. J. Phys. Oceanogr. 2010, 40, 2624–2642. [Google Scholar] [CrossRef]
- Itoh, S.; Yasuda, I. Characteristics of mesoscale eddies in the Kuroshio—Oyashio Extension region detected from the distribution of the sea surface height anomaly. J. Phys. Oceanogr. 2010, 40, 1018–1034. [Google Scholar] [CrossRef]
- Shimizu, Y.; Yasuda, I.; Ito, S.I. Distribution and circulation of the coastal Oyashio intrusion. J. Phys. Oceanogr. 2001, 31, 1561–1578. [Google Scholar] [CrossRef]
- Ji, J.; Dong, C.; Zhang, B.; Liu, Y. Oceanic eddy statistical comparison using multiple observational data in the Kuroshio Extension Region. Acta Oceanol. Sin. 2016, 36, 1–7. [Google Scholar] [CrossRef]
- Martin, A.P.; Wade, I.P.; Richards, K.J.; Heywood, K.J. The PRIME eddy. J. Mar. Res. 1998, 56, 439–462. [Google Scholar] [CrossRef]
- Rabinovich, A.B.; Thomson, R.E.; Bograd, S.J. Drifter observations of anticyclonic eddies near Bussol’ Strait, the Kuril Islands. J. Oceanogr. 2002, 58, 661–671. [Google Scholar] [CrossRef]
- Pickart, R.S.; Weingartner, T.J.; Pratt, L.J.; Zimmermann, S.; Torres, D.J. Flow of winter-transformed Pacific water into the western Arctic. Deep Sea Res. 2005, 52, 3175–3198. [Google Scholar] [CrossRef]
- Spall, M.A.; Pickart, R.S.; Fratantoni, P.S.; Plueddemann, A.J. Western Arctic shelfbreak eddies: Formation and transport. J. Phys. Oceanogr. 2008, 38, 1644–1668. [Google Scholar] [CrossRef]
- Kadko, D.; Pickart, R.S.; Mathis, J. Age characteristics of a shelf-break eddy in the western Arctic and implications for shelf-basin exchange. J. Geophys. Res. 2008, 113, C02018. [Google Scholar] [CrossRef]
- Qiu, B. Kuroshio Extension variability and forcing of the Pacific Decadal Oscillations: Responses and potential feedback. J. Phys. Oceanogr. 2003, 33, 2465–2482. [Google Scholar] [CrossRef]
- Liang, J.H.; McWilliams, J.C.; Kurian, J.; Colas, F.; Wang, P.; Uchiyama, Y. Mesoscale variability in the northeastern tropical Pacific: Forcing mechanisms and eddy properties. J. Geophys. Res. 2012, 117, C07003. [Google Scholar] [CrossRef]
- Cheng, Y.H.; Ho, C.R.; Zheng, Q.; Kuo, N.J. Statistical characteristics of mesoscale eddies in the North Pacific derived from satellite altimetry. Remote Sens. 2014, 6, 5164–5183. [Google Scholar] [CrossRef]
- Pujol, M.I.; Faugère, Y.; Taburet, G.; Dupuy, S.; Pelloquin, C.; Ablain, M.; Picot, N. DUACS DT2014: The new multi-mission altimeter data set reprocessed over 20 years. Ocean Sci. 2016, 12, 1067–1090. [Google Scholar] [CrossRef]
- Reynolds, R.W.; Smith, T.M.; Liu, C.; Chelton, D.B.; Casey, K.S.; Michael, G. Daily high-resolution-blended analyses for sea surface temperature. J. Clim. 2007, 20, 5473–5496. [Google Scholar] [CrossRef]
- Nencioli, F.; Dong, C.; Dickey, T.; Washburn, L.; Mcwilliams, J.C. A vector geometry-based eddy detection algorithm and its application to a high-resolution numerical model product and high-frequency radar surface velocities in the Southern California Bight. J. Atmos. Ocean. Technol. 2010, 27, 564–579. [Google Scholar] [CrossRef]
- Okubo, A. Horizontal dispersion of floatable particles in vicinity of velocity singularities such as convergences. Deep Sea Res. Oceanogr. Abstr. 1970, 17, 445–454. [Google Scholar] [CrossRef]
- Weiss, J. The dynamics of enstrophy transfer in two-dimensional hydrodynamics. Phys. D 1991, 48, 273–294. [Google Scholar] [CrossRef]
- Sadarjoen, I.A.; Post, F.H. Detection, quantification, and tracking of vortices using streamline geometry. Comput. Graph. 2000, 24, 333–341. [Google Scholar] [CrossRef]
- Liu, Y.; Dong, C.; Guan, Y.; Chen, D.; Mcwilliams, J.C.; Nencioli, F. Eddy analysis in the subtropical zonal band of the North Pacific Ocean. Deep Sea Res. 2012, 68, 54–67. [Google Scholar] [CrossRef]
- Couvelard, X.; Caldeira, R.M.A.; Araújo, I.B.; Tomé, R. Wind mediated vorticity-generation and eddy-confinement, leeward of the Madeira Island: 2008 numerical case study. Dyn. Atmos. Oceans 2012, 58, 128–149. [Google Scholar] [CrossRef]
- Peliz, A.; Boutov, D.; Teles-Machado, A. The Alboran Sea mesoscale in a long term high resolution simulation: Statistical analysis. Ocean Model. 2013, 72, 32–52. [Google Scholar] [CrossRef]
- Lin, X.; Dong, C.; Chen, D.; Liu, Y.; Yang, J.; Zou, B.; Guan, Y. Three-dimensional properties of mesoscale eddies in the South China Sea based on eddy-resolving model output. Deep Sea Res. 2015, 99, 46–64. [Google Scholar] [CrossRef]
- Sun, W.; Dong, C.; Wang, R.; Liu, Y.; Yu, K. Vertical structure anomalies of oceanic eddies in the Kuroshio Extension region. J. Geophys. Res. 2017, 122, 1476–1496. [Google Scholar] [CrossRef]
- Sun, W.; Dong, C.; Tan, W.; Liu, Y.; He, Y.; Wang, J. Vertical structure anomalies of oceanic eddies and eddy-induced transports in the South China Sea. Remote Sens. 2018, 10, 795. [Google Scholar] [CrossRef]
- Doglioli, A.M.; Blanke, B.; Speich, S.; Lapeyre, G. Tracking coherent structures in a regional ocean model with wavelet analysis: Application to Cape Basin eddies. J. Geophys. Res. 2007, 112, C05043. [Google Scholar] [CrossRef]
- Chaigneau, A.; Gizolme, A.; Grados, C. Mesoscale eddies off Peru in altimeter records: Identification algorithms and eddy spatio-temporal patterns. Prog. Oceanogr. 2008, 79, 106–119. [Google Scholar] [CrossRef]
Variable Season | Polarity | Number (Per Season) | |
---|---|---|---|
Spring (March, April, May) | CWE | 2544.2 ± 329.5 (1919, 3030) | 7.45 ± 0.97 (5.78, 8.92) |
ACE | 3672.0 ± 311.6 (3095, 4573) | 10.29 ± 0.87 (9.09, 12.43) | |
Summer (June, July, August) | CWE | 3818.6 ± 357.8 (3263, 4404) | 11.43 ± 1.11 (9.77, 13.07) |
ACE | 5029.4 ± 480.1 (4157, 5886) | 14.37 ± 1.23 (12.34, 16.83) | |
Autumn (September, October, November) | CWE | 2678.2 ± 365.8 (2048, 3185) | 8.87 ± 1.15 (7.05, 10.69) |
ACE | 3867.2 ± 349.5 (3063, 4702) | 12.47 ± 1.17 (9.67, 15.48) | |
Winter (December, January, February) | CWE | 1896.6 ± 311.6 (1158, 2391) | 6.28 ± 0.87 (4.53, 7.74) |
ACE | 2231.4 ± 275.9 (1583, 2712) | 7.39 ± 0.80 (6.02, 8.66) |
Character Region # | Type | Radius (km) | (°C) | Amplitude (cm) | EKE (cm2 s−2) |
---|---|---|---|---|---|
OC | CWE | 55.5 ± 22.9 (25.0, 120.2) | 0.18 ± 0.07 (0.10, 0.37) | 6.6 ± 3.7 (0.3, 16.9) | 38.6 ± 25.5 (0.8, 107.2) |
ACE | 45.4 ± 14.9 (25.0, 84.8) | −0.18 ± 0.07 (−0.10, −0.37) | 17.5 ± 9.8 (0.2, 43.3) | 99.2 ± 63.8 (25.9, 276.3) | |
AC | CWE | 56.6 ± 23.5 (25.0, 122.7) | 0.16 ± 0.05 (0.10, 0.31) | 4.7 ± 2.6 (0.2, 11.8) | 13.1 ± 7.6 (3.9, 33.7) |
ACE | 48.5 ± 16.4 (25.0, 90.7) | −0.17 ± 0.06 (−0.10, −0.34) | 14.3 ± 9.5 (0.2, 40.9) | 59.3 ± 53.6 (10.1, 199.4) | |
CC | CWE | 69.2 ± 28.2 (25.0, 149.5) | 0.17 ± 0.06 (0.10, 0.34) | 6.1 ± 3.5 (0.2, 16.3) | 65.9 ± 45.2 (1.4, 188.8) |
ACE | 72.3 ± 29.1 (25.0, 158.8) | −0.17 ± 0.06 (−0.10, −0.33) | 10.3 ± 5.2 (0.2, 24.6) | 51.8 ± 32.3 (1.5, 141.5) | |
KE | CWE | 72.5 ± 30.7 (25.0, 162.8) | 0.21 ± 0.09 (0.10, 0.44) | 20.4 ± 12.8 (0.4, 54.7) | 334.1 ± 167.8 (140.5, 791.3) |
ACE | 72.3 ± 27.9 (25.0, 151.2) | −0.21 ± 0.09 (−0.10, −0.45) | 30.1 ± 17.2 (0.3, 77.6) | 248.2 ± 124.9 (94.7, 585.3) | |
STCC | CWE | 84.5 ± 34.7 (25.0, 183.9) | 0.16 ± 0.05 (0.10, 0.29) | 11.8 ± 6.6 (0.2, 30.4) | 137.4 ± 80.6 (8.4, 351.8) |
ACE | 80.1 ± 29.6 (25.0, 163.9) | −0.16 ± 0.05 (−0.10, −0.28) | 17.3 ± 8.1 (0.3, 39.8) | 161.6 ± 92.8 (2.9, 416.2) | |
NETP | CWE | 82.5 ± 33.5 (25.0, 180.5) | 0.17 ± 0.06 (0.10, 0.32) | 8.8 ± 5.1 (0.2, 23.3) | 142.5 ± 92.8 (1.8, 396.7) |
ACE | 87.3 ± 33.6 (25.0, 184.1) | −0.17 ± 0.05 (−0.10, −0.32) | 17.7 ± 10.7 (0.2, 46.9) | 230.5 ± 168.3 (42.0, 685.9) | |
NEC | CWE | 88.2 ± 33.7 (25.0, 186.2) | 0.15 ± 0.04 (0.10, 0.23) | 8.4 ± 5.4 (0.2, 23.5) | 106.5 ± 65.7 (11.0, 285.5) |
ACE | 87.9 ± 33.8 (25.1, 186.9) | −0.16 ± 0.05 (−0.10, −0.28) | 11.8 ± 6.1 (0.3, 29.1) | 78.6 ± 40.8 (26.0, 188.2) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, W.; Dong, C.; Tan, W.; He, Y. Statistical Characteristics of Cyclonic Warm-Core Eddies and Anticyclonic Cold-Core Eddies in the North Pacific Based on Remote Sensing Data. Remote Sens. 2019, 11, 208. https://doi.org/10.3390/rs11020208
Sun W, Dong C, Tan W, He Y. Statistical Characteristics of Cyclonic Warm-Core Eddies and Anticyclonic Cold-Core Eddies in the North Pacific Based on Remote Sensing Data. Remote Sensing. 2019; 11(2):208. https://doi.org/10.3390/rs11020208
Chicago/Turabian StyleSun, Wenjin, Changming Dong, Wei Tan, and Yijun He. 2019. "Statistical Characteristics of Cyclonic Warm-Core Eddies and Anticyclonic Cold-Core Eddies in the North Pacific Based on Remote Sensing Data" Remote Sensing 11, no. 2: 208. https://doi.org/10.3390/rs11020208
APA StyleSun, W., Dong, C., Tan, W., & He, Y. (2019). Statistical Characteristics of Cyclonic Warm-Core Eddies and Anticyclonic Cold-Core Eddies in the North Pacific Based on Remote Sensing Data. Remote Sensing, 11(2), 208. https://doi.org/10.3390/rs11020208