Large-Scale Mode Impacts on the Sea Level over the Red Sea and Gulf of Aden
Abstract
1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Data
2.3. Methods
3. Results
3.1. The SLA Trend and the Dominant Modes
3.2. Link between the SLA and Large-Scale Modes
3.3. The Physical Mechanisms
3.3.1. The Relation with SLA, Wind and 20 °C isotherm in the IO
3.3.2. The Relationship with Global Temperature
4. Discussion
5. Conclusions
- the SLA reflects the annual and semi-annual cycle, which agrees with previous studies;
- the first leading mode throughout the seasons explained, on average, about 65% of the total variance, while their PCs clearly capture the strong La Niña event (1999–2001) during all seasons; and,
- the SLA showed a strong positive relation with ENSO during all seasons and a strong negative relation with EAWR during winter and spring.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Church, J.A.; White, N.J. A 20th century acceleration in global sea-level rise. Geophys. Res. Lett. 2006, 33, 33. [Google Scholar] [CrossRef]
- Church, J.A.; White, N.J. Sea-level rise from the late 19th to the early 21st century. Surv. Geophys. 2011, 32, 585–602. [Google Scholar] [CrossRef]
- Church, J.A.; Clark, P.U.; Cazenave, A.; Gregory, J.M.; Jevrejeva, S.; Levermann, A.; Merrifield, M.A.; Milne, G.A.; Nerem, R.S.; Nunn, P.D.; et al. Sea level change. Climate change 2013: The physical science basis. In Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 1137–1216. [Google Scholar]
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P.; et al. Climate change 2014: Synthesis report. In Contribution of Working Groups I, Ii and Iii to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Katsman, C.A.; Hazeleger, W.; Drijfhout, S.S.; van Oldenborgh, G.J.; Burgers, G. Climate scenarios of sea level rise for the northeast Atlantic Ocean: A study including the effects of ocean dynamics and gravity changes induced by ice melt. Clim. Chang. 2008, 91, 351–374. [Google Scholar] [CrossRef]
- Stammer, D.; Cazenave, A.; Ponte, R.M.; Tamisiea, M.E. Causes for contemporary regional sea level changes. Annu. Rev. Mar. Sci. 2013, 5, 21–46. [Google Scholar] [CrossRef]
- Carson, M.; Köhl, A.; Stammer, D.; Slangen, A.B.A.; Katsman, C.A.; Van de Wal, R.S.W.; Church, J.; White, N. Coastal sea level changes, observed and projected during the 20th and 21st century. Clim. Chang. 2016, 134, 269–281. [Google Scholar] [CrossRef]
- Cui, M.; STORCH, H.V.; Zorita, E. Coastal sea level and the large-scale climate state A downscaling exercise for the Japanese Islands. Tellus A 1995, 47, 132–144. [Google Scholar] [CrossRef][Green Version]
- Nerem, R.S.; Chambers, D.P.; Leuliette, E.W.; Mitchum, G.T.; Giese, B.S. Variations in global mean sea level associated with the 1997–1998 ENSO event: Implications for measuring long term sea level change. Geophys. Res. Lett. 1999, 26, 3005–3008. [Google Scholar] [CrossRef]
- Antonov, J.I.; Levitus, S.; Boyer, T.P. Thermosteric sea level rise. Geophys. Res. Lett. 2005, 32, 1955–2003. [Google Scholar]
- Landerer, F.W.; Jungclaus, J.H.; Marotzke, J. El Niño–Southern Oscillation signals in sea level, surface mass redistribution, and degree-two geoid coefficients. J. Geophys. Res. Space Phys. 2008, 113. [Google Scholar] [CrossRef]
- Moon, J.H.; Song, Y.T.; Lee, H. PDO and ENSO modulations intensified decadal sea level variability in the tropical Pacific. J. Geophys. Res. Ocean. 2015, 120, 8229–8237. [Google Scholar] [CrossRef]
- Hamlington, B.D.; Cheon, S.H.; Thompson, P.R.; Merrifield, M.A.; Nerem, R.S.; Leben, R.R.; Kim, K.-Y.; Kim, K. An ongoing shift in Pacific Ocean sea level. J. Geophys. Res. Ocean. 2016, 121, 5084–5097. [Google Scholar] [CrossRef]
- Piecuch, C.G.; Quinn, K.J. El Niño, La Niña, and the global sea level budget. Ocean. Sci. 2016, 12, 1165–1177. [Google Scholar] [CrossRef]
- Nidheesh, A.G.; Lengaigne, M.; Vialard, J.; Izumo, T.; Unnikrishnan, A.S.; Meyssignac, B.; Hamlington, B.; Montegut, C.D.B.; Montegut, C.B. Robustness of observation-based decadal sea level variability in the Indo-Pacific Ocean. Geophys. Res. Lett. 2017, 44, 7391–7400. [Google Scholar] [CrossRef]
- Arpe, K.; Bengtsson, L.; Golitsyn, G.S.; Mokhov, I.I.; Semenov, V.A.; Sporyshev, P.V. Connection between Caspian Sea level variability and ENSO. Geophys. Res. Lett. 2000, 27, 2693–2696. [Google Scholar] [CrossRef]
- Stanev, E.V.; Peneva, E.L. Regional sea level response to global climatic change: Black Sea examples. Glob. Planet. Chang. 2001, 32, 33–47. [Google Scholar] [CrossRef]
- Zanchettin, D.; Rubino, A.; Traverso, P.; Tomasino, M. Teleconnections force interannual-to-decadal tidal variability in the Lagoon of Venice (northern Adriatic). J. Geophys. Res. Space Phys. 2009, 114. [Google Scholar] [CrossRef]
- Calafat, F.M.; Chambers, D.P.; Tsimplis, M.N. Mechanisms of decadal sea level variability in the eastern North Atlantic and the Mediterranean Sea. J. Geophys. Res. Space Phys. 2012, 117. [Google Scholar] [CrossRef]
- Tsimplis, M.N.; Calafat, F.M.; Marcos, M.; Jorda, G.; Gomis, D.; Fenoglio-Marc, L.; Struglia, M.V.; Josey, S.A.; Chambers, D. The effect of the NAO on sea level and on mass changes in the Mediterranean Sea. J. Geophys. Res. Space Phys. 2013, 118, 944–952. [Google Scholar] [CrossRef]
- Patzert, W.C. Wind-induced reversal in Red Sea circulation. Deep. Sea Res. Oceanogr. Abstr. 1974, 21, 109–121. [Google Scholar] [CrossRef]
- Sultan, S.A.R.; Ahmad, F.; El-Hassan, A. Seasonal variations of the sea level in the central part of the Red Sea. Estuar. Coast. Shelf Sci. 1995, 40, 1–8. [Google Scholar] [CrossRef]
- Sultan, S.A.R.; Ahmad, F.; Nassar, D. Relative contribution of external sources of mean sea-level variations at Port Sudan, Red Sea. Estuar. Coast. Shelf Sci. 1996, 42, 19–30. [Google Scholar] [CrossRef]
- Sofianos, S.S.; Johns, W.E. Wind induced sea level variability in the Red Sea. Geophys. Res. Lett. 2001, 28, 3175–3178. [Google Scholar] [CrossRef]
- Sultan, S.A.R.; Elghribi, N.M. Sea Level Changes in the Central Part of the Red Sea; CSIR: New Delhi, India, 2003. [Google Scholar]
- Manasrah, R.; Hasanean, H.M.; Al-Rousan, S. Spatial and seasonal variations of sea level in the Red Sea, 1958–2001. Ocean Sci. J. 2009, 44, 145–159. [Google Scholar] [CrossRef]
- Alawad, K.; Alsaafani, M.A.; Al-Subhi, A.M.; Alraddadi, T.M. Signatures of Tropical Climate Modes on the Red Sea and Gulf of Aden Sea Level; NISCAIR-CSIR: New Delhi, India, 2017. [Google Scholar]
- Al-Rousan, S.; Al-Moghrabi, S.; Pätzold, J.; Wefer, G. Environmental and biological effects on the stable oxygen isotope records of corals in the northern Gulf of Aqaba, Red Sea. Mari. Ecol. Prog. Ser. 2002, 239, 301–310. [Google Scholar] [CrossRef]
- Al-Rousan, S.; Al-Moghrabi, S.; Pätzold, J.; Wefer, G. Stable oxygen isotopes in Porites corals monitor weekly temperature variations in the northern Gulf of Aqaba, Red Sea. Coral Reefs 2003, 22, 346–356. [Google Scholar] [CrossRef]
- Arz, H.W.; Lamy, F.; Pätzold, J.; Müller, P.J.; Prins, M. Mediterranean moisture source for an Early-Holocene humid period in the northern Red Sea. Science 2003, 300, 118–121. [Google Scholar] [CrossRef] [PubMed]
- Al-Rousan, S.; Felis, T.; Manasrah, R.; Al-Horani, F. Seasonal variations in the stable oxygen isotopic composition in Porites corals from the northern Gulf of Aqaba, Red Sea. Geochem. J. 2007, 41, 333–340. [Google Scholar] [CrossRef]
- Felis, T.; Pätzold, J.; Loya, Y.; Fine, M.; Nawar, A.H.; Wefer, G. A coral oxygen isotope record from the northern Red Sea documenting NAO, ENSO, and North Pacific teleconnections on Middle East climate variability since the year 1750. Paleoceanogr. Paleoclimatology 2000, 15, 679–694. [Google Scholar] [CrossRef]
- Rimbu, N.; Lohmann, G.; Felis, T.; Pätzold, J. Arctic Oscillation signature in a Red Sea coral. Geophys. Res. Lett. 2001, 28, 2959–2962. [Google Scholar] [CrossRef]
- Ionita, M.; Felis, T.; Lohmann, G.; Rimbu, N.; Pätzold, J. Distinct modes of East Asian Winter Monsoon documented by a southern Red Sea coral record. J. Geophys. Res. Space Phys. 2014, 119, 1517–1533. [Google Scholar] [CrossRef][Green Version]
- Papadopoulos, V.P.; Abualnaja, Y.; Josey, S.A.; Bower, A.; Raitsos, D.E.; Kontoyiannis, H.; Hoteit, I. Atmospheric forcing of the winter air–sea heat fluxes over the northern Red Sea. J. Clim. 2013, 26, 1685–1701. [Google Scholar] [CrossRef]
- Abualnaja, Y.; Papadopoulos, V.P.; Josey, S.A.; Hoteit, I.; Kontoyiannis, H.; Raitsos, D.E. Impacts of climate modes on air–sea heat exchange in the Red Sea. J. Clim. 2015, 28, 2665–2681. [Google Scholar] [CrossRef]
- Morcos, S.A. Physical and chemical oceanography of the Red Sea. Oceanogr. Mar. Biol. Annu. Rev. 1970, 8, 73–202. [Google Scholar]
- Al Saafani, M.A.; Shenoi, S.S.C. Water masses in the Gulf of Aden. J. Oceanogr. 2007, 63, 1–14. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Lorenz, E.N. Empirical Orthogonal Functions and Statistical Weather Prediction; Massachusetts Institute of Technology: Cambridge, MA, USA, 1956. [Google Scholar]
- Björnsson, H.; Venegas, S.A. A manual for EOF and SVD analyses of climatic data. CCGCR Rep. 1997, 97, 112–134. [Google Scholar]
- Currie, J.C.; Lengaigne, M.; Vialard, J.; Kaplan, D.M.; Aumont, O.; Naqvi, S.W.A.; Maury, O. Indian Ocean dipole and El Nino/southern oscillation impacts on regional chlorophyll anomalies in the Indian Ocean. Biogeosciences 2013, 10, 6677–6698. [Google Scholar] [CrossRef]
- Saji, N.H.; Xie, S.P.; Yamagata, T. Tropical Indian Ocean variability in the IPCC twentieth-century climate simulations. J. Clim. 2006, 19, 4397–4417. [Google Scholar] [CrossRef]
- Klein, S.A.; Soden, B.J.; Lau, N.-C. Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Clim. 1999, 12, 917–932. [Google Scholar] [CrossRef]
- Saji, N.H.; Yamagata, T. Structure of SST and surface wind variability during Indian Ocean dipole mode events: COADS observations. J. Clim. 2003, 16, 2735–2751. [Google Scholar] [CrossRef]
- Du, Y.; Xie, S.-P.; Huang, G.; Hu, K. Role of air–sea interaction in the long persistence of El Niño–induced north Indian Ocean warming. J. Clim. 2009, 22, 2023–2038. [Google Scholar] [CrossRef]
- Alexander, M.A.; Bladé, I.; Newman, M.; Lanzante, J.R.; Lau, N.-C.; Scott, J.D. The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Clim. 2002, 15, 2205–2231. [Google Scholar] [CrossRef]
- Raitsos, D.E.; Yi, X.; Platt, T.; Racault, M.-F.; Pradhan, Y.; Papadopoulos, V.; Sathyendranath, S.; Hoteit, I.; Brewin, R.J.W. Monsoon oscillations regulate fertility of the Red Sea. Geophys. Res. Lett. 2015, 42, 855–862. [Google Scholar] [CrossRef]
- Liu, L.; Feng, L.; Wu, Y.; Yu, W.; Liu, L.; Yang, G.; Han, G. Why was the Indian Ocean dipole weak in the context of the extreme El Niño in 2015? J. Clim. 2017, 30, 4755–4761. [Google Scholar] [CrossRef]
- Xie, S.P.; Annamalai, H.; Schott, F.A.; McCreary, J.P. Structure and mechanisms of South Indian Ocean climate variability. J. Clim. 2002, 15, 864–878. [Google Scholar] [CrossRef]
- Fan, L.; Liu, Q.; Wang, C.; Guo, F. Indian Ocean dipole modes associated with different types of ENSO development. J. Clim. 2017, 30, 2233–2249. [Google Scholar] [CrossRef]
- Webster, P.J.; Yang, S. Monsoon and ENSO: Selectively interactive systems. Q. J. R. Meteorol. Soc. 1992, 118, 877–926. [Google Scholar] [CrossRef]
- Lau, K.M.; Yang, S. The Asian monsoon and predictability of the tropical ocean–atmosphere system. Q. J. R. Meteorol. Soc. 1996, 122, 945–957. [Google Scholar]
- Shanas, P.R.; Aboobacker, V.M.; Albarakati, A.M.; Zubier, K.M. Climate driven variability of wind-waves in the Red Sea. Ocean Model. 2017, 119, 105–117. [Google Scholar] [CrossRef]
- Karnauskas, K.B.; Jones, B.H. The interannual variability of sea surface temperature in the Red Sea from 35 years of satellite and in situ observations. J. Geophys. Res. Oceans 2018, 123, 5824–5841. [Google Scholar] [CrossRef]
- Tourre, Y.M.; White, W.B. ENSO signals in global upper-ocean temperature. J. Phys. Oceanogr. 1995, 25, 1317–1332. [Google Scholar] [CrossRef]
- Yu, L.; Rienecker, M.M. Mechanisms for the Indian Ocean warming during the 1997–98 El Nino. Geophys. Res. Lett. 1999, 26, 735–738. [Google Scholar] [CrossRef]
- Abish, B.; Cherchi, A.; Ratna, S.B. ENSO and the recent warming of the Indian Ocean: ENSO AND THE INDIAN OCEAN WARMING. Int. J. Climatol. 2018, 38, 203–214. [Google Scholar] [CrossRef]
- Chambers, D.P.; Tapley, B.D.; Stewart, R.H. Anomalous warming in the Indian Ocean coincident with El Nino. J. Geophys. Res. Ocean. 1999, 104, 3035–3047. [Google Scholar] [CrossRef]
- Salim, M.; Nayak, R.K.; Swain, D.; Dadhwal, V.K. Sea surface height variability in the tropical Indian Ocean: Steric contribution. J. Indian Soc. Remote. Sens. 2012, 40, 679–688. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, L.; Zhou, W.; Chen, W. Three Eurasian teleconnection patterns: Spatial structures, temporal variability, and associated winter climate anomalies. Clim. Dyn. 2014, 42, 2817–2839. [Google Scholar] [CrossRef]
- Cai, W.; Borlace, S.; Lengaigne, M.; Van Rensch, P.; Collins, M.; Vecchi, G.; Timmermann, A.; Santoso, A.; McPhaden, M.J.; Wu, L.; et al. Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Clim. Chang. 2014, 4, 111–116. [Google Scholar] [CrossRef]
- Terray, P.; Dominiak, S. Indian Ocean sea surface temperature and El Niño–Southern Oscillation: A new perspective. J. Clim. 2005, 18, 1351–1368. [Google Scholar] [CrossRef]
- Terray, P.; Delécluse, P.; Labattu, S.; Terray, L. Sea surface temperature associations with the late Indian summer monsoon. Clim. Dyn. 2003, 21, 593–618. [Google Scholar] [CrossRef]
- Wang, B.; An, S.I. Why the properties of El Niño changed during the late 1970s. Geophys. Res. Lett. 2001, 28, 3709–3712. [Google Scholar] [CrossRef]
- Ding, R.; Ha, K.J.; Li, J. Interdecadal shift in the relationship between the East Asian summer monsoon and the tropical Indian Ocean. Clim. Dyn. 2010, 34, 1059–1071. [Google Scholar] [CrossRef]
- Nakamura, N.; Kayanne, H.; Iijima, H.; McClanahan, T.R.; Behera, S.K.; Yamagata, T. Mode shift in the Indian Ocean climate under global warming stress. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef]
- Sofianos, S.S.; Johns, W.E. An oceanic general circulation model (OGCM) investigation of the Red Sea circulation: 2. Three-dimensional circulation in the Red Sea. J. Geophys. Res. Space Phys. 2003, 108. [Google Scholar] [CrossRef]
Name | Abbreviation | Sources |
---|---|---|
MEI | Multivariate El Niño Index | https://www.esrl.noaa.gov/psd/enso/mei/table.html |
IOD | Indian Ocean Dipole | https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/Data/dmi.long.data |
EAWR | East Atlantic-West Russian | ftp://ftp.cpc.ncep.noaa.gov/wd52dg/data/indices/eawr_index.tim |
EOF PCs | IOD | MEI | EAWR |
---|---|---|---|
PC1 winter | 0.36 (0.076) | 0.39 (0.056) | –0.40 |
PC1 spring | 0.66 | –0.47 | |
PC1 summer | 0.46 | ||
PC1 autumn | 0.57 | ||
PC2 winter | |||
PC2 spring | |||
PC2 summer | |||
PC2 autumn |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alawad, K.A.; Al-Subhi, A.M.; Alsaafani, M.A.; Alraddadi, T.M.; Ionita, M.; Lohmann, G. Large-Scale Mode Impacts on the Sea Level over the Red Sea and Gulf of Aden. Remote Sens. 2019, 11, 2224. https://doi.org/10.3390/rs11192224
Alawad KA, Al-Subhi AM, Alsaafani MA, Alraddadi TM, Ionita M, Lohmann G. Large-Scale Mode Impacts on the Sea Level over the Red Sea and Gulf of Aden. Remote Sensing. 2019; 11(19):2224. https://doi.org/10.3390/rs11192224
Chicago/Turabian StyleAlawad, Kamal A., Abdullah M. Al-Subhi, Mohammed A. Alsaafani, Turki M. Alraddadi, Monica Ionita, and Gerrit Lohmann. 2019. "Large-Scale Mode Impacts on the Sea Level over the Red Sea and Gulf of Aden" Remote Sensing 11, no. 19: 2224. https://doi.org/10.3390/rs11192224
APA StyleAlawad, K. A., Al-Subhi, A. M., Alsaafani, M. A., Alraddadi, T. M., Ionita, M., & Lohmann, G. (2019). Large-Scale Mode Impacts on the Sea Level over the Red Sea and Gulf of Aden. Remote Sensing, 11(19), 2224. https://doi.org/10.3390/rs11192224