Sensitivity of the Gravity Model and Orbital Frame for On-board Real-Time Orbit Determination: Operational Results of GPS-12 GPS Receiver
Abstract
:1. Introduction
2. Sensitivity of Orbital Frame for Orbit Determination
2.1. Test Configuration for Efficacy Verification: Sensitivity of Orbital Frame
2.2. Efficacy of the RIC Frame for Identifying Ionospheric Time Delay
2.3. On-Board Orbit Determination Logic Design on RIC Orbital Frame
2.4. Sensitivity Analysis Result: Orbital Frame
3. Sensitivity of Gravity Model for Orbit Determination
3.1. Test Configuration for Efficacy Verification: Sensitivity of Gravity Model
3.2. Efficacy of Gravity Model for Orbit Propagation
3.3. Sensitivity Analysis Result: Gravity Model
4. In-orbit Performance of On-board Real-time Orbit Determination Logic
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Birmingham, W.P.; Miller, B.L.; Stein, W.L. Experimental Results of Using the GPS for Landsat 4 Onboard Navigation. J. Inst. Navig. 1983, 30, 244–251. [Google Scholar] [CrossRef]
- Heuberger, H.; Church, L. Landsat/4/Global Positioning System navigation results. Adv. Astronaut. Sci. 1984, 54, 589–602. [Google Scholar]
- Fang, B.; Seifert, E. An evaluation of Global Positioning System data for Landsat-4 orbit determination. In Proceedings of the 23th Aerospace Sciences Meeting, Reno, NV, USA, 14–17 January 1985; p. 268. [Google Scholar]
- Montenbruck, O.; Günther, C.; Graf, S.; Garcia-Fernandez, M.; Furthner, J.; Kuhlen, H. GIOVE-A initial signal analysis. GPS Solut. 2006, 10, 146–153. [Google Scholar] [CrossRef]
- Misra, P.; Enge, P. Global Positioning System-Signals, Measurements, and Performance, 2nd ed.; Ganga Jammuna Press: Lincoln, MA, USA, 2006. [Google Scholar]
- Yoon, J.C.; Lee, B.S.; Choi, K.H. Spacecraft orbit determination using GPS navigation solutions. Aerosp. Sci. Technol. 2000, 4, 215–221. [Google Scholar] [CrossRef]
- Choi, E.J.; Yoon, J.C.; Lee, B.S.; Park, S.Y.; Choi, K.H. Development of spaceborne GPS receiver with real-time orbit determination using unscented kalman filter. In Proceedings of the IAC 2009, Dajeon, Korea, 12 October 2009. [Google Scholar]
- Chiaradia, A.P.M.; Gill, E.; Montenbruck, O.; Kuga, H.K.; Prado, A.F.B.A. Algorithms for on-Board Orbit Determination Using GPS OBODE-GPS. DLR German Space Operations Center Oberpfaffenhofen; ResearchGate: Berlin, Germany, 2000. [Google Scholar]
- Gill, E.; Montenbruck, O. On-Board Navigation System for the BIRD Satellite; Deutsches Zentrum fuer Luft- und Raumfahrt: Berlin, Germany, 2002. [Google Scholar]
- Montenbruck, O.; Swatschina, P.; Markgraf, M.; Santandrea, S.; Naudet, J.; Tilmans, E. Precision spacecraft navigation using a low-cost GPS receiver. GPS Solut. 2012, 16, 519–529. [Google Scholar] [CrossRef]
- Kim, E.H.; Koh, D.W.; Chung, Y.S.; Park, S.B.; Jin, H.P.; Lee, H.W. Real Time On-board Orbit Determination Performance Analysis of Low Earth Orbit Satellites. J. Korean Soc. Aeronaut. Space Sci. 2015, 43, 10–20. [Google Scholar]
- Kim, E.H.; Lee, B.H.; Park, S.B.; Jin, H.P.; Lee, H.W.; Jeong, Y.H. Performance Improvement of Real Time On-board Orbit Determination using High Precision Orbit Propagator. J. Korean Soc. Aeronaut. Space Sci. 2016, 44, 545–551. [Google Scholar]
- Montenbruck, O.; Gill, E. Satellite Orbits, 1st ed.; Springer: Berlin, Germany, 2000. [Google Scholar]
- Kim, E.H.; Koh, D.W.; AI Sayegh, A.M.; AI Midfa, I.A. Ionospheric Model Correction for Spaceborne GNSS Receiver. In Proceedings of the European Navigation Conference 2017, Lausanne, Switzerland, 9–12 May 2017; pp. 224–231. [Google Scholar]
- Inertial Frame of Reference. Available online: https://en.wikipedia.org/wiki/Inertial_frame_of_reference (accessed on 25 June 2019).
- Wie, B. Space Vehicle Dynamics and Control, 2nd ed.; AIAA: Reston, VA, USA, 2008. [Google Scholar]
- Tsui, J.B.Y. Fundamentals of Global Positioning System Receivers, 1st ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2000; Volume 173, pp. 102–105. [Google Scholar]
- Nerem, R.S.; Jekeli, C.; Kaula, W.M. Gravity field determination and characteristics: Retrospective and prospective. J. Geophys. Res. 1995, 100, 15053–15074. [Google Scholar] [CrossRef]
- Lemoine, F.G.; Kenyon, S.C.; Factor, J.K.; Trimmer, R.G.; Pavlis, N.K.; Chinn, D.S.; Cox, C.M.; Klosko, S.M.; Luthcke, S.B.; Torrence, M.H.; et al. The Development of the Joint NASA GSFC and NIMA Geopotential Model EGM96; NASA Goddard Space Flight Center: Greenbelt, MD, USA, 1998.
- Cheng, M.; Ries, J.C.; Chambers, D.P. Evaluation of the EGM2008 Gravity Model. Newton’s Bull. 2009, 4, 18–25. [Google Scholar]
- Tapley, B.D.; Bettadpur, S.; Watkins, M.M.; Reigber, C. GRACE Gravity Model GGM01. Available online: http://www2.csr.utexas.edu/grace/gravity/ggm01/GGM01_Notes.pdf (accessed on 25 June 2019).
- Kim, E.H. TLE Orbit Determination by using selectively applying GPS Navigation Solution. In Proceedings of the Korean Society for Aeronautical & Space Sciences, Heraklion, Greece, 22–27 June 2014; pp. 623–627. [Google Scholar]
- Vallado, D.A.; Hujsak, R.S.; Johnson, T.M.; Seago, J.H.; Woodburn, J.W. Orbit Determination using ODTK Version 6. In Proceedings of the European Space Astronomy Center 2010, Madrid, Spain, 3–6 May 2010. [Google Scholar]
Covariance of Measurement Noise (km2) | |
---|---|
Frame: ECI | Frame: RIC |
Position: Velocity: | Position: Velocity: |
Orbital Frame: ECI | Orbital Frame: RIC | ||||||||
---|---|---|---|---|---|---|---|---|---|
Radial | In-Track | Cross-Track | Range | Radial | In-Track | Cross-Track | Range | ||
Position | Avg. (m) | –9.58 | 5.09 | –0.05 | 12.04 | –6.28 | 2.84 | –0.05 | 7.49 |
Std. (m) | 6.26 | 4.21 | 2.57 | 6.03 | 4.26 | 2.64 | 2.61 | 3.75 | |
Peak (m) | –33.44 | 20.67 | –6.09 | 38.59 | –20.90 | 18.50 | –6.30 | 22.29 | |
Velocity | Avg. (mm/s) | –14.63 | 3.57 | –0.02 | 14.90 | –6.63 | 1.87 | –0.09 | 6.30 |
Std. (mm/s) | 10.90 | 6.96 | 4.78 | 12.61 | 4.10 | 2.70 | 3.09 | 5.56 | |
Peak (mm/s) | –47.98 | 21.05 | 12.31 | 53.09 | –30.21 | 20.11 | 7.21 | 38.12 |
GGM03 | EGM96 | JGM2 | JGM3 | WGS84 | WGS84-EGM96 | |
---|---|---|---|---|---|---|
3D Position (m) | 1.61 | 13.48 | 16.43 | 15.28 | 27.11 | 10.82 |
3D Velocity (mm/s) | 0.42 | 3.25 | 3.58 | 3.23 | 9.72 | 3.31 |
Gravity Model: EGM96 | Gravity Model: GGM03 | ||||||||
---|---|---|---|---|---|---|---|---|---|
Radial | In-Track | Cross-Track | Range | Radial | In-Track | Cross-Track | Range | ||
Position | Avg. (m) | –1.66 | 1.11 | 0.17 | 2.48 | –1.31 | –0.02 | 0.06 | 1.69 |
Std. (m) | 1.33 | 1.36 | 0.74 | 1.40 | 0.97 | 0.5 | 0.70 | 0.76 | |
Peak (m) | 1.96 | 7.36 | 4.14 | 13.05 | 1.26 | 1.26 | 1.93 | 5.66 | |
Velocity | Avg. (mm/s) | –1.31 | 1.43 | –0.23 | 2.19 | 0.07 | –0.03 | –0.26 | 0.32 |
Std. (mm/s) | 2.93 | 1.45 | 1.05 | 2.41 | 1.01 | 0.39 | 0.93 | 0.78 | |
Peak (mm/s) | 14.61 | 5.72 | 3.21 | 15.78 | 3.08 | 1.06 | 1.82 | 2.36 |
Orbit Item | Subitem | Orbit Model of Orbit Determination Logic |
---|---|---|
Gravity | Model | GGM03 |
Degree | 40 | |
Order | 40 | |
Atmospheric drag | Cd | 1.2 |
Area/mass ratio (m2/kg) | 0.006 | |
Atm. density model | Harris–Priester density model | |
Satellite mass (kg) | 300 | |
Solar radiation pressure | Cr | 0.705 |
Area/mass ratio (m2/kg) | 0.006 | |
Shadow model | Dual cone | |
Third body gravity | Sun | Low-Precision Solar Coordinate [13] |
Moon | Low-Precision Lunar Coordinate [13] |
Orbital Frame: ECI; Gravity Model: EGM96 | Orbital Frame: RIC; Gravity Model: GGM03 | ||||||||
---|---|---|---|---|---|---|---|---|---|
Radial | In-Track | Cross-Track | Range | Radial | In-Track | Cross-Track | Range | ||
Position | Avg. (m) | –0.016 | –0.17 | –0.012 | 8.61 | 0.003 | 0.01 | 0.25 | 3.44 |
Std. (m) | 5.71 | 5.81 | 4.89 | 4.04 | 2.39 | 1.99 | 2.25 | 1.74 | |
Peak (m) | 16.94 | 21.86 | 14.58 | 26.38 | 8.44 | 6.02 | 6.09 | 11.57 | |
Velocity | Avg. (mm/s) | 0.17 | –0.12 | 0.41 | 8.49 | 0.015 | –0.09 | –1.14 | 3.85 |
Std. (mm/s) | 5.37 | 5.74 | 6.11 | 5.22 | 2.42 | 2.01 | 2.83 | 2.08 | |
Peak (mm/s) | 19.21 | 28.53 | 19.51 | 32.51 | 8.22 | 5.43 | 7.94 | 16.08 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, E.; Han, S.; Sayegh, A.M.A. Sensitivity of the Gravity Model and Orbital Frame for On-board Real-Time Orbit Determination: Operational Results of GPS-12 GPS Receiver. Remote Sens. 2019, 11, 1542. https://doi.org/10.3390/rs11131542
Kim E, Han S, Sayegh AMA. Sensitivity of the Gravity Model and Orbital Frame for On-board Real-Time Orbit Determination: Operational Results of GPS-12 GPS Receiver. Remote Sensing. 2019; 11(13):1542. https://doi.org/10.3390/rs11131542
Chicago/Turabian StyleKim, Eunhyouek, Seungyeop Han, and Amer Mohammad Al Sayegh. 2019. "Sensitivity of the Gravity Model and Orbital Frame for On-board Real-Time Orbit Determination: Operational Results of GPS-12 GPS Receiver" Remote Sensing 11, no. 13: 1542. https://doi.org/10.3390/rs11131542
APA StyleKim, E., Han, S., & Sayegh, A. M. A. (2019). Sensitivity of the Gravity Model and Orbital Frame for On-board Real-Time Orbit Determination: Operational Results of GPS-12 GPS Receiver. Remote Sensing, 11(13), 1542. https://doi.org/10.3390/rs11131542