Generating Red-Edge Images at 3 M Spatial Resolution by Fusing Sentinel-2 and Planet Satellite Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Field Measurements
2.2. Satellite Data Processing
2.2.1. Sentinel-2 Images
2.2.2. Planet Images
2.3. Image Fusion Methods
2.4. Fusion Assessment
2.4.1. Correlation Analysis
2.4.2. Agricultural Application
3. Results
3.1. Generation of Fine Red-Edge Images
3.2. Fusion Assessment by Correlation Analysis
3.3. Fusion Assessment by Wheat LAI Prediction
3.4. Mapping Wheat LAI Using the Fused Image
4. Discussion
4.1. A Novel Satellite Source for Downscaling Sentinel-2 Images to 3 m Scale
4.2. Novel Combinations of the Weight-and-Unmixing and SupReME Algorithms for Fusing Images from Two Satellites
4.3. Assessment of the Fusion Image Via Wheat LAI Prediction
4.4. The Effects of LAI Prediction Using VIs and All Bands
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lindblom, J.; Lundström, C.; Ljung, M.; Jonsson, A. Promoting sustainable intensification in precision agriculture: Review of decision support systems development and strategies. Precis. Agric. 2017, 18, 1–23. [Google Scholar] [CrossRef]
- Khan, A.; Hansen, M.C.; Potapov, P.V.; Adusei, B.; Pickens, A.; Krylov, A.; Stehman, S.V. Evaluating landsat and rapideye data for winter wheat mapping and area estimation in punjab, pakistan. Remote Sens. 2018, 10, 489. [Google Scholar] [CrossRef]
- Darvishzadeh, R.; Skidmore, A.; Schlerf, M.; Atzberger, C.; Corsi, F.; Cho, M. Lai and chlorophyll estimation for a heterogeneous grassland using hyperspectral measurements. ISPRS J. Photogramm. Remote Sens. 2008, 63, 409–426. [Google Scholar] [CrossRef]
- Baret, F.; Jacquemoud, S.; Guyot, G.; Leprieur, C. Modeled analysis of the biophysical nature of spectral shifts and comparison with information content of broad bands ☆. Remote Sens. Environ. 1992, 41, 133–142. [Google Scholar] [CrossRef]
- Mohd Shafri, H.Z.; Mohd Salleh, M.A.; Ghiyamat, A. Hyperspectral remote sensing of vegetation using red edge position techniques. Am. J. Appl. Sci. 2006, 3, 1864–1871. [Google Scholar] [CrossRef]
- Pu, R.; Gong, P.; Biging, G.S.; Larrieu, M.R. Extraction of red edge optical parameters from hyperion data for estimation of forest leaf area index. IEEE Trans. Geosci. Remote Sens. 2008, 41, 916–921. [Google Scholar]
- Ali, M.; Montzka, C.; Stadler, A.; Menz, G.; Thonfeld, F.; Vereecken, H. Estimation and validation of rapideye-based time-series of leaf area index for winter wheat in the rur catchment (germany). Remote Sens. 2015, 7, 2808–2831. [Google Scholar] [CrossRef]
- Herrmann, I.; Pimstein, A.; Karnieli, A.; Cohen, Y.; Alchanatis, V.; Bonfil, D.J. Lai assessment of wheat and potato crops by venμs and sentinel-2 bands. Remote Sens. Environ. 2011, 115, 2141–2151. [Google Scholar] [CrossRef]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: Esa’s optical high-resolution mission for gmes operational services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Roteta, E.; Bastarrika, A.; Padilla, M.; Storm, T.; Chuvieco, E. Development of a sentinel-2 burned area algorithm: Generation of a small fire database for sub-saharan africa. Remote Sens. Environ. 2019, 222, 1–17. [Google Scholar] [CrossRef]
- Lacroix, P.; Bièvre, G.; Pathier, E.; Kniess, U.; Jongmans, D. Use of sentinel-2 images for the detection of precursory motions before landslide failures. Remote Sens. Environ. 2018, 215, 507–516. [Google Scholar] [CrossRef]
- Clevers, J.; Kooistra, L.; Marnix, V.D.B. Using sentinel-2 data for retrieving lai and leaf and canopy chlorophyll content of a potato crop. Remote Sens. 2017, 9, 405. [Google Scholar] [CrossRef]
- Xu, R.; Zhang, H.; Wang, T.; Lin, H. Using pan-sharpened high resolution satellite data to improve impervious surfaces estimation. Int. J. Appl. Earth Obs. Geoinf. 2017, 57, 177–189. [Google Scholar] [CrossRef]
- Vivone, G.; Alparone, L.; Chanussot, J.; Mura, M.D.; Garzelli, A.; Licciardi, G.A.; Restaino, R.; Wald, L. A critical comparison among pansharpening algorithms. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2565–2586. [Google Scholar] [CrossRef]
- Zhang, Y.; Hong, G. An ihs and wavelet integrated approach to improve pan-sharpening visual quality of natural colour ikonos and quickbird images. Inf. Fusion 2005, 6, 225–234. [Google Scholar] [CrossRef]
- Wang, Q.; Shi, W.; Li, Z.; Atkinson, P.M. Fusion of sentinel-2 images. Remote Sens. Environ. 2016, 187, 241–252. [Google Scholar] [CrossRef]
- Sales, M.H.R.; Souza, C.M.; Kyriakidis, P.C. Fusion of modis images using kriging with external drift. IEEE Trans. Geosci. Remote Sens. 2013, 51, 2250–2259. [Google Scholar] [CrossRef]
- Wang, Q.; Shi, W.; Atkinson, P.M.; Zhao, Y. Downscaling modis images with area-to-point regression kriging. Remote Sens. Environ. 2015, 166, 191–204. [Google Scholar] [CrossRef]
- Park, S.C.; Min, K.P.; Kang, M.G. Super-resolution image reconstruction: A technical overview. IEEE Signal Process. Mag. 2003, 20, 21–36. [Google Scholar] [CrossRef]
- Lanaras, C.; Bioucas-Dias, J.; Baltsavias, E.; Schindler, K. Super-resolution of multispectral multiresolution images from a single sensor. In Proceedings of the Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 1505–1513. [Google Scholar]
- Brodu, N. Super-resolving multiresolution images with band-independent geometry of multispectral pixels. IEEE Trans. Geosci. Remote Sens. 2017, 55, 1–8. [Google Scholar] [CrossRef]
- Houborg, R.; Mccabe, M.F. High-resolution ndvi from planet’s constellation of earth observing nano-satellites: A new data source for precision agriculture. Remote Sens. 2016, 8, 768. [Google Scholar] [CrossRef]
- Houborg, R.; McCabe, F.M. Daily retrieval of ndvi and lai at 3 m resolution via the fusion of cubesat, landsat, and modis data. Remote Sens. 2018, 10, 890. [Google Scholar] [CrossRef]
- Houborg, R.; McCabe, M.F. A cubesat enabled spatio-temporal enhancement method (cestem) utilizing planet, landsat and modis data. Remote Sens. Environ. 2018, 209, 211–226. [Google Scholar] [CrossRef]
- Wald, L.; Ranchin, T.; Mangolini, M. Fusion of satellite images of different spatial resolutions: Assessing the quality of resulting images. Photogramm. Eng. Remote Sens. 1997, 63, 691–699. [Google Scholar]
- Shahdoosti, H.R.; Ghassemian, H. Combining the Spectral pca and Spatial pca Fusion Methods by An Optimal Filter; Elsevier Science Publishers B. V.: Amsterdam, The Netherlands, 2016; pp. 150–160. [Google Scholar]
- Mcmaster, G.S. Phenology, development, and growth of the wheat (triticum aestivum l.) shoot apex: A review. Adv. Agron. 1997, 59, 63–118. [Google Scholar]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.; Huete, A.R.; Didan, K.; Miura, T. Development of a two-band enhanced vegetation index without a blue band. Remote Sens. Environ. 2008, 112, 3833–3845. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (savi). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Birth, G.S.; Mcvey, G.R. Measuring the color of growing turf with a reflectance spectrophotometer. Agron. J. 1968, 60, 640–643. [Google Scholar] [CrossRef]
- Jordan, C.F. Derivation of leaf-area index from quality of light on the forest floor. Ecology 1969, 50, 663–666. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Sims, D.A.; Gamon, J.A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Justice, C.O.; Vermote, E.; Townshend, J.R.G.; Defries, R.; Roy, D.P.; Hall, D.K.; Salomonson, V.V.; Privette, J.L.; Riggs, G.; Strahler, A. The moderate resolution imaging spectroradiometer (modis): Land remote sensing for global change research. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1228–1249. [Google Scholar] [CrossRef]
- Jasper, J.; Reusch, S.; Link, A. Active sensing of the N status of wheat using optimized wavelength combination: impact of seed rate, variety and growth stage. In Precision Agriculture 09, Proceedings of the 7th European Conference on Precision Agriculture, Wageningen, The Netherlands, 6–8 July 2009; Wageningen Academic: Wageningen, The Netherlands, 2009; pp. 23–30. [Google Scholar]
- Gao, F.; Masek, J.; Schwaller, M.; Hall, F. On the blending of the landsat and modis surface reflectance: Predicting daily landsat surface reflectance. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2207–2218. [Google Scholar]
- Zhu, X.; Chen, J.; Gao, F.; Chen, X.; Masek, J.G. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions. Remote Sens. Environ. 2010, 114, 2610–2623. [Google Scholar] [CrossRef]
- Xing, Y.; Wang, M.; Yang, S.; Jiao, L. Pan-sharpening via deep metric learning. ISPRS J. Photogramm. Remote Sens. 2018, 145, 165–183. [Google Scholar] [CrossRef]
- Chen, Y.; Li, C.; Ghamisi, P.; Jia, X.; Gu, Y. Deep fusion of remote sensing data for accurate classification. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1253–1257. [Google Scholar] [CrossRef]
- Li, F.; Jia, X.; Fraser, D. Superresolution reconstruction of multispectral data for improved image classification. IEEE Geosci. Remote Sens. Lett. 2009, 6, 689–693. [Google Scholar]
- Gao, L.; Yang, G.; Yu, H.; Xu, B.; Zhao, X.; Dong, J.; Ma, Y. Retrieving winter wheat leaf area index based on unmanned aerial vehicle hyperspectral remote sensing. Trans. Chin. Soc. Agric. Eng. 2016, 32, 113–120. [Google Scholar]
- Yao, X.; Wang, N.; Liu, Y.; Cheng, T.; Tian, Y.; Chen, Q.; Zhu, Y. Estimation of wheat lai at middle to high levels using unmanned aerial vehicle narrowband multispectral imagery. Remote Sens. 2017, 9, 1304. [Google Scholar] [CrossRef]
- Asam, S.; Fabritius, H.; Klein, D.; Conrad, C.; Dech, S. Derivation of leaf area index for grassland within alpine upland using multi-temporal rapideye data. Int. J. Remote Sens. 2013, 34, 8628–8652. [Google Scholar] [CrossRef]
Bands | Central Wavelength (nm) | Bandwidth (nm) | Spatial Resolution (m) |
---|---|---|---|
B1-Coastal aerosol | 443 | 20 | 60 |
B2-Blue | 490 | 65 | 10 |
B3-Green | 560 | 35 | 10 |
B4-Red | 665 | 30 | 10 |
B5-red-edge (RE-1) | 705 | 15 | 20 |
B6-red-edge (RE-2) | 740 | 15 | 20 |
B7-red-edge (RE-3) | 783 | 20 | 20 |
B8-NIR | 842 | 115 | 10 |
B8a-Narrow NIR (NNIR) | 865 | 20 | 20 |
B9-water vapor | 945 | 20 | 60 |
B10-SWIR-Cirrus | 1380 | 30 | 60 |
B11-SWIR-1 | 1610 | 90 | 20 |
B12-SWIR-2 | 2190 | 180 | 20 |
Bands | Central Wavelength (nm) | Bandwidth (nm) | Spatial Resolution (m) |
---|---|---|---|
B1-Blue | 480 | 60 | 3 |
B2-Green | 540 | 90 | 3 |
B3-Red | 610 | 80 | 3 |
B4-NIR | 780 | 80 | 3 |
Stages | Ground Sampling Date | Study Areas | Planet Image Acquisition Time | Sentinel-2 Image Acquisition Date |
---|---|---|---|---|
Tillering | 8 March 2018–10 March 2018 | Diaoyu | 13 March 2018 2:33:36 A.M. UTC | 10 March |
Daiyao | 9 March 2018 2:33:17 and 2:06:55 A.M. UTC | |||
Zhangguo | 9 March 2018 2:06:55 and 2:05:38 A.M. UTC | |||
Jointing | 22 March 2018–24 March 2018 | Diaoyu | 27 March 2018 2:07:49 A.M. UTC | 25 March |
Daiyao | 27 March 2018 2:30:35 A.M. UTC | |||
Zhangguo | 27 March 2018 2:07:06 A.M. UTC | |||
Booting | 9 April 2018–11 April 2018 | Diaoyu | 9 April 2018 2:08:50 A.M. UTC | 9 April |
Daiyao | 9 April 2018 2:07:23 A.M. UTC | |||
Zhangguo | 9 April 2018 2:29:25 A.M. UTC |
Index | Formulation | Reference |
---|---|---|
Normalized difference vegetation index (NDVI) | (NIR − Red)/(NIR + Red) | [28] |
Enhanced vegetation index (EVI) | 2.5 × (NIR − Red)/(NIR + 6 × Red − 7.5 × Green + 1) | [29] |
Soil-adjusted vegetation index (SAVI) | (NIR − Red)/(NIR + Red + 0.25) + 0.25 | [30] |
Ratio vegetation index (RVI) | NIR/Red | [31] |
Difference vegetation index (DVI) | NIR − Red | [32] |
Green chlorophyll index (CI green) | NIR/Green − 1 | [33] |
Normalized difference red-edge index (NDRE) | (NIR − RE)/(NIR + RE) | [34] |
Modified enhanced vegetation index (MEVI) | 2.5 × (NIR − RE)/(NIR+6 × RE-7.5 × Green + 1) | [35] |
Soil-adjusted red-edge index (SARE) | (NIR − RE)/(NIR + RE + 0.25) + 0.25 | [7] |
Red-edge ratio vegetation index (RERVI) | NIR/RE | [36] |
Red-edge difference vegetation index (REDVI) | NIR − RE | [28] |
Chlorophyll index (CI red-edge) | NIR/RE − 1 | [12] |
Red-edge inflection point (REIP) | 705 + 35 × ((Red+RE3)/2 − RE1)/(RE2 − RE1) | [8] |
Source | 3 m Planet | 10 m Sentinel-2 | 3 m Fusion | |||
---|---|---|---|---|---|---|
VIs | ||||||
NDVI | 0.28 | 39.46% | 0.54 | 28.35% | 0.56 | 27.71% |
EVI | 0.27 | 38.68% | 0.63 | 25.45% | 0.66 | 24.56% |
SAVI | 0.37 | 37.14% | 0.62 | 25.58% | 0.64 | 24.81% |
RVI | 0.28 | 40.12% | 0.59 | 26.62% | 0.62 | 25.50% |
DVI | 0.42 | 35.60% | 0.67 | 24.08% | 0.70 | 22.84% |
CIgreen | 0.41 | 37.23% | 0.62 | 25.86% | 0.65 | 24.78% |
Source | 10 m Sentinel-2 | 3 m Fusion | Source | 10 m Sentinel-2 | 3 m Fusion | ||||
---|---|---|---|---|---|---|---|---|---|
VIs | VIs | ||||||||
NDRE 1 | 0.62 | 25.37% | 0.64 | 24.60% | RERVI 2 | 0.69 | 22.94% | 0.76 | 20.41% |
NDRE 2 | 0.69 | 23.02% | 0.76 | 20.70% | RERVI 3 | 0.27 | 35.33% | 0.39 | 32.77% |
NDRE 3 | 0.27 | 35.49% | 0.39 | 32.89% | REDVI 1 | 0.69 | 23.11% | 0.72 | 22.26% |
MEVI 1 | 0.68 | 23.67% | 0.70 | 22.67% | REDVI 2 | 0.71 | 22.06% | 0.76 | 20.45% |
MEVI 2 | 0.72 | 22.17% | 0.78 | 19.97% | REDVI 3 | 0.41 | 31.94% | 0.51 | 29.10% |
MEVI 3 | 0.27 | 35.75% | 0.38 | 32.75% | CI red-edge 1 | 0.64 | 24.94% | 0.67 | 23.72% |
SARE 1 | 0.66 | 24.42% | 0.69 | 23.13% | CI red-edge 2 | 0.69 | 22.90% | 0.76 | 20.78% |
SARE 2 | 0.71 | 22.38% | 0.77 | 20.14% | CI red-edge 3 | 0.27 | 35.09% | 0.39 | 33.27% |
SARE 3 | 0.31 | 34.49% | 0.43 | 31.65% | REIP | 0.63 | 25.35% | 0.66 | 24.46% |
RERVI 1 | 0.64 | 24.83% | 0.67 | 23.69% |
Planet | Sentinel-2 | Fusion | |
---|---|---|---|
0.63 | 0.76 | 0.81 | |
42.36% | 33.58% | 33.40% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Jiang, J.; Guo, T.; Zhou, M.; Tang, Y.; Wang, Y.; Zhang, Y.; Cheng, T.; Zhu, Y.; Cao, W.; et al. Generating Red-Edge Images at 3 M Spatial Resolution by Fusing Sentinel-2 and Planet Satellite Products. Remote Sens. 2019, 11, 1422. https://doi.org/10.3390/rs11121422
Li W, Jiang J, Guo T, Zhou M, Tang Y, Wang Y, Zhang Y, Cheng T, Zhu Y, Cao W, et al. Generating Red-Edge Images at 3 M Spatial Resolution by Fusing Sentinel-2 and Planet Satellite Products. Remote Sensing. 2019; 11(12):1422. https://doi.org/10.3390/rs11121422
Chicago/Turabian StyleLi, Wei, Jiale Jiang, Tai Guo, Meng Zhou, Yining Tang, Ying Wang, Yu Zhang, Tao Cheng, Yan Zhu, Weixing Cao, and et al. 2019. "Generating Red-Edge Images at 3 M Spatial Resolution by Fusing Sentinel-2 and Planet Satellite Products" Remote Sensing 11, no. 12: 1422. https://doi.org/10.3390/rs11121422
APA StyleLi, W., Jiang, J., Guo, T., Zhou, M., Tang, Y., Wang, Y., Zhang, Y., Cheng, T., Zhu, Y., Cao, W., & Yao, X. (2019). Generating Red-Edge Images at 3 M Spatial Resolution by Fusing Sentinel-2 and Planet Satellite Products. Remote Sensing, 11(12), 1422. https://doi.org/10.3390/rs11121422