Mapping Listvenite Occurrences in the Damage Zones of Northern Victoria Land, Antarctica Using ASTER Satellite Remote Sensing Data
Abstract
:1. Introduction
2. Geological Setting of NVL and the Bowers Terrane
3. Materials and Methods
3.1. ASTER Data Characteristics and Pre-processing
3.2. Image Processing Algorithms
3.2.1. Spectral Information Extraction at the Pixel Level
3.2.2. Spectral Information Extraction at the Sub-pixel Level
3.3. Fieldwork Data and Laboratory Analysis
4. Results
4.1. Regional Overview of the BT and Surrounding Areas
4.2. Alteration and Lithological Mapping in the Fault Zones at Regional Scale
4.3. Detection of Hydrothermal Alteration Minerals and Prospecting Listvenites in the Selected Subset of Damage Zones
4.4. Petrography and Mineralogy of Hydrothermal Alteration Minerals and Listvenites
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
(A) | |||||||||
Eigenvector | Band 1 | Band 2 | Band 3 | Band 4 | Band 5 | Band 6 | Band 7 | Band 8 | Band 9 |
PCA 1 | 0.467805 | 0.509694 | 0.512981 | 0.217468 | 0.176799 | 0.246614 | 0.248711 | 0.197151 | 0.134638 |
PCA 2 | −0.300431 | −0.288970 | −0.263316 | 0.338230 | 0.386615 | 0.342808 | 0.283244 | 0.363021 | 0.404354 |
PCA 3 | 0.157609 | 0.161323 | −0.103135 | 0.006767 | 0.226125 | −0.358278 | −0.615519 | 0.073713 | 0.612094 |
PCA 4 | 0.044681 | 0.011848 | −0.069971 | 0.090291 | −0.633560 | −0.438259 | 0.344247 | 0.463711 | 0.240442 |
PCA 5 | 0.571038 | 0.143893 | −0.731120 | −0.148991 | 0.161062 | 0.025766 | 0.172102 | 0.073443 | −0.186704 |
PCA 6 | 0.085901 | −0.004662 | −0.067071 | −0.301431 | −0.281197 | 0.308307 | 0.264687 | −0.553969 | 0.588366 |
PCA 7 | −0.076892 | −0.036997 | 0.134514 | −0.155125 | 0.497821 | −0.618179 | 0.507327 | −0.246778 | 0.048065 |
PCA 8 | 0.068572 | 0.059992 | −0.169358 | 0.829896 | −0.117622 | −0.150630 | 0.013344 | −0.485437 | −0.044016 |
PCA 9 | 0.565673 | −0.777720 | 0.257238 | 0.065265 | 0.008201 | −0.026038 | −0.057528 | 0.007880 | 0.024873 |
(B) | |||||||||
Eigenvector | Band 1 | Band 2 | Band 3 | Band 4 | Band 5 | Band 6 | Band 7 | Band 8 | Band 9 |
PCA 1 | −0.479262 | −0.517939 | −0.509952 | −0.225048 | −0.160278 | −0.238705 | −0.238099 | −0.191397 | −0.123923 |
PCA 2 | 0.288066 | 0.267422 | 0.266615 | −0.388911 | −0.371102 | −0.336818 | −0.273033 | −0.365435 | −0.404865 |
PCA 3 | −0.470308 | −0.335548 | 0.711152 | −0.063002 | −0.061806 | 0.155815 | 0.278307 | −0.089651 | −0.207174 |
PCA 4 | 0.089149 | 0.081563 | −0.378102 | 0.066965 | −0.262842 | 0.327757 | 0.541766 | 0.014714 | −0.606397 |
PCA 5 | 0.005198 | −0.011714 | 0.013230 | −0.289525 | −0.571447 | −0.297938 | 0.372870 | 0.457705 | 0.389860 |
PCA 6 | −0.143194 | 0.033396 | 0.100700 | 0.637725 | −0.213061 | −0.346181 | −0.285287 | 0.440341 | −0.347880 |
PCA 7 | 0.048756 | −0.037063 | −0.000810 | −0.381573 | 0.612809 | −0.398723 | 0.186662 | 0.403665 | −0.344018 |
PCA 8 | 0.019200 | −0.050602 | 0.037382 | −0.368910 | −0.118495 | 0.574367 | −0.492425 | 0.505200 | −0.133907 |
PCA 9 | −0.659478 | 0.731979 | −0.091948 | −0.132052 | 0.046537 | 0.019598 | −0.007121 | −0.002060 | 0.028260 |
(C) | |||||||||
Eigenvector | Band 1 | Band 2 | Band 3 | Band 4 | Band 5 | Band 6 | Band 7 | Band 8 | Band 9 |
PCA 1 | 0.436596 | 0.474941 | 0.478323 | 0.259162 | 0.202467 | 0.288422 | 0.293737 | 0.233995 | 0.150469 |
PCA 2 | −0.361523 | −0.339702 | −0.304584 | 0.341346 | 0.339529 | 0.323638 | 0.270272 | 0.338853 | 0.369764 |
PCA 3 | −0.113406 | −0.131491 | 0.013472 | −0.038953 | −0.199768 | 0.301020 | 0.615036 | −0.041133 | −0.676513 |
PCA 4 | 0.646205 | 0.069871 | −0.741104 | 0.063857 | 0.083737 | 0.043079 | 0.029404 | 0.011287 | −0.119854 |
PCA 5 | −0.081856 | 0.003684 | 0.073346 | 0.258757 | 0.617458 | 0.257579 | −0.353971 | −0.466145 | −0.361612 |
PCA 6 | −0.081361 | 0.054497 | 0.026637 | 0.134626 | 0.188319 | −0.340347 | −0.252269 | 0.722429 | −0.484494 |
PCA 7 | −0.038421 | 0.062948 | 0.062948 | 0.128723 | −0.501280 | 0.651852 | −0.509411 | 0.194283 | −0.050948 |
PCA 8 | 0.065332 | −0.071443 | 0.035478 | −0.833862 | 0.356670 | 0.335182 | −0.066825 | 0.222638 | 0.021186 |
PCA 9 | −0.478726 | 0.790450 | −0.345997 | −0.117250 | 0.039925 | 0.012703 | 0.092941 | −0.045796 | 0.007618 |
(D) | |||||||||
Eigenvector | Band 1 | Band 2 | Band 3 | Band 4 | Band 5 | Band 6 | Band 7 | Band 8 | Band 9 |
PCA 1 | 0.457469 | 0.496121 | 0.484720 | 0.241961 | 0.190767 | 0.264428 | 0.267634 | 0.222557 | 0.153665 |
PCA 2 | −0.318221 | −0.311611 | −0.309208 | 0.348166 | 0.377922 | 0.352360 | 0.263388 | 0.321127 | 0.381217 |
PCA 3 | 0.050573 | 0.100867 | 0.065376 | −0.074127 | 0.348897 | −0.190996 | −0.603883 | −0.184339 | 0.648564 |
PCA 4 | −0.576526 | −0.199530 | 0.760114 | −0.121149 | −0.074678 | −0.014245 | 0.117300 | −0.037045 | 0.120188 |
PCA 5 | 0.062048 | 0.065969 | −0.120679 | −0.198503 | −0.582283 | −0.293206 | 0.201001 | 0.452767 | 0.517116 |
PCA 6 | 0.076383 | 0.014735 | −0.110901 | −0.152342 | −0.282329 | 0.477741 | 0.275588 | −0.676196 | 0.342499 |
PCA 7 | 0.082735 | −0.021608 | −0.059222 | −0.230230 | 0.454540 | −0.555810 | 0.600908 | −0.236367 | 0.060691 |
PCA 8 | 0.018744 | 0.033687 | −0.043334 | −0.827212 | 0.260085 | 0.381570 | −0.039539 | 0.303178 | −0.075067 |
PCA 9 | −0.581066 | 0.774987 | −0.234825 | 0.012884 | 0.021499 | −0.022616 | 0.039495 | −0.044352 | −0.044133 |
(A) | |||||
Eigenvector | Band 10 | Band 11 | Band 12 | Band 13 | Band 14 |
PCA 1 | −0.387065 | −0.400716 | −0.418903 | −0.501105 | −0.512857 |
PCA 2 | 0.124757 | −0.148619 | −0.793719 | 0.106037 | 0.566669 |
PCA 3 | −0.639764 | −0.511314 | 0.328506 | 0.186276 | 0.432023 |
PCA 4 | 0.630731 | −0.744700 | 0.169973 | 0.079875 | −0.111041 |
PCA 5 | 0.165821 | 0.036321 | 0.240257 | −0.834608 | 0.465714 |
(B) | |||||
Eigenvector | Band 10 | Band 11 | Band 12 | Band 13 | Band 14 |
PCA 1 | −0.393525 | −0.404088 | −0.412766 | −0.496019 | −0.515209 |
PCA 2 | 0.068174 | 0.244757 | 0.733503 | −0.274307 | −0.567605 |
PCA 3 | −0.739002 | −0.349952 | 0.467340 | 0.209083 | 0.263226 |
PCA 4 | −0.528835 | 0.806255 | −0.213160 | −0.138353 | 0.075548 |
PCA 5 | 0.121244 | −0.065522 | 0.166595 | −0.784770 | 0.580852 |
(C) | |||||
Eigenvector | Band 10 | Band 11 | Band 12 | Band 13 | Band 14 |
PCA 1 | −0.387916 | −0.409696 | −0.430823 | −0.491519 | −0.504450 |
PCA 2 | 0.059723 | 0.202526 | 0.734577 | −0.249602 | −0.594568 |
PCA 3 | −0.749770 | −0.351003 | 0.439774 | 0.248107 | 0.244302 |
PCA 4 | 0.532694 | −0.814304 | 0.224886 | 0.010234 | 0.049680 |
PCA 5 | −0.006039 | 0.069557 | 0.175536 | −0.796521 | 0.574340 |
(D) | |||||
Eigenvector | Band 10 | Band 11 | Band 12 | Band 13 | Band 14 |
PCA 1 | −0.386572 | −0.407245 | −0.432094 | −0.491312 | −0.506577 |
PCA 2 | 0.007595 | −0.170349 | −0.765517 | 0.204563 | 0.585714 |
PCA 3 | 0.667689 | 0.466491 | −0.419996 | −0.168193 | −0.363168 |
PCA 4 | 0.605752 | −0.766295 | 0.140070 | 0.132069 | −0.093781 |
PCA 5 | 0.194321 | -0.017612 | 0.176809 | −0.819167 | 0.509541 |
Altered Rock Types | Coordinates |
---|---|
Listvenites | 71°36.026′S–163°16.302′E |
Listvenites | 71°36.011′S–163°16.364′E |
Carbonitization | 70°47.459′S–162°39.438′E |
Carbonitization | 70°47.349′S–162°38.688′E |
Listvenites + sulfides+ albitites | 71°33.638′S–163°11.716′E |
Epidotization + fault zone | 71°23.702′S–162°47.968′E |
Reddish to greenish alteration zone | 71°19.056′S–162°35.167′E |
Epidotization + chlorite in granitoids | 71°31.135′S–162°59.086′E |
Epidotization + prehnite in granite | 71°49.569′S–161°18.145′E |
Epidotization + prehnite in granite | 71°29.123′S–162°38.567′E |
Epidotization in granite | 71°44.753′S–162°59.358′E |
Epidote + serpentine + talc in high grade mafic-ultramafic rocks | 71°27.635′S–162°53.098′E |
Listvenite + serpentine in ultramafic rocks | 71°34.546′S–163°11.185′E |
Listvenite + carbonates in volcanoclastic rocks | 71°32.738′S–163°31.602′E |
Listvenite + carbonates + talc | 71°36.768′S–163°16.407′E |
Carbonitization + silica in volcanoclastic rocks | 71°33.075′S–163° 31.949′E |
Epidotization in Glasgow Volcanics | 71°11.159′S–163°00.378′E |
Epidote + prehnite + quartz in volcanoclastic rocks | 71°23.048′S–162°48.796′E |
Listvenite + quartz + hydraulic breccia in Glasgow Volcanics | 71°27.078′S–163°26.689′E |
Epidote coating fault in Glasgow Volcanics | 71°11.292′S–162°35.369′E |
Listvenites in ultramafic rocks | 71°38.525′S–162°24.458′E |
Class | Listvenites | Carbonitization | Epidotization | Totals (Field data) | User’s Accuracy |
---|---|---|---|---|---|
Listvenites | 5 | 0 | 1 | 6 | 83.33% |
Carbonitization | 1 | 5 | 1 | 7 | 71.42% |
Epidotization | 1 | 2 | 5 | 8 | 62.50% |
Totals (LSU maps) | 7 | 7 | 7 | 21 | |
Producer’s Accuracy | 71.42% | 71.42% | 71.42% |
References
- Crispini, L.; Federico, L.; Giovanni, C.; Talarico, F. The Dorn gold deposit in northern Victoria Land, Antarctica: Structure, hydrothermal alteration, and implications for the Gondwana Pacific margin. Gondwana Res. 2011, 19, 128–140. [Google Scholar] [CrossRef]
- Goldfarb, R.J.; Taylor, R.D.; Collins, G.S.D.; Goryachev, N.A.; Orlandini, O.F. Phanerozoic continental growth and gold metallogeny of Asia. Gondwana Res. 2014, 25, 48–102. [Google Scholar] [CrossRef]
- Zaw, K.; Meffre, S.; Lai, C.K.; Burrett, C.; Santosh, M.; Graham, I.; Manaka, T.; Salam, A.; Kamvong, T.; Cromie, P. Tectonics and metallogeny of mainland Southeast Asia-A reviewand contribution. Gondwana Res. 2014, 26, 5–30. [Google Scholar]
- Zoheir, B.; Emam, A.; El-Amawy, M.; Abu-Alam, T. Auriferous shear zones in the central Allaqi-Heiani belt: Orogenic gold in post-accretionary structures, SE Egypt. J. Afr. Earth Sci. 2017, 146, 118–131. [Google Scholar] [CrossRef]
- Hewson, R.D.; Robson, D.; Carlton, A.; Gilmore, P. Geological application of ASTER remote sensing within sparsely outcropping terrain, Central New South Wales, Australia. Cogent Geosci. 2017, 3, 1319259. [Google Scholar] [CrossRef]
- Pour, A.B.; Park, Y.; Park, T.S.; Hong, J.K.; Hashim, M.; Woo, J.; Ayoobi, I. Evaluation of ICA and CEM algorithms with Landsat-8/ASTER data for geological mapping in inaccessible regions. Geocarto Int. 2019, 34, 785–816. [Google Scholar] [CrossRef]
- Pour, A.B.; Park, Y.; Park, T.S.; Hong, J.K.; Hashim, M.; Woo, J.; Ayoobi, I. Regional geology mapping using satellite-based remote sensing approach in Northern Victoria Land, Antarctica. Polar Sci. 2018, 16, 23–46. [Google Scholar] [CrossRef]
- Pour, A.B.; Park, T.S.; Park, Y.; Hong, J.K.; Zoheir, B.; Pradhan, B.; Ayoobi, I.; Hashim, M. Application of multi-sensor satellite data for exploration of Zn-Pb sulfide mineralization in the Franklinian Basin, North Greenland. Remote Sens. 2018, 10, 1186. [Google Scholar] [CrossRef]
- Pour, A.B.; Hashim, M.; Park, Y.; Hong, J.K. Mapping alteration mineral zones and lithological units in Antarctic regions using spectral bands of ASTER remote sensing data. Geocarto Int. 2018, 33, 1281–1306. [Google Scholar] [CrossRef]
- Testa, F.J.; Villanueva, C.; Cooke, D.R.; Zhang, L. Lithological and hydrothermal alteration mapping of epithermal, porphyry and tourmaline breccia districts in the Argentine Andes using ASTER imagery. Remote Sens. 2018, 10, 203. [Google Scholar] [CrossRef]
- Sheikhrahimi, A.; Pour, B.A.; Pradhan, B.; Zoheir, B. Mapping hydrothermal alteration zones and lineaments associated with orogenic gold mineralization using ASTER remote sensing data: A case study from the Sanandaj-Sirjan Zone, Iran. Adv. Space Res. 2019, 63, 3315–3332. [Google Scholar] [CrossRef]
- Noori, L.; Pour, B.A.; Askari, G.; Taghipour, N.; Pradhan, B.; Lee, C.-W.; Honarmand, M. Comparison of Different Algorithms to Map Hydrothermal Alteration Zones Using ASTER Remote Sensing Data for Polymetallic Vein-Type Ore Exploration: Toroud–Chahshirin Magmatic Belt (TCMB), North Iran. Remote Sens. 2019, 11, 495. [Google Scholar] [CrossRef]
- Spiridonov, E.M. Listvenites and zodites. Int. Geol. Rev. 1991, 33, 397–407. [Google Scholar] [CrossRef]
- Halls, C.; Zhao, R. Listvenite and related rocks: Perspectives on terminology and mineralogy with reference to an occurrence at Cregganbaun, Co. Mayo, Republic of Ireland. Mineral. Deposita 1995, 30, 303–313. [Google Scholar] [CrossRef]
- Uçurum, A. Listwaenites in Turkey: Perspectives on formation and precious metal concentration with reference to occurrences in East-Central Anatolia. Ofioliti 2000, 25, 15–29. [Google Scholar]
- Akbulut, M.; Piskin, O.; Karayigit, A.I. The genesis of the carbonatized and silicified ultramafics known as listvenites: A case study from the Mihaliccik region (Eskisehir) NW Turkey. Geol. J. 2006, 41, 557–580. [Google Scholar] [CrossRef]
- Buisson, G.; Leblanc, M. Gold bearing listwaenites (carbonatized ultramafic rocks) inophiolite complexes. In Metallogeny of Basic and Ultrabasic Rocks; Gallagher, M.J., Ixer, R.A., Neary, C.R., Prichard, H.M., Eds.; The Institution of Mining and Metallurgy: London, UK, 1986; pp. 121–132. [Google Scholar]
- Buisson, G.; Leblanc, M. Gold in mantle peridotites from Upper Proterozoic ophiolites in Arabia, Mali, and Morocco. Econ. Geol. 1987, 82, 2091–2097. [Google Scholar] [CrossRef]
- Hansen, L.D.; Dipple, G.M.; Gordon, T.M.; Kellett, D.A. Carbonated serpentinite (listwanite) at Atlin, British Columbia: A geological analogue to carbon dioxide sequestration. Can. Mineral. 2005, 43, 225–239. [Google Scholar] [CrossRef]
- Zoheir, B.; Lehmann, B. Listvenite-lode association at the Barramiya gold mine, Eastern Desert, Egypt. Ore Geol. Rev. 2011, 39, 101–115. [Google Scholar] [CrossRef]
- Azer, M.K. Evolution and economic significance of listwaenites associated with Neoproterozoic ophiolites in south Eastern Desert, Egypt. Geol. Acta 2013, 11, 113–128. [Google Scholar]
- Kuzhuget, R.V.; Zaikov, V.V.; Lebedev, V.I.; Mongush, A.A. Gold mineralization of the Khaak-Sair gold-quartz ore occurrence in listwanites (western Tuva). Russ. Geol. Geophys. 2015, 56, 1332–1348. [Google Scholar] [CrossRef]
- Belogub, E.V.; Melekestseva, I.Y.; Novoselov, K.A.; Zabotina, M.V.; Tret’yakov, G.A.; Zaykov, V.V.; Yuminov, A.M. Listvenite-related gold deposits of the South Urals (Russia): A review. Ore Geol. Rev. 2017, 85, 247–270. [Google Scholar] [CrossRef]
- Abdel-Karim, A.A.M.; El-Shafei, S.A. Mineralogy and chemical aspects of some ophiolitic metaultramafics, central Eastern Desert, Egypt: Evidences from chromites, sulphides and gangues. Geol. J. 2017, 53, 580–599. [Google Scholar] [CrossRef] [Green Version]
- Falk, E.S.; Kelemen, P.B. Geochemistry and petrology of listvenite in the Samail ophiolite, Sultanate of Oman: Complete carbonation of peridotite during ophiolite emplacement. Geochim. et Cosmochim. Acta 2015, 160, 70–90. [Google Scholar] [CrossRef] [Green Version]
- Ferenc, S.; Uher, P.; Spišiak, J.; Šimonová, V. Chromium- and nickel-rich micas and associated minerals in listvenite from the Muránska Zdychava, Slovakia: Products of hydrothermal metasomatic transformation of ultrabasic rock. J. Geosci. 2016, 61, 239–254. [Google Scholar] [CrossRef]
- Pour, B.A.; Hashim, M. The application of ASTER remote sensing data to porphyry copper and epithermal gold deposits. Ore Geol. Rev. 2012, 44, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Zoheir, B.; Emam, A. Field and ASTER imagery data for the setting of gold mineralization in Western Allaqi-Heiani belt, Egypt: A case study from the Haimur. J. Afr. Earth Sci. 2014, 66, 22–34. [Google Scholar] [CrossRef]
- Gabr, S.S.; Hassan, S.M.; Sadek, M.F. Prospecting for new gold-bearing alteration zones at El-Hoteib area, South Eastern Desert, Egypt, using remote sensing data analysis. Ore Geol. Rev. 2015, 71, 1–13. [Google Scholar] [CrossRef]
- Pour, A.B.; Hashim, M.; Hong, J.K.; Park, Y. Lithological and alteration mineral mapping in poorly exposed lithologies using Landsat-8 and ASTER satellite data: North-eastern Graham Land, Antarctic Peninsula. Ore Geol. Rev. 2019, 108, 112–133. [Google Scholar] [CrossRef]
- Noda, S.; Yamaguchi, Y. Estimation of surface iron oxide abundance with suppression of grain size and topography effects. Ore Geol. Rev. 2017, 83, 312–320. [Google Scholar] [CrossRef]
- Hunt, G.R. Spectral signatures of particulate minerals in the visible and near-infrared. Geophysics 1977, 42, 501–513. [Google Scholar] [CrossRef]
- Hunt, G.R.; Ashley, R.P. Spectra of altered rocks in the visible and near-infrared. Econ. Geol. 1979, 74, 1613–1629. [Google Scholar] [CrossRef]
- Clark, R.N. Spectroscopy of rocks and minerals, and principles of spectroscopy. In Manual of Remote Sensing; Rencz, A., Ed.; Wiley and Sons Inc.: New York, NY, USA, 1999; Volume 3, pp. 3–58. [Google Scholar]
- Cloutis, E.A.; Hawthorne, F.C.; Mertzman, S.A.; Krenn, K.; Craig, M.A.; Marcino, D.; Methot, M.; Strong, J.; Mustard, J.F.; Blaney, D.L.; et al. Detection and discrimination of sulfate minerals using reflectance spectroscopy. Icarus 2006, 184, 121–157. [Google Scholar] [CrossRef]
- Abrams, M.; Hook, S.J. Simulated ASTER data for geologic studies. IEEE Trans. Geosci. Remote Sens. 1995, 33, 692–699. [Google Scholar] [CrossRef]
- Abrams, M.; Hook, S.; Ramachandran, B. ASTER User Handbook, Version 2. Jet Propulsion Laboratory, California Institute of Technology, 2004. Available online: http://asterweb.jpl. nasa.gov/content/03_data/04_Documents/aster_ guide_ v2.pdf (accessed on 21 September 2015).
- Salisbury, J.W.; D’Aria, D.M. Emissivity of terrestrial material in the 8–14 μm atmospheric window. Remote Sens. Environ. 1992, 42, 83–106. [Google Scholar] [CrossRef]
- Salisbury, J.W.; Walter, L.S. Thermal infrared (2.5–13.5 μm) spectroscopic remote sensing of igneous rock types on particulate planetary surfaces. J. Geophys. Res. 1989, 94, 9192–9202. [Google Scholar] [CrossRef]
- Ninomiya, Y. Quantitative estimation of SiO2 content in igneous rocks using thermal infrared spectra with a neural network approach. IEEE Trans. Geosci.Remote Sens. 1995, 33, 684–691. [Google Scholar] [CrossRef]
- Ninomiya, Y.; Fu, B. Thermal infrared multispectral remote sensing of lithology and mineralogy based on spectral properties of materials. Ore Geol. Rev. 2019, 108, 54–72. [Google Scholar] [CrossRef]
- Ninomiya, Y.; Fu, B. Regional lithological mapping using ASTER-TIR data: Case study for the Tibetan Plateau and the surrounding area. Geosciences 2016, 6, 39. [Google Scholar] [CrossRef]
- Rajendran, S.; Nasir, S.; Kusky, T.M.; Ghulam, A.; Gabr, S.; El-Ghali, M.A.K. Detection of hydrothermal mineralized zones associated with listwaenites in Central Oman using ASTER data. Ore Geol. Rev. 2013, 53, 470–488. [Google Scholar] [CrossRef]
- Crispini, L.; Capponi, G. Albitite and listvenite in the Lanterman Fault Zone (northern Victoria Land, Antarctica). In Antarctica at the Close of a Millennium; Gamble, J., Skinner, D.N.B., Henrys, S., Eds.; Ministry of Education: Wellington, New Zealand, 2002; Volume 35, pp. 113–119. [Google Scholar]
- Goodge, J.W.; Fanning, C.M.; Norman, M.D.; Bennet, V. Temporal, Isotopic and Spatial Relations of Early Paleozoic Gondwana-Margin Arc Magmatism, Central Transantarctic Mountains, Antarctica. J. Petrol. 2012, 53, 2027–2065. [Google Scholar] [CrossRef] [Green Version]
- Godard, G.; Palmeri, R. High-pressure metamorphism in Antarctica from the Proterozoic to the Cenozoic: A review and geodynamic implications. Gondwana Res. 2013, 23, 844–864. [Google Scholar] [CrossRef]
- Crispini, L.; Federico, L.; Capponi, G. Structure of the Millen Schist Belt (Antarctica): Clues for the tectonics of northern Victoria Land along the paleo-Pacific margin of Gondwana. Tectonics 2014, 33, 420–440. [Google Scholar] [CrossRef]
- Estrada, S.; Läufer, A.; Eckelmann, K.; Hofmann, M.; Gärtner, A.; Linnemann, U. Continuous Neoproterozoic to Ordovician sedimentation at the East Gondwana margin - Implications from detrital zircons of the Ross Orogen in northern Victoria Land, Antarctica. Gondwana Res. 2016, 37, 426–448. [Google Scholar] [CrossRef]
- Capponi, G.; Crispini, L.; Meccheri, M. The metaconglomerates of the eastern Lanterman Range (northern Victoria Land, Antarctica): New constraints for their interpretation. Antarct. Sci. 1999, 11, 215–225. [Google Scholar] [CrossRef]
- Crispini, L.; Vincenzo, G.D.; Palmeri, R. Petrology and 40Ar–39Ar dating of shear zones in the Lanterman Range (northern Victoria Land, Antarctica): Implications for metamorphic and temporal evolution at terrane boundaries. Mineral. Petrol. 2007, 89, 217–249. [Google Scholar] [CrossRef]
- Federico, L.; Crispini, L.; Capponi, G. Fault-slip analysis and transpressional tectonics: A study of Paleozoic structures in northern Victoria Land, Antarctica. J. Struct. Geol. 2010, 32, 667–684. [Google Scholar] [CrossRef]
- Pertusati, P.C.; Ricci, C.A.; Tessensohn, F. German-Italian Geological Antarctic Map Programme – the Italian Contribution. Introductory Notes to the Map Case. Terra Antart. Rep. 2016, 15, 1–15. [Google Scholar]
- Kleinschmidt, G.; Tessensohn, F. Early Paleozoic westward directed subduction at the Pacific continental margin of Antarctica. In Gondwana Six: Structure, Tectonics, and Geophysics; McKenzie, G., Ed.; AGU Geophysical Monograph Series; American Geophysical Union: Washington, DC, USA, 1987; Volume 40, pp. 89–105. [Google Scholar]
- Federico, L.; Capponi, G.; Crispini, L. The Ross orogeny of the transantarctic mountains: A northern Victoria Land perspective. Int. J. Earth Sci. 2006, 95, 759–770. [Google Scholar] [CrossRef]
- Federico, L.; Crispini, L.; Capponi, G.; Bradshaw, J.D. The Cambrian Ross Orogeny in northern Victoria Land (Antarctica) and New Zealand: A synthesis. Gondwana Res. 2009, 15, 188–196. [Google Scholar] [CrossRef]
- Stump, E. The Ross Orogen of the Transantarctic Mountains; Cambridge University Press: New York, NY, USA, 1995. [Google Scholar]
- Paulsen, T.; Deering, C.; Sliwinski, J.; Bachmann, O.; Guillong, M. A continental arc tempo discovered in the Pacific-Gondwana margin mudpile? Geology 2016, 44, 915–918. [Google Scholar] [CrossRef]
- Menneken, M.; John, T.; Läufer, A.; Giese, J. Zircons from the Granite Harbour Intrusives, northern Victora Land, Antarctica. In Proceedings of the POLAR 2018, Open Science Conference, Davos, Switzerland, 19–23 June 2018. [Google Scholar]
- Jordan, H.; Findlay, R.; Mortimer, G.; Schmidt-Thome, M.; Crawford, A.; Muller, P. Geology of the northern Bowers Mountains, North Victoria Land, Antarctica. Geol. Jahrb. 1984, 60, 57–81. [Google Scholar]
- Rocchi, S.; Capponi, G.; Crispini, L.; Di Vincenzo, G.; Ghezzo, C.; Meccheri, M.; Palmeri, R. Mafic rocks at the WilsoneBowers terrane boundary and within the Bowers Terrane: Clues to the Ross geodynamics in northern Victoria Land, Antarctica. In Proceedings of the 9th International Symposium on Antarctic Earth Sciences, Potsdam, Germany, 8–12 September 2003. [Google Scholar]
- Wright, T.O.; Ross, R.J., Jr.; Repetski, J.E. Newly discovered youngest Cambrian or oldest Ordovician fossils from the Robertson Bay terrane (formerly Precambrian), northern Victoria Land, Antarctica. Geology 1984, 12, 301–305. [Google Scholar] [CrossRef]
- Roland, N.W.; Läufer, A.L.; Rossetti, F. Revision of the Terrane Model of Northern Victoria Land (Antarctica). Terra Antart. 2004, 11, 55–65. [Google Scholar]
- Goodge, J.W. Metamorphism in the Ross orogen and its bearing on Gondwana margin tectonics. In Convergent Margin Terranes and Associated Regions: A Tribute to W.G.; Cloos, M., Carlson, W.D., Gilbert, M.C., Liou, J.G., Sorensen, S.S., Eds.; Geological Society of America Special Paper: Boulder, CO, USA, 2007; Volume 419, pp. 185–203. [Google Scholar]
- Ricci, C.A.; Tessensohn, F. The Lanterman-Mariner suture: Antarctic evidence for active margin tectonics in Paleozoic Gondwana. In Geologisches Jahrbuch; Tessensohn, F., Ricci, C.A., Eds.; Schweizerbart Science Publishers: Stuttgart, Germany, 2003; pp. 303–332. [Google Scholar]
- Phillips, G.; Läufer, A.; Piepjohn, K. Geology of the Millen Thrust System, northern Victoria Land, Antarctica. Polarforschung 2014, 84, 39–47. [Google Scholar]
- Rossetti, F.; Storti, F.; Läufer, A.L. Brittle architecture of the Lanterman Fault and its impact on the final terrane amalgamation in north Victoria Land, Antarctica. J. Geol. Soc. 2002, 159, 159–173. [Google Scholar] [CrossRef]
- Borg, S.G.; Stump, E. Paleozoic magmatism and associated tectonic problems of Northern Victoria Land, Antarctica. In Gondwana Six: Structure, Tectonics and Geophysics; McKenzie, G., Ed.; Geophysical Monograph Series; American Geophysical Union: Washington, DC, USA, 1987; Volume 40, pp. 67–76. [Google Scholar]
- Collinson, J.W. The palaeo-Pacific margin as seen from East Antarctica. In Geological Evolution of Antarctica; Thomson, M.R.A., Crame, J.A., Thomson, J.W., Eds.; Cambridge University Press: New York, NY, USA, 1991; pp. 199–204. [Google Scholar]
- Schöner, R.; Bomfleur, B.; Schneider, J.; Viereck-Götte, L. A Systematic Description of the Triassic to Lower Jurassic Section Peak Formation in North Victoria Land (Antarctica). Polarforschung 2011, 80, 71–87. [Google Scholar]
- Grindley, G.W. The geology of the Queen Alexandra Range, Beardmore Glacier, Ross Dependency, Antarctica; with notes on the correlation of Gondwana sequences. N. Z. J. Geol. Geophys. 1963, 6, 307–347. [Google Scholar] [CrossRef]
- Rossetti, F.; Lisker, F.; Storti, F.; Läufer, A. Tectonic and denudational history of the Rennick Graben (North Victoria Land): Implications for the evolution of rifting between East and West Antarctica. Tectonics 2003, 22, 1016. [Google Scholar] [CrossRef]
- Kleinschmidt, G.; Läufer, A.L. The Matusevich Fracture Zone in Oates Land, East Antarctica. In Antarctica: Contributions to Global Earth Sciences; Fütterer, D.K., Damaske, D., Kleinschmidt, G., Miller, H., Tessensohn, F., Eds.; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2006; pp. 175–180. [Google Scholar]
- Laird, M.G. Evolution of the Cambrian-Early Ordovician Bowers Basin, North Victoria Land, and its relationships with the adjacent wilson and Robertson Bay Terrane. Mem. Della Soc. Geol. Ital. 1987, 33, 25–34. [Google Scholar]
- Laird, M.G.; Bradshaw, J.D. Uppermost Proterozoic and lower Paleozoic geology of the Transantarctic Mountains. In Antarctic Geosciences; Craddock, C., Ed.; University of Wisconsin Press: Madison, WI, USA, 1982; pp. 525–533. [Google Scholar]
- Weaver, S.D.; Bradshaw, J.D.; Laird, M.G. Geochemistry of Cambrian volcanics of the Bowers Supergroup and implications for the Early Paleozoic tectonic evolution of northern Victoria Land. Antarct. Earth Planet. Sci. Lett. 1984, 68, 128–140. [Google Scholar] [CrossRef]
- Wodzicki, A.; Ray, J.R.R. Geology of the Bowers Supergroup, central Bowers Mountains, northern Victoria Land. In Geological Investigation in Northern Victoria Land; Stump, E., Ed.; Antarctic Research Series; AGU: Washington, DC, USA, 1986; Volume 46, pp. 39–68. [Google Scholar]
- Capponi, G.; Crispini, L.; Meccheri, M. Structural history and tectonic evolution of the boundary between the Wilson and Bowers terranes, Lanterman Range, northern Victoria Land. Antarct. Tectonophys. 1999, 312, 249–266. [Google Scholar] [CrossRef]
- Ricci, C.A.; Talarico, F.; Palmeri, R.; Di Vincenzo, G.; Pertusati, P.C. Eclogite at the Antarctic palaeo-Pacific active margin of Gondwana (Lanterman Range, northern Victoria Land, Antarctica). Antarct. Sci. 1996, 8, 277–280. [Google Scholar] [CrossRef]
- Cooley, T.; Anderson, G.P.; Felde, G.W.; Hoke, M.L.; Ratkowski, A.J.; Chetwynd, J.H.; Gardner, J.A.; Adler-Golden, S.M.; Matthew, M.W.; Berk, A.; et al. FLAASH, a MODTRAN4-based atmospheric correction algorithm, its application and validation. IEEE Int. Geosci. Remote Sens. Symp. 2002, 3, 1414–1418. [Google Scholar]
- Kruse, F.A. Comparison of ATREM, ACORN, and FLAASH Atmospheric Corrections using Low-Altitude AVIRIS Data of Boulder, Colorado. In Proceedings of the 13th JPL Airborne Geoscience Workshop, JPL Publication 05-3, Jet Propulsion Laboratory, Pasadena, CA, USA, 31 March–2 April 2004. [Google Scholar]
- Research Systems, Inc. ENVI Tutorials; Research Systems, Inc.: Boulder, CO, USA, 2008. [Google Scholar]
- Iwasaki, A.; Tonooka, H. Validation of a crosstalk correction algorithm for ASTER/SWIR. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2747–2751. [Google Scholar] [CrossRef]
- Gupta, R.P.; Haritashya, U.K.; Singh, P. Mapping dry/wet snow cover in the Indian Himalayas using IRS multispectral imagery. Remote Sens. Environ. 2005, 97, 458–469. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A.; Salomonson, V.V.; DiGirolamo, N.E.; Bayr, K.J. MODIS snow-cover products. Remote Sens. Environ. 2002, 83, 181–1194. [Google Scholar] [CrossRef]
- Singh, A.; Harrison, A. Standardized principal components. Int. J. Remote Sens. 1985, 6, 883–896. [Google Scholar] [CrossRef]
- Jensen, J.R. Introductory Digital Image Processing; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2005. [Google Scholar]
- Chang, Q.; Jing, L.; Panahi, A. Principal component analysis with optimum order sample correlation coefficient for image enhancement. Int. J. Remote Sens. 2006, 27, 3387–3401. [Google Scholar]
- Gupta, R.P. Remote Sensing Geology, 3rd ed.; Springer: Berlin, Germany, 2017; pp. 180–190. [Google Scholar]
- Loughlin, W.P. Principal components analysis for alteration mapping. Photogramm. Eng. Remote Sens. 1991, 57, 1163–1169. [Google Scholar]
- Crosta, A.; Moore, J. Enhancement of Landsat Thematic Mapper imagery for residual soil mapping in SW Minais Gerais State, Brazil: A prospecting case history in Greenstone belt terrain. In Proceedings of the 7th ERIM Thematic Conference: Remote Sensing for Exploration Geology, Calgary, AB, Canada, 2–6 Octorber 1989; pp. 1173–1187. [Google Scholar]
- Gupta, R.P.; Tiwari, R.K.; Saini, V.; Srivastava, N. A simplified approach for interpreting principal component images. Adv. Remote Sens. 2013, 2, 111–119. [Google Scholar] [CrossRef]
- Hyvarinen, A.; Oja, E. Independent component analysis: Algorithms and applications. Neural Netw. 2000, 13, 411–430. [Google Scholar] [CrossRef]
- Hyvärinen, A. Independent component analysis: Recent advances. Philos. Trans. A Math. Phys. Eng. Sci. 2013, 371, 20110534. [Google Scholar] [CrossRef] [PubMed]
- Hyvärinen, A.; Zhang, K.; Shimizu, S.; Hoyer, P.O. Estimation of a structural vector autoregression model using non-Gaussianity. J. Mach. Learn. Res. 2010, 11, 1709–1731. [Google Scholar]
- Shimizu, S. Joint estimation of linear non-Gaussian acyclic models. Neurocomputing 2012, 81, 104–107. [Google Scholar] [CrossRef]
- Hyvärinen, A.; Karhunen, J.; Oja, E. Independent Component Analysis; A Wiley-Interscience Publication; John Wiley & Sons, Inc.: New York, NY, USA, 2001; pp. 1–12. [Google Scholar]
- Boardman, J.W. Inversion of imaging spectrometry data using singular value decomposition. In Proceedings of the IGARSS’89 12th Canadian Symposium on Remote Sensing, Vancouver, BC, Canada, 10–14 July 1989; Volume 4, pp. 2069–2072. [Google Scholar]
- Boardman, J.W. Sedimentary Facies Analysis Using Imaging Spectrometry: A Geophysical Inverse Problem. Ph.D. Thesis, University of Colorado, Boulder, CO, USA, 1992; p. 212. [Google Scholar]
- Adams, J.B.; Smith, M.O.; Gillespie, A.R. Imaging spectroscopy: Interpretation based on spectral mixture analysis. In Remote Geochemical Analysis: Elemental and Mineralogical Composition; Pieters, C.M., Englert, P.A.J., Eds.; Cambridge University Press: New York, NY, USA, 1993; pp. 145–166. [Google Scholar]
- Adams, J.B.; Sabol, D.E.; Kapos, V.; Filho, R.A.; Roberts, D.A.; Smith, M.O.; Gillespie, A.R. Classification of multispectral images based on fractions of endmembers: Application to land-cover change in the Brazilian Amazon. Remote Sens. Environ. 1995, 52, 137–154. [Google Scholar] [CrossRef]
- Kruse, F.A.; Bordman, J.W.; Huntington, J.F. Comparison of airborne hyperspectral data and EO-1 Hyperion for mineral mapping. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1388–1400. [Google Scholar] [CrossRef]
- Kruse, F.A.; Perry, S.L. Regional mineral mapping by extending hyperspectral signatures using multispectral data. IEEE Trans. Geosci. Remote Sens. 2007, 4, 1–14. [Google Scholar]
- Green, A.A.; Berman, M.; Switzer, P.; Craig, M.D. A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Trans. Geosci. Remote Sens. 1988, 26, 65–74. [Google Scholar] [CrossRef] [Green Version]
- Boardman, J.W.; Kruse, F.A. Automated spectral analysis: A geologic example using AVIRIS data, north Grapevine Mountains, Nevada. In Proceedings of the Tenth Thematic Conference on Geologic Remote Sensing, Environmental Research Institute of Michigan, Ann Arbor, MI, USA, 9–12 May 1994; pp. I-407–I-418. [Google Scholar]
- Boardman, J.W.; Kruse, F.A.; Green, R.O. Mapping target signatures via partial unmixing of AVIRIS data. In Summaries, Fifth JPL Airborne Earth Science Workshop; JPL Publication: Pasadena, CA, USA, 1995; Volume 1, pp. 23–26. [Google Scholar]
- Boardman, J.W. Automated spectral unmixing of AVIRIS data using convex geometry concepts. In Summaries, Fourth JPL Airborne Geoscience Workshop; JPL Publication: Pasadena, CA, USA, 1993; Volume 1, pp. 11–14. [Google Scholar]
- Milliken, R.E.; Mustard, J.F. Estimating the water content of hydrated minerals using reflectance spectroscopy I. Effects of darkening agents and low-albedo materials. Icarus 2007, 189, 550–573. [Google Scholar]
- Bishop, J.L.; Lane, M.D.; Dyar, M.D.; Brwon, A.J. Reflectance and emission spectroscopy study of four groups of phyllosilicates: Smectites, kaolinite-serpentines, chlorites and micas. Clay Miner. 2008, 43, 35–54. [Google Scholar] [CrossRef]
- Farrand, W.H.; Harsanyi, J.C. Mapping the distribution of mine tailings in the Coeur d’Alene River Valley, Idaho, through the use of a constrained energy minimization technique. Remote Sens. Environ. 1997, 59, 64–76. [Google Scholar] [CrossRef]
- Chang, C.I.; Heinz, D.C. Constrained subpixel target detection for remotely sensed imagery. IEEE Trans. Geosci. Remote Sens. 2000, 38, 1144–1159. [Google Scholar] [CrossRef] [Green Version]
- Manolakis, D.; Marden, D.; Shaw, G.A. Hyperspectral Image Processing for Automatic Target Detection Applications. Linc. Lab. J. 2003, 14, 79–116. [Google Scholar]
- Chang, C.I.; Liu, J.M.; Chieu, B.C.; Ren, H.; Wang, C.M.; Lo, C.S.; Chung, P.C.; Yang, C.W.; Ma, D.J. Generalized constrained energy minimization approach to subpixel target detection for multispectral imagery. Opt. Eng. 2000, 39, 1275–1281. [Google Scholar]
- Oppenheim, A.V.; Willsky, A.S.; Young, I.T. Signals and Systems; Prentice-Hall, Inc.: Englewood Cliffs, NJ, USA, 1983; p. 256. ISBN 0-13-809731-3. [Google Scholar]
- Johnson, S. Constrained energy minimization and the target-constrained interference-minimized filter. Opt. Eng. 2003, 42, 1850–1854. [Google Scholar] [CrossRef]
- Harsanyi, J.C. Detection and Classification of Subpixel Spectral Signatures in Hyperspectral Image Sequences. Ph.D. Thesis, Department of Electrical Engineering, University of Maryland, Baltimore County, Baltimore, MD, USA, 1993. [Google Scholar]
- Harsanyi, J.C.; Farrand, W.H.; Chang, C.I. Detection of subpixel signatures in hyperspectral image sequences. In Proceedings of the American Society of Photogrammetry & Remote Sensing, Reno, NV, USA, 25–28 April 1994; Lyon, J., Ed.; pp. 236–247. [Google Scholar]
- Kokaly, R.F.; Clark, R.N.; Swayze, G.A.; Livo, K.E.; Hoefen, T.M.; Pearson, N.C.; Wise, R.A.; Benzel, W.M.; Lowers, H.A.; Driscoll, R.L.; et al. USGS Spectral Library Version 7; U.S. Geological Survey Data Series; United States Geological Survey: Reston, VA, USA, 2017; Volume 61, p. 1035. [Google Scholar] [CrossRef]
- Cudahy, T. Satellite ASTER Geoscience Product Notes for Australia; CSIRO: Collingwood, Australia, 2012; Volume 1, ISBN EP-30-07-12-44. [Google Scholar]
- Mars, J.C.; Rowan, L.C. ASTER spectral analysis and lithologic mapping of the Khanneshin carbonate volcano, Afghanistan. Geosphere 2011, 7, 276–289. [Google Scholar] [CrossRef]
- Mars, J.C.; Rowan, L.C. Spectral assessment of new ASTER SWIR surface reflectance data products for spectroscopic mapping of rocks and minerals. Remote Sens. Environ. 2010, 114, 2011–2025. [Google Scholar] [CrossRef]
- Mars, J.C.; Rowan, L.C. Regional mapping of phyllic- and argillic-altered rocks in the Zagros magmatic arc, Iran, using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and logical operator algorithms. Geosphere 2006, 2, 161–186. [Google Scholar] [CrossRef]
- GANOVEX Team. Geological map of North Victoria Land, Antarctica, 1:500,000—Explanatory notes. Geol. Jahrb. B 1987, 66, 7–79. [Google Scholar]
- Yajima, T.; Yamaguchi, Y. Geological mapping of the Francistown area in northeastern Botswana by surface temperature and spectral emissivity information derived from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) thermal infrared data. Ore Geol. Rev. 2013, 134, 134–144. [Google Scholar] [CrossRef]
- Ninomiya, Y.; Fu, B.; Cudahy, T.J. Detecting lithology with Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) multispectral thermal infrared radiance-at-sensor data. Remote Sens. Environ. 2005, 99, 127–139. [Google Scholar] [CrossRef]
- Ramakrishnan, D.; Bharti, R.; Singh, K.D.; Nithya, M. Thermal inertia mapping and its application in mineral exploration: Results from Mamandur polymetal prospect, India. Geophys. J. Int. 2013, 195, 357–368. [Google Scholar] [CrossRef]
- Sgavetti, M.; Pomilio, L.; Meli, S. Reflectance spectroscopy (0.3–2.5 μm) at various scales for bulk-rock identification. Geosphere 2006, 2, 142–160. [Google Scholar] [CrossRef]
- Farrand, W.H.; Harsanyi, J.C. Discrimination of poorly exposed lithologies in imaging spectrometer data. J. Geophys. Res. 1995, 100, 1565–1575. [Google Scholar] [CrossRef]
- Hunt, G.R.; Evarts, R.C. The use of near-infrared spectroscopy to determine the degree of serpentinization of ultramafic rocks. Geophysics 1980, 46, 316–321. [Google Scholar] [CrossRef]
- Van der Meer, F. Estimating and simulating the degree of serpentinization of peridotites using hyperspectral remotely sensed imagery. Nonrenew. Res. 1995, 4, 84–98. [Google Scholar] [CrossRef]
- King, T.V.V.; Clark, R.N. Spectral characteristics of chlorites and Mg-serpentines using high-resolution reflectance spectroscopy. J. Geophys. Res. 1989, 94, 13997–14008. [Google Scholar] [CrossRef]
- Evans, B.W. Control of the products of serpentinization by the Fe2+Mg-1exchange potential of olivine and orthopyroxene. J. Petrol. 2008, 49, 1873–1887. [Google Scholar] [CrossRef]
- Crowley, J.K. Visible and near-infrared (0.4–2.5 μm) reflectance spectra of playa evaporate minerals. J. Geophys. Res. 1991, 96, 16231–16240. [Google Scholar] [CrossRef]
- Gaffey, S.J. Spectral reflectance of carbonate minerals in the visible and near-infrared (0.35–2.55 microns): Calcite, aragonite, and dolomite. Am. Mineral. 1986, 71, 151–162. [Google Scholar]
- Kruse, F.A.; Perry, S.L. Mineral mapping using simulated Worldview-3 short-wave-infrared imagery. Remote Sens. 2013, 5, 2688–2703. [Google Scholar] [CrossRef]
- Rowan, L.C.; Mars, J.C. Lithologic mapping in the Mountain Pass, California area using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data. Remote Sens. Environ. 2003, 84, 350–366. [Google Scholar] [CrossRef]
- Malatesta, C.; Crispini, L.; Laufer, A.; Lisker, F.; Federico, L. Effects of hydrothermal alteration during cycles of deformation along fault zones in granitoids (northern Victoria Land, Antarctica). AGU Fall Meet. Abstr. 2018. [Google Scholar]
- Crispini, L.; Capponi, G.; Laufer, A.; Lisker, F. Fault-controlled ancient hydrothermal systems in North Victoria Land, Antarctica. In Proceedings of the POLAR 2018–Where the Poles Come Together, Open Science Conference, Davos, Switzerland, 19–23 June 2018. [Google Scholar]
- Kelemen, P.B.; Matter, J.; Streit, E.E.; Rudge, J.F.; Curry, W.B.; Bluztajn, J. Rates and mechanisms of mineral carbonation in peridotite: Natural processes and recipes for enhanced, in situ CO2 capture and storage. Ann. Rev. Earth Planet. Sci. 2011, 39, 545–576. [Google Scholar] [CrossRef]
- Klein, C.; Hurlbut, C.S.J. Manual of Mineralogy; Dana, J.D., Ed.; John Wiley and Sons: New York, NY, USA, 1985; p. 596. [Google Scholar]
- Likhoidov, G.G.; Plyusnina, L.P.; Shcheka, Z.A. The behavior of gold during listvenitization: Experimental and theoretical simulation. Dokl. Earth Sci. 2007, 415, 723–726. [Google Scholar] [CrossRef]
Granule ID | Date and Time of Acquisition | Path/Row | Cloud Coverage | Sun Azimuth | Sun Elevation |
---|---|---|---|---|---|
AST_L1T_00312282003214501 | 2003/01/01, 21:45:01 | 66/110 | 1% | 55.417 | 34.625 |
AST_L1T_00301012003215056 | 2003/01/01, 21:51:05 | 66/110 | 2% | 56.520 | 34.555 |
AST_L1T_00301012003215105 | 2003/01/01, 21:51:05 | 66/111 | 1% | 56.972 | 34.077 |
AST_L1T_00301012003215114 | 2003/01/01, 21:51:14 | 66/111 | 1% | 57.568 | 33.573 |
AST_L1T_00301192003213854 | 2003/01/19, 21:38:54 | 66/111 | 3% | 61.896 | 29.830 |
AST_L1T_00301192003213845 | 2003/01/19, 21:38:45 | 66/111 | 1% | 61.357 | 30.402 |
AST_L1T_00312022006215521 | 2006/12/02, 21:55:21 | 67/110 | 1% | 52.247 | 34.707 |
AST_L1T_00312022006215530 | 2006/12/02, 21:55:30 | 67/110 | 3% | 52.693 | 34.114 |
AST_L1T_00312022006215539 | 2006/12/02, 21:55:39 | 67/111 | 5% | 53.417 | 33.845 |
AST_L1T_00301022005221335 | 2005/01/02, 22:13:35 | 68/110 | 1% | 52.821 | 35.641 |
AST_L1T_00301022005221344 | 2005/01/02, 22:13:44 | 68/110 | 2% | 53.395 | 35.254 |
AST_L1T_00301022005221353 | 2005/01/02, 22:13:53 | 68/111 | 4% | 53.756 | 35.665 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beiranvand Pour, A.; Park, Y.; Crispini, L.; Läufer, A.; Kuk Hong, J.; Park, T.-Y.S.; Zoheir, B.; Pradhan, B.; Muslim, A.M.; Hossain, M.S.; et al. Mapping Listvenite Occurrences in the Damage Zones of Northern Victoria Land, Antarctica Using ASTER Satellite Remote Sensing Data. Remote Sens. 2019, 11, 1408. https://doi.org/10.3390/rs11121408
Beiranvand Pour A, Park Y, Crispini L, Läufer A, Kuk Hong J, Park T-YS, Zoheir B, Pradhan B, Muslim AM, Hossain MS, et al. Mapping Listvenite Occurrences in the Damage Zones of Northern Victoria Land, Antarctica Using ASTER Satellite Remote Sensing Data. Remote Sensing. 2019; 11(12):1408. https://doi.org/10.3390/rs11121408
Chicago/Turabian StyleBeiranvand Pour, Amin, Yongcheol Park, Laura Crispini, Andreas Läufer, Jong Kuk Hong, Tae-Yoon S. Park, Basem Zoheir, Biswajeet Pradhan, Aidy M. Muslim, Mohammad Shawkat Hossain, and et al. 2019. "Mapping Listvenite Occurrences in the Damage Zones of Northern Victoria Land, Antarctica Using ASTER Satellite Remote Sensing Data" Remote Sensing 11, no. 12: 1408. https://doi.org/10.3390/rs11121408
APA StyleBeiranvand Pour, A., Park, Y., Crispini, L., Läufer, A., Kuk Hong, J., Park, T.-Y. S., Zoheir, B., Pradhan, B., Muslim, A. M., Hossain, M. S., & Rahmani, O. (2019). Mapping Listvenite Occurrences in the Damage Zones of Northern Victoria Land, Antarctica Using ASTER Satellite Remote Sensing Data. Remote Sensing, 11(12), 1408. https://doi.org/10.3390/rs11121408