The 2018 Mw 7.5 Palu Earthquake: A Supershear Rupture Event Constrained by InSAR and Broadband Regional Seismograms
Abstract
:1. Introduction
2. Data and Method
2.1. Data Processing
2.2. Modeling Method
3. Results
3.1. Geometric Parameters
3.2. Kinematic Rupture
4. Discussion
4.1. An Early Supershear Rupture of the Palu Earthquake
4.2. Comparisons with Published Results
4.3. Transtensional Tectonics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Socquet, A.; Simons, W.; Vigny, C.; McCaffrey, R.; Subarya, C.; Sarsito, D.; Ambrosius, B.; Spakman, W. Microblock rotations and fault coupling in SE Asia triple junction (Sulawesi, Indonesia) from GPS and earthquake slip vector data. J. Geophys. Res. 2006, 111, B08409. [Google Scholar] [CrossRef]
- Bao, H.; Ampuero, J.P.; Meng, L.; Fielding, E.J.; Liang, C.; Milliner, C.; Feng, T.; Huang, H. Early and persistent supershear rupture of the 2018 Mw 7.5 Palu earthquake. Nat. Geosci. 2019, 12, 200–205. [Google Scholar] [CrossRef]
- Bellier, O.; Sébrier, M.; Beaudouin, T.; Villeneuve, M.; Braucher, R.; Bourles, D.; Pratomo, I. High slip rate for a low seismicity along the Palu-Koro active fault in central Sulawesi (Indonesia). Terra Nova 2001, 13, 463–470. [Google Scholar] [CrossRef]
- Wang, S.; Xu, C.; Xu, W.; Yin, Z.; Wen, Y.; Jiang, G. The 2017 Mw 6.6 Poso Earthquake: Implications for Extrusion Tectonics in Central Sulawesi. Seismol. Res. Lett. 2018, 90, 649–658. [Google Scholar] [CrossRef]
- Cipta, A.; Robiana, R.; Griffin, J.D.; Horspool, N.; Hidayati, S.; Cummins, P.R. A probabilistic seismic hazard assessment for Sulawesi, Indonesia. Geol. Soc. Lond. Spec. Pub. 2017, 441, 133–152. [Google Scholar] [CrossRef]
- Watkinson, I.M.; Hall, R. Fault systems of the eastern Indonesian triple junction: Evaluation of Quaternary activity and implications for seismic hazards. Geol. Soc. Lond. Spec. Pub. 2017, 441, 71–120. [Google Scholar] [CrossRef]
- Socquet, A.; Hollingsworth, J.; Pathier, E.; Bouchon, M. Evidence of supershear during the 2018 magnitude 7.5 Palu earthquake from space geodesy. Nat. Geosci. 2019, 12, 192–199. [Google Scholar] [CrossRef]
- EarthArXiv. Available online: https://eartharxiv.org/3bwqa/ (accessed on 31 May 2019).
- Song, X.; Zhang, Y.; Shan, X.; Liu, Y.; Gong, W.; Qu, C. Geodetic observations of the 2018 Mw 7.5 Sulawesi earthquake and its implications for the kinematics of the Palu fault. Geophys. Res. Lett. 2019, 46, 4212–4220. [Google Scholar] [CrossRef]
- Werner, C.; Wegmüller, U.; Strozzi, T.; Wiesmann, A. GAMMA SAR and interferometric processing software. In Proceedings of the ERS ENVISAT Symposium, Gothenburg, Sweden, 16–20 October 2001. [Google Scholar]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The shuttle radar topography mission. Rev. Geophys. 2007, 45, RG2004. [Google Scholar] [CrossRef]
- Goldstein, R.; Zebker, H.; Werner, C. Satellite radar interferometry: Two-dimensional phase unwrapping. Radio Sci. 1988, 23, 713–720. [Google Scholar] [CrossRef] [Green Version]
- Pritchard, M.E.; Simons, M.; Rosen, P.A.; Hensley, S.; Webb, F.H. Co-seismic slip from the 1995 July 30 Mw = 8.1 Antofagasta, Chile, earthquake as constrained by InSAR and GPS observations. Geophys. J. Int. 2002, 150, 362–376. [Google Scholar] [CrossRef]
- Hanssen, R.F. Radar Interferometry: Data Interpretation and Error Analysis; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001. [Google Scholar]
- Wang, S.; Xu, C.; Wen, Y.; Yin, Z.; Jiang, G.; Fang, L. Slip model for the 25 November 2016 Mw 6.6 Aketao earthquake, western China, revealed by Sentinel-1 and ALOS-2 observations. Remote Sens. 2017, 9, 325. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Y.T.; Xu, L.S.; Wei, X.; Jin, M.P.; Zhang, S. The 2014 Mw 6.1 Ludian, Yunnan, earthquake: A complex conjugated ruptured earthquake. Chin. J. Geophys. 2015, 58, 153–162. [Google Scholar] [CrossRef]
- Heimann, S. A Robust Method to Estimate Kinematic Earthquake Source Parameters. Ph.D. Thesis, University of Hamburg, Hamburg, Germany, 2011. [Google Scholar]
- Zheng, X.J.; Zhang, Y.; Ma, Q.; Wang, R.J. Fast inversion of rupture process based on strong motion data and the feasibility of its automation. Chin. J. Geophys. 2018, 61, 4021–4036. [Google Scholar] [CrossRef]
- Maurice, S.D.R.; Wiens, D.A.; Shore, P.J.; Vera, E.; Dorman, L.M. Seismicity and tectonics of the South Shetland Islands and Bransfield Strait from a regional broadband seismograph deployment. J. Geophys. Res. 2003, 108, 2461. [Google Scholar] [CrossRef]
- Feng, W.; Li, Z. A novel hybrid PSO/simplex algorithm for determining earthquake source parameters using InSAR observations. Prog. Geophys. 2010, 25, 1189–1196. [Google Scholar] [CrossRef]
- Feng, W.; Li, Z.; Elliott, J.R.; Fukushima, Y.; Hoey, T.; Singleton, A.; Cook, R.; Xu, Z. The 2011 MW 6.8 Burma earthquake: Fault constraints provided by multiple SAR techniques. Geophys. J. Int. 2013, 195, 650–660. [Google Scholar] [CrossRef]
- Eberhart, R.; Kennedy, J. A new optimizer using particle swarm theory. In Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 4–6 October 1995; pp. 39–43. [Google Scholar] [CrossRef]
- Nelder, J.A.; Mead, R. A simplex method for function minimization. Comput. J. 1965, 7, 308–313. [Google Scholar] [CrossRef]
- Li, Z.; Elliott, J.R.; Feng, W.; Jackson, J.A.; Parsons, B.E.; Walters, R.J. The 2010 MW 6.8 Yushu (Qinghai, China) earthquake: Constraints provided by InSAR and body wave seismology. J. Geophys. Res. 2011, 116, B10302. [Google Scholar] [CrossRef]
- Parsons, B.; Wright, T.; Rowe, P.; Andrews, J.; Jackson, J.; Walker, R.; Khatib, M.; Talebian, M.; Bergman, E.; Engdahl, E.R. The 1994 Sefidabeh (eastern Iran) earthquakes revisited: New evidence from satellite radar interferometry and carbonate dating about the growth of an active fold above a blind thrust fault. Geophys. J. Int. 2006, 164, 202–217. [Google Scholar] [CrossRef]
- Melgar, D.; Bock, Y. Kinematic earthquake source inversion and tsunami runup prediction with regional geophysical data. J. Geophys. Res. 2015, 120, 3324–3349. [Google Scholar] [CrossRef]
- Ide, S.; Takeo, M.; Yoshida, Y. Source process of the 1995 Kobe earthquake: Determination of spatio-temporal slip distribution by Bayesian modeling. Bull. Seismol. Soc. Am. 1996, 86, 547–566. [Google Scholar]
- Zhu, L.; Rivera, L.A. A note on the dynamic and static displacements from a point source in multilayered media. Geophys. J. Int. 2002, 148, 619–627. [Google Scholar] [CrossRef]
- Melgar, D.; Geng, J.; Crowell, B.W.; Haase, J.S.; Bock, Y.; Hammond, W.C.; Allen, R.M. Seismogeodesy of the 2014 Mw 6.1 Napa earthquake, California: Rapid response and modeling of fast rupture on a dipping strike-slip fault. J. Geophys. Res. 2015, 120, 5013–5033. [Google Scholar] [CrossRef]
- Melgar, D.; Fan, W.; Riquelme, S.; Geng, J.; Liang, C.; Fuentes, M.; Vargas, G.; Allen, R.M.; Shearer, P.M.; Fielding, E.J. Slip segmentation and slow rupture to the trench during the 2015, Mw8.3 Illapel, Chile earthquake. Geophys. Res. Lett. 2016, 43, 961–966. [Google Scholar] [CrossRef]
- Melgar, D.; Ganas, A.; Geng, J.; Liang, C.; Fielding, E.J.; Kassaras, I. Source characteristics of the 2015 Mw6.5 Lefkada, Greece, strike-slip earthquake. J. Geophys. Res. 2017, 122, 2260–2273. [Google Scholar] [CrossRef]
- Melgar, D.; Riquelme, S.; Xu, X.; Baez, J.C.; Geng, J.; Moreno, M. The first since 1960: A large event in the Valdivia segment of the Chilean Subduction Zone, the 2016 M7. 6 Melinka earthquake. Earth Planet. Sci. Lett. 2017, 474, 68–75. [Google Scholar] [CrossRef]
- Chen, K.; Liu, Z.; Liang, C.; Song, Y.T. Towards the application of seismogeodesy in central Italy: A case study for the 2016 August 24 Mw 6.1 Italy earthquake modelling. Geophys. J. Int. 2018, 213, 1647–1658. [Google Scholar] [CrossRef]
- Chen, K.; Xu, W.; Mai, P.M.; Gao, H.; Zhang, L.; Ding, X. The 2017 Mw 7.3 Sarpol Zahāb Earthquake, Iran: A compact blind shallow-dipping thrust event in the mountain front fault basement. Tectonophysics 2018, 747, 108–114. [Google Scholar] [CrossRef]
- Wu, C.; Takeo, M.; Ide, S. Source process of the Chi-Chi earthquake: A joint inversion of strong motion data and global positioning system data with a multifault model. Bull. Seismol. Soc. Am. 2001, 91, 1128–1143. [Google Scholar] [CrossRef]
- Fukahata, Y.; Yagi, Y.; Matsu’ura, M. Waveform inversion for seismic source processes using ABIC with two sorts of prior constraints: Comparison between proper and improper formulations. Geophys. Res. Lett. 2003, 30, 1305. [Google Scholar] [CrossRef]
- Lasserre, C.; Peltzer, G.; Crampé, F.; Klinger, Y.; Van Der Woerd, J.; Tapponnier, P. Coseismic deformation of the 2001 Mw=7.8 Kokoxili earthquake in Tibet, measured by synthetic aperture radar interferometry. J. Geophys. Res. 2005, 110, B12408. [Google Scholar] [CrossRef]
- Das, S. The need to study speed. Science 2007, 317, 905–906. [Google Scholar] [CrossRef]
- Vallée, M.; Dunham, E.M. Observation of far-field Mach waves generated by the 2001 Kokoxili supershear earthquake. Geophys. Res. Lett. 2012, 39, L05311. [Google Scholar] [CrossRef]
- Hartzell, S.; Liu, P.; Mendoza, C.; Ji, C.; Larson, K.M. Stability and uncertainty of finite-fault slip inversions: Application to the 2004 Parkfield, California, earthquake. Bull. Seismol. Soc. Am. 2007, 97, 1911–1934. [Google Scholar] [CrossRef]
- Wang, D.; Mori, J. The 2010 Qinghai, China, earthquake: A moderate earthquake with supershear rupture. Bull. Seismol. Soc. Am. 2012, 102, 301–308. [Google Scholar] [CrossRef]
- Sangha, S.; Peltzer, G.; Zhang, A.; Meng, L.; Liang, C.; Lundgren, P.; Fielding, E. Fault geometry of 2015, Mw7. 2 Murghab, Tajikistan earthquake controls rupture propagation: Insights from InSAR and seismological data. Earth Planet. Sci. Lett. 2017, 462, 132–141. [Google Scholar] [CrossRef]
- Bouchon, M.; Bouin, M.P.; Karabulut, H.; Toksöz, M.N.; Dietrich, M.; Rosakis, A.J. How fast is rupture during an earthquake? New insights from the 1999 Turkey earthquakes. Geophys. Res. Lett. 2001, 28, 2723–2726. [Google Scholar] [CrossRef]
- Bouchon, M.; Vallée, M. Observation of long supershear rupture during the magnitude 8.1 Kunlunshan earthquake. Science 2003, 301, 824–826. [Google Scholar] [CrossRef]
- Dunham, E.M.; Archuleta, R.J. Evidence for a supershear transient during the 2002 Denali fault earthquake. Bull. Seismol. Soc. Am. 2004, 94, S256–S268. [Google Scholar] [CrossRef]
- Wang, D.; Mori, J.; Uchide, T. Supershear rupture on multiple faults for the Mw 8.6 Off Northern Sumatra, Indonesia earthquake of April 11, 2012. Geophys. Res. Lett. 2012, 39, L21307. [Google Scholar] [CrossRef]
- Yue, H.; Lay, T.; Freymueller, J.T.; Ding, K.; Rivera, L.; Ruppert, N.A.; Koper, K.D. Supershear rupture of the 5 January 2013 Craig, Alaska (Mw 7.5) earthquake. J. Geophys. Res. 2013, 118, 5903–5919. [Google Scholar] [CrossRef]
- Evangelidis, C.P. Imaging supershear rupture for the 2014 Mw 6.9 Northern Aegean earthquake by backprojection of strong motion waveforms. Geophys. Res. Lett. 2015, 42, 307–315. [Google Scholar] [CrossRef]
- Bouchon, M.; Karabulut, H.; Bouin, M.P.; Schmittbuhl, J.; Vallée, M.; Archuleta, R.; Marsan, D. Faulting characteristics of supershear earthquakes. Tectonophysics 2010, 493, 244–253. [Google Scholar] [CrossRef]
- Michel, R.; Avouac, J.P. Deformation due to the 17 August 1999 Izmit, Turkey, earthquake measured from SPOT images. J. Geophys. Res. 2002, 107, ETG-2. [Google Scholar] [CrossRef]
- Zhang, Z.; Xu, J.; Huang, H.; Chen, X. Seismic characteristics of supershear and sub-Rayleigh earthquakes: Implication from simple cases. Geophys. Res. Lett. 2017, 44, 6712–6717. [Google Scholar] [CrossRef]
- Bouchon, M.; Karabulut, H. The aftershock signature of supershear earthquakes. Science 2008, 320, 1323–1325. [Google Scholar] [CrossRef] [PubMed]
- Dunham, E.M. The Dynamics and Near-Source Ground Motion of Supershear Earthquakes. Ph.D. Thesis, University of California, Santa Barbara, CA, USA, 2005. [Google Scholar]
- Das, S. Supershear Earthquake Ruptures–Theory, Methods, Laboratory Experiments and Fault Superhighways: An Update. In Perspectives on European Earthquake Engineering and Seismology; Ansal, A., Ed.; Springer: Cham, Switzerland, 2015; Volume 2, pp. 1–20. [Google Scholar]
- Rosakis, A.J.; Xia, K.; Lykotrafitis, G.; Kanamori, H. Dynamic shear rupture in frictional interfaces: Speeds, directionality, and modes. In Reference Module in Earth Systems and Environmental Sciences, 2nd ed.; Elias, S.A., Ed.; Springer: Amsterdam, The Netherlands, 2007; Volume 4, pp. 183–213. [Google Scholar]
- Liu, Y.; Lapusta, N. Transition of mode II cracks from sub-Rayleigh to intersonic speeds in the presence of favorable heterogeneity. J. Mech. Phys. Solids 2008, 56, 25–50. [Google Scholar] [CrossRef]
- Huang, Y.; Ampuero, J.P.; Helmberger, D.V. The potential for supershear earthquakes in damaged fault zones—Theory and observations. Earth Planet. Sci. Lett. 2016, 433, 109–115. [Google Scholar] [CrossRef]
- Birgören, G.; Sekiguchi, H.; Irikura, K. Rupture model of the 1999 Düzce, Turkey, earthquake deduced from high and low frequency strong motion data. Geophys. Res. Lett. 2004, 31, L05610. [Google Scholar] [CrossRef]
- Walker, K.T.; Shearer, P.M. Illuminating the near-sonic rupture velocities of the intracontinental Kokoxili Mw 7.8 and Denali fault Mw 7.9 strike-slip earthquakes with global P wave back projection imaging. J. Geophys. Res. 2009, 114, B02304. [Google Scholar] [CrossRef]
- King, G.; Nábělek, J. Role of fault bends in the initiation and termination of earthquake rupture. Science 1985, 228, 984–987. [Google Scholar] [CrossRef] [PubMed]
- Bellier, O.; Sébrier, M.; Seward, D.; Beaudouin, T.; Villeneuve, M.; Putranto, E. Fission track and fault kinematics analyses for new insight into the Late Cenozoic tectonic regime changes in West-Central Sulawesi (Indonesia). Tectonophysics 2006, 413, 201–220. [Google Scholar] [CrossRef]
- Khairina, F.; Chen, W.; Wei, S.; Suardi, I. Focal mechanism of the August 18th 2012 Mw6. 3 Palu-Koro earthquake and its implication of seismic hazard. In AIP Conference Proceedings; AIP Publishing: College Park, CP, USA, 2017; Volume 1857, p. 050003. [Google Scholar]
- Avouac, J.P.; Tapponnier, P. Kinematic model of active deformation in central Asia. Geophys. Res. Lett. 1993, 20, 895–898. [Google Scholar] [CrossRef] [Green Version]
- Walpersdorf, A.; Vigny, C.; Subarya, C.; Manurung, P. Monitoring of the Palu-Koro Fault (Sulawesi) by GPS. Geophys. Res. Lett. 1998, 25, 2313–2316. [Google Scholar] [CrossRef] [Green Version]
- Wessel, P.; Smith, W.H.F.; Scharroo, R.; Luis, J.; Wobbe, F. Generic Mapping Tools: Improved Version Released. Eos Trans. AGU 2013, 94, 409–410. [Google Scholar] [CrossRef] [Green Version]
Source | Strike (°) | Dip (°) | Rake (°) | Seismic Moment (1020 N·m) | Moment Magnitude (Mw) |
---|---|---|---|---|---|
CPPT a | 354 | 75 | 2 | ||
USGS b | 350 | 67 | −17 | 2.497 | 7.5 |
GFZ c | 350 | 58 | −7 | 7.5 | |
IPGP d | 356 | 69 | 11 | ||
gCMT e | 348 | 57 | −15 | 2.82 | 7.6 |
Socquet et al. [7] | variable | 60 | 3.4 | 7.618 | |
Song et al. [9] f | 355 | 64 | −6.8 | ||
Song et al. [9] g | 355 | 58 | −11 | 2.4 | 7.43 |
340 | 28 | −75 | |||
Ulrich et al. [8] h | variable | 65 | −30~30 | 7.57 | |
65 | |||||
90 | |||||
This study | 352 i | 84.7 ± 0.14 | −25.7 ± 0.30 | 2.64 | 7.55 |
Supershear Event | Initial Rupture Speed (km/s) | Supershear Rupture Speed (km/s) | Shear Wave Speed 1 (km/s) | Source |
---|---|---|---|---|
1999 Mw 7.2 Düzce | 2.9 | 3.5~3.6 | ~3.1 | Birgören et al. [58] |
2001 Mw 7.8 Kokoxili | 2.6 | 5.7 | 3.3 | Walker and Shearer [59] |
2002 Mw 7.9 Denali | 3.3 | 5.5 | 3.4 | Walker and Shearer [59] |
2010 Mw 6.9 Yushu | 0~1 | 5.0 | 3.0~3.6 | Wang and Mori [41] |
2012 Mw 8.6 Sumatra | 2~2.5 | 5.0 | 3.5~4.6 | Wang et al. [46] |
2013 Mw 7.6 Craig | 3.0 | 7.0 | 3.8 | Yue et al. [47] |
2018 Mw 7.5 Palu | 5.0 | 5.0 | 2.5~3.1 | Ulrich et al. [8] |
4.1 | 4.1 | 3.4~3.8 | Bao et al. [2] | |
4.1 | 4.1 | 3.4~3.8 | This study |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, J.; Xu, C.; Wen, Y.; Wang, S.; Xu, G.; Zhao, Y.; Yi, L. The 2018 Mw 7.5 Palu Earthquake: A Supershear Rupture Event Constrained by InSAR and Broadband Regional Seismograms. Remote Sens. 2019, 11, 1330. https://doi.org/10.3390/rs11111330
Fang J, Xu C, Wen Y, Wang S, Xu G, Zhao Y, Yi L. The 2018 Mw 7.5 Palu Earthquake: A Supershear Rupture Event Constrained by InSAR and Broadband Regional Seismograms. Remote Sensing. 2019; 11(11):1330. https://doi.org/10.3390/rs11111330
Chicago/Turabian StyleFang, Jin, Caijun Xu, Yangmao Wen, Shuai Wang, Guangyu Xu, Yingwen Zhao, and Lei Yi. 2019. "The 2018 Mw 7.5 Palu Earthquake: A Supershear Rupture Event Constrained by InSAR and Broadband Regional Seismograms" Remote Sensing 11, no. 11: 1330. https://doi.org/10.3390/rs11111330