Reconstruction of MODIS Land Surface Temperature Products Based on Multi-Temporal Information
Abstract
:1. Introduction
2. Materials
2.1. Study Area
2.2. Data
2.3. Data Reprocessing
2.3.1. Resampling
2.3.2. Processing Outliers
2.3.3. LST Retrieval from Ground-Based Measurements
3. Methodology
3.1. MODIS LST Reconstruction Algorithm
3.2. Evaluation Index
- (1)
- Error Analysis:
- (2)
- Temporal Consistency:
- (3)
- Spatial Structure:
- (4)
- Reconstruction Rate
4. Results and Discussion
4.1. Selection of Predictor Data
4.2. Reconstruction of MODIS Aqua LST Data
4.3. Spatial Characteristics of Reconstructed Data
4.4. Validation Using Ground-Based Observations
4.5. Comparisons among Reconstruction Results Based on Different Predictor Data
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Corbari, C.; Mancini, M. Calibration and validation of a distributed energy–water balance model using satellite data of land surface temperature and ground discharge measurements. J. Hydrometeorol. 2014, 15, 376–392. [Google Scholar] [CrossRef]
- Dai, A.; Fyfe, J.C.; Xie, S.-P.; Dai, X. Decadal modulation of global surface temperature by internal climate variability. Nat. Clim. Chang. 2015, 5, 555–559. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, Q.; Batkhishig, O.; Ouyang, Z. Relationship between evapotranspiration and land surface temperature under energy-and water-limited conditions in dry and cold climates. Adv. Meteorol. 2016, 2016, 1835487. [Google Scholar] [CrossRef]
- Li, Z.; Tang, B.; Wu, H.; Ren, H.; Yan, G.; Wan, Z.; Trigo, I.F.; Sobrino, J.A. Satellite-derived land surface temperature: Current status and perspectives. Remote Sens. Environ. 2013, 131, 14–37. [Google Scholar] [CrossRef] [Green Version]
- Wan, Z. New refinements and validation of the collection-6 modis land-surface temperature/emissivity product. Remote Sens. Environ. 2014, 140, 36–45. [Google Scholar] [CrossRef]
- Guillemot, C.; Le Meur, O. Image inpainting: Overview and recent advances. IEEE Signal Proc. Mag. 2014, 31, 127–144. [Google Scholar] [CrossRef]
- Neteler, M. Estimating daily land surface temperatures in mountainous environments by reconstructed modis lst data. Remote Sens. 2010, 2, 333. [Google Scholar] [CrossRef]
- Fan, X.; Liu, H.; Liu, G.; Li, S. Reconstruction of modis land-surface temperature in a flat terrain and fragmented landscape. Int. J. Remote Sens. 2014, 35, 7857–7877. [Google Scholar] [CrossRef]
- Ke, L.; Ding, X.; Song, C. Reconstruction of time-series modis lst in central qinghai-tibet plateau using geostatistical approach. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1602–1606. [Google Scholar] [CrossRef]
- Goovaerts, P. Geostatistics for Natural Resources Evaluation; Oxford University Press: Oxford, UK, 1997. [Google Scholar]
- Xu, Y.; Shen, Y. Reconstruction of the land surface temperature time series using harmonic analysis. Comput. Geosci. 2013, 61, 126–132. [Google Scholar] [CrossRef]
- Menenti, M.; Azzali, S.; Verhoef, W.; van Swol, R. Mapping agroecological zones and time lag in vegetation growth by means of fourier analysis of time series of ndvi images. Adv. Space Res. 1993, 13, 233–237. [Google Scholar] [CrossRef]
- Na, F.; Gaodi, X.; Wenhua, L.; Yajing, Z.; Changshun, Z.; Na, L. Mapping air temperature in the lancang river basin using the reconstructed modis lst data. J. Res. Ecol. 2014, 5, 253–262. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M.J. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Yu, W.; Nan, Z.; Wang, Z.; Chen, H.; Wu, T.; Zhao, L. An effective interpolation method for modis land surface temperature on the qinghai–tibet plateau. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 4539–4550. [Google Scholar] [CrossRef]
- Zeng, C.; Shen, H.; Zhong, M.; Zhang, L.; Wu, P. Reconstructing modis lst based on multitemporal classification and robust regression. IEEE Geosci. Remote Sens. Lett. 2015, 12, 512–516. [Google Scholar] [CrossRef]
- Sun, L.; Chen, Z.; Gao, F.; Anderson, M.; Song, L.; Wang, L.; Hu, B.; Yang, Y. Reconstructing daily clear-sky land surface temperature for cloudy regions from modis data. Comput. Geosci. 2017, 105, 10–20. [Google Scholar] [CrossRef]
- Jin, M. Interpolation of surface radiative temperature measured from polar orbiting satellites to a diurnal cycle: 2. Cloudy-pixel treatment. J. Geophys. Res. 2000, 105, 4061. [Google Scholar] [CrossRef]
- Lu, L.; Venus, V.; Skidmore, A.; Wang, T.; Luo, G. Estimating land-surface temperature under clouds using msg/seviri observations. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 265–276. [Google Scholar] [CrossRef]
- Zhang, X.; Pang, J.; Li, L. Estimation of land surface temperature under cloudy skies using combined diurnal solar radiation and surface temperature evolution. Remote Sens. 2015, 7, 905–921. [Google Scholar] [CrossRef]
- Prakash, S.; Norouzi, H.; Azarderakhsh, M.; Blake, R.; Prigent, C.; Khanbilvardi, R. Estimation of consistent global microwave land surface emissivity from amsr-e and amsr2 observations. J. Appl. Meteorol. Clim. 2018, 57, 907–919. [Google Scholar] [CrossRef]
- Prakash, S.; Norouzi, H.; Azarderakhsh, M.; Blake, R.; Tesfagiorgis, K. Global land surface emissivity estimation from amsr2 observations. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1270–1274. [Google Scholar] [CrossRef]
- Prigent, C.; Jimenez, C.; Aires, F. Toward “all weather” long record, and real-time land surface temperature retrievals from microwave satellite observations. J. Geophys. Res. Atmos. 2016, 121, 5699–5717. [Google Scholar] [CrossRef]
- André, C.; Ottlé, C.; Royer, A.; Maignan, F. Land surface temperature retrieval over circumpolar arctic using ssm/i–ssmis and modis data. Remote Sens. Environ. 2015, 162, 1–10. [Google Scholar] [CrossRef]
- Kou, X.; Jiang, L.; Bo, Y.; Yan, S.; Chai, L. Estimation of land surface temperature through blending modis and amsr-e data with the bayesian maximum entropy method. Remote Sens. 2016, 8, 105. [Google Scholar] [CrossRef]
- Burrough, P.A.; McDonell, R.A. Principles of Geographical Information Systems; Oxford University Press: New York, NY, USA, 1998. [Google Scholar]
- Liang, S. Quantitative Remote Sensing of Land Surfaces; John Wiley & Sons: Hoboken, NJ, USA, 2005; Volume 30. [Google Scholar]
- Wang, K.; Liang, S. Evaluation of aster and modis land surface temperature and emissivity products using long-term surface longwave radiation observations at surfrad sites. Remote Sens. Environ. 2009, 113, 1556–1565. [Google Scholar] [CrossRef]
- Ogawa, K.; Schmugge, T.; Jacob, F.; French, A. Estimation of land surface window (8–12 μm) emissivity from multi-spectral thermal infrared remote sensing—A case study in a part of sahara desert. Geophys. Res. Lett. 2003, 30, 1067. [Google Scholar] [CrossRef]
- Kang, J.; Jin, R.; Li, X.; Zhang, Y.; Zhu, Z. Spatial upscaling of sparse soil moisture observations based on ridge regression. Remote Sens. 2018, 10, 192. [Google Scholar] [CrossRef]
- Hoerl, A.E.; Kennard, R.W. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics. 1970, 12, 55–67. [Google Scholar] [CrossRef]
- Yu, W.; Ma, M.; Wang, X.; Geng, L.; Tan, J.; Shi, J. Evaluation of modis lst products using longwave radiation ground measurements in the northern arid region of china. Remote Sens. 2014, 6, 11494. [Google Scholar] [CrossRef]
Data Source | Variable | Passing Time (Local Time) | Spatial Resolution | Temporal Resolution | Date | Version |
---|---|---|---|---|---|---|
MODIS Terra | LST (MOD11A1) | 10:30/22:30 | 1 km | Daily | January 2014–December 2014 | 6.0 |
MODIS Aqua | LST (MYD11A1) | 01:30/13:30 | 1 km | |||
NDVI (MYD13A2) | ||||||
Emissivity (MYD11B1) | 5 km | |||||
AMSR2 | 36 GHZ TB (V/H) | 01:30/13:30 | 10 km | 2.2 | ||
89 GHZ TB (V/H) | ||||||
SRTM | Elevation | -- | 90 m | -- | -- | 3.0 |
Station | Longitude | Latitude | Elevation | Land Cover | Date | Temporal Resolution | Variable |
---|---|---|---|---|---|---|---|
ARC | 100.464° | 38.047° | 3033 m | Alpine meadow | January 2014–December 2014 | 10 min | Upwelling and downwelling longwave radiation |
ARS | 100.411° | 37.984° | 3536 m | Alpine meadow | |||
JYL | 101.116° | 37.838° | 3750 m | Alpine meadow | |||
HZS | 100.192° | 38.225° | 2612 m | Cropland | |||
HCG | 100.731° | 38.003° | 3137 m | Alpine meadow | |||
EBZ | 100.915° | 37.949° | 3294 m | Alpine meadow |
Station | ||||||||
---|---|---|---|---|---|---|---|---|
Aqua Night (01:30) | ||||||||
ARC | 6.40 | 4.15 | 1.48 | 4.65 | 0.95 | 0.87 | 164 | 149 |
ARS | 4.93 | 4.07 | 1.35 | 2.43 | 0.92 | 0.88 | 170 | 155 |
JYL | 5.79 | 4.72 | 1.34 | 3.08 | 0.92 | 0.88 | 182 | 176 |
HZS | 4.44 | 2.76 | 1.07 | 3.32 | 0.97 | 0.92 | 184 | 169 |
HCG | 5.78 | 4.31 | 1.30 | 3.62 | 0.93 | 0.88 | 165 | 150 |
EBZ | 6.04 | 4.49 | 1.44 | 3.78 | 0.93 | 0.88 | 172 | 157 |
Aqua Day (13:30) | ||||||||
ARC | 6.71 | 4.55 | 1.29 | 4.76 | 0.92 | 0.92 | 265 | 206 |
ARS | 5.94 | 3.85 | 1.29 | 4.34 | 0.89 | 0.88 | 301 | 244 |
JYL | 8.81 | 6.90 | 1.90 | 5.13 | 0.85 | 0.83 | 324 | 269 |
HZS | 6.80 | 4.00 | 1.71 | 5.22 | 0.94 | 0.80 | 232 | 170 |
HCG | 10.66 | 6.67 | 1.38 | 8.20 | 0.87 | 0.85 | 265 | 201 |
EBZ | 8.33 | 5.39 | 1.45 | 6.18 | 0.87 | 0.86 | 287 | 226 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, J.; Tan, J.; Jin, R.; Li, X.; Zhang, Y. Reconstruction of MODIS Land Surface Temperature Products Based on Multi-Temporal Information. Remote Sens. 2018, 10, 1112. https://doi.org/10.3390/rs10071112
Kang J, Tan J, Jin R, Li X, Zhang Y. Reconstruction of MODIS Land Surface Temperature Products Based on Multi-Temporal Information. Remote Sensing. 2018; 10(7):1112. https://doi.org/10.3390/rs10071112
Chicago/Turabian StyleKang, Jian, Junlei Tan, Rui Jin, Xin Li, and Yang Zhang. 2018. "Reconstruction of MODIS Land Surface Temperature Products Based on Multi-Temporal Information" Remote Sensing 10, no. 7: 1112. https://doi.org/10.3390/rs10071112
APA StyleKang, J., Tan, J., Jin, R., Li, X., & Zhang, Y. (2018). Reconstruction of MODIS Land Surface Temperature Products Based on Multi-Temporal Information. Remote Sensing, 10(7), 1112. https://doi.org/10.3390/rs10071112