Multi-Temporal and Spectral Analysis of High-Resolution Hyperspectral Airborne Imagery for Precision Agriculture: Assessment of Wheat Grain Yield and Grain Protein Content
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Site and Data Collection
2.2. In Situ Data Description—GY and GPC Descriptive Statistics, Correlation Analysis and Hyperspectral Profiles
2.3. Spectral Exploratory Analysis Using Narrow-Band Physiological Spectral Indices
2.4. Multi-Temporal Spectral Exploratory Analysis
2.4.1. Temporal Principal Component Analysis (tPCA)
2.4.2. Integration of VIs Over Time
3. Results and Discussion
3.1. In Situ Data Description—GY and GPC Descriptive Statistics, Correlation Analysis and Hyperspectral Profiles
3.2. Spectral Exploratory Analysis Using Narrow-Band Physiological Spectral Indices
3.3. Multi-Temporal Spectral Analysis
3.3.1. Temporal Principal Component Analysis
3.3.2. Integration of VIs Over Time
3.4. Grain Protein Content Estimation Maps
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO. FAOSTAT. 2017. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on January 2018).
- Wright, D.; Rasmussen, V.; Ramsey, R.; Baker, D.; Ellsworth, J. Canopy reflectance estimation of wheat nitrogen content for grain protein management. GISci. Remote Sens. 2004, 41, 287–300. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, L.; Wang, J.; Huang, W.; Song, X.; Li, C. Predicting grain protein content of winter wheat using remote sensing data based on nitrogen status and water stress. Int. J. Appl. Earth Obs. Geoinf. 2005, 7, 1–9. [Google Scholar] [CrossRef]
- Stewart, C.M.; Mcbratney, A.B.; Skerritt, J.H. Site-Specific durum wheat quality and its relationship to soil properties in a single field in Northern New South Wales. Precis. Agric. 2002, 3, 155–168. [Google Scholar] [CrossRef]
- Long, D.S.; Engel, R.E.; Carpenter, F.M. On-Combine Sensing and Mapping of Wheat Protein Concentration. Crop Manag. 2005, 4. [Google Scholar] [CrossRef]
- Long, D.S.; Engel, R.E.; Siemens, M.C. Measuring grain protein concentration with in-line near infrared reflectance spectroscopy. Agron. J. 2008, 100, 247–252. [Google Scholar] [CrossRef]
- Bramley, R.; Mowat, D.; Gobbett, D.; Branson, M.; Wakefield, A.; Wilksch, R. Mixing grapes and grain-Scoping the opportunity for selective harvesting in cereals. In Capturing Opportunities and Overcoming Obstacles in Australian Agronomy. Proceedings of 16th Australian Agronomy Conference 2012, Armidale, NSW. Australian, 14–18 October 2012; Australian Society of Agronomy Inc.: Armidale, Australia, 2012; Volume 16. [Google Scholar]
- Shewry, P.R. Improving the protein content and composition of cereal grain. J. Cereal Sci. 2007, 46, 239–250. [Google Scholar] [CrossRef]
- McMullan, P.M.; McVetty, P.B.E.; Urquhart, A.A. Dry matter and nitrogen accumulation and redistribution and their relationship to grain yield and grain protein in wheat. Can. J. Plant Sci. 1988, 68, 311–322. [Google Scholar] [CrossRef]
- Mariotti, F.; Tomé, D.; Mirand, P.P. Converting nitrogen into protein—Beyond 6.25 and Jones’ factors. Crit. Rev. Food Sci. Nutr. 2008, 48, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Daniel, C.; Triboi, E. Effects of temperature and nitrogen nutrition on the grain composition of winter wheat: Effects on gliadin content and composition. J. Cereal Sci. 2000, 32, 45–56. [Google Scholar] [CrossRef]
- Ottman, M.J.; Doerge, T.A.; Martin, E.C. Durum grain quality as affected by nitrogen fertilization near anthesis and irrigation during grain fill. Agron. J. 2000, 92, 1035–1041. [Google Scholar] [CrossRef]
- Rharrabti, Y.; Villegas, D.; Garcia Del Moral, L.F.; Aparicio, N.; Elhani, S.; Royo, C. Environmental and genetic determination of protein content and grain yield in durum wheat under Mediterranean conditions. Plant Breed. 2001, 120, 381–388. [Google Scholar] [CrossRef]
- Altenbach, S.B.; DuPont, F.M.; Kothari, K.M.; Chan, R.; Johnson, E.L.; Lieu, D. Temperature, water and fertilizer influence the timing of key events during grain development in a US spring wheat. J. Cereal Sci. 2003, 37, 9–20. [Google Scholar] [CrossRef]
- Triboï, E.; Martre, P.; Triboï Blondel, A.M. Environmentally-induced changes in protein composition in developing grains of wheat are related to changes in total protein content. J. Exp. Bot. 2003, 54, 1731–1742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jamieson, P.D.; Semenov, M.A. Modelling nitrogen uptake and redistribution in wheat. Field Crop. Res. 2000, 68, 21–29. [Google Scholar] [CrossRef]
- Martre, P.; Porter, J.R.; Jamieson, P.D..; Triboï, E. Modeling grain nitrogen accumulation and protein composition to understand the sink/source regulations of nitrogen remobilization for wheat. Plant Phisiol. 2003, 133, 1959–1967. [Google Scholar] [CrossRef] [PubMed]
- Dupont, F.; Altenbach, S. Molecular and biochemical impacts of environmental factors on wheat grain development and protein synthesis. J. Cereal Sci. 2003, 38, 133–146. [Google Scholar] [CrossRef]
- Blankenau, K.; Olfs, H.W.; Kuhlmann, H. Strategies to improve the use efficiency of mineral fertilizer nitrogen applied to winter wheat. J. Agron. Crop Sci. 2002, 188, 146–154. [Google Scholar] [CrossRef]
- Fischer, R.A.; Howe, G.N.; Ibrahim, Z. Irrigated spring wheat and timing and amount of nitrogen fertilizer. I. Grain yield and protein content. Field Crop. Res. 1993, 33, 37–56. [Google Scholar] [CrossRef]
- Bogard, M.; Allard, V.; Brancourt-Hulmel, M.; Heumez, E.; MacHet, J.M.; Jeuffroy, M.H.; Gate, P.; Martre, P.; Le Gouis, J. Deviation from the grain protein concentration-grain yield negative relationship is highly correlated to post-anthesis N uptake in winter wheat. J. Exp. Bot. 2010, 61, 4303–4312. [Google Scholar] [CrossRef] [PubMed]
- Hirel, B.; Le Gouis, J.; Ney, B.; Gallais, A. The challenge of improving nitrogen use efficiency in crop plants: Towards a more central role for genetic variability and quantitative genetics within integrated approaches. J. Exp. Bot. 2007, 58, 2369–2387. [Google Scholar] [CrossRef] [PubMed]
- Gaju, O.; Allard, V.; Martre, P.; Snape, J.W.; Heumez, E.; LeGouis, J.; Moreau, D.; Bogard, M.; Griffiths, S.; Orford, S.; et al. Identification of traits to improve the nitrogen-use efficiency of wheat genotypes. Field Crop. Res. 2011, 123, 139–152. [Google Scholar] [CrossRef]
- Marti, J.; Bort, J.; Slafer, G.A.; Araus, J.L. Can wheat yield be assessed by early measurements of Normalized Difference Vegetation Index? Ann. Appl. Biol. 2007, 150, 253–257. [Google Scholar] [CrossRef]
- Gaju, O.; Allard, V.; Martre, P.; Le Gouis, J.; Moreau, D.; Bogard, M.; Hubbart, S.; Foulkes, M.J. Nitrogen partitioning and remobilization in relation to leaf senescence, grain yield and grain nitrogen concentration in wheat cultivars. Field Crop. Res. 2014, 155, 213–223. [Google Scholar] [CrossRef]
- Reyniers, M.; Vrindts, E. Measuring wheat nitrogen status from space and ground-based platform. Int. J. Remote Sens. 2006, 27, 549–567. [Google Scholar] [CrossRef]
- Wang, Z.J.; Wang, J.H.; Liu, L.Y.; Huang, W.J.; Zhao, C.J.; Wang, C.Z. Prediction of grain protein content in winter wheat (Triticum aestivum L.) using plant pigment ratio (PPR). Field Crop. Res. 2004, 90, 311–321. [Google Scholar] [CrossRef]
- Baret, F.; Guyot, G. Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sens. Environ. 1991, 35, 161–173. [Google Scholar] [CrossRef]
- Bannari, A.; Morin, D.; Bonn, F.; Huete, A.R. A review of vegetation indices. Remote Sens. Rev. 1995, 13, 95–120. [Google Scholar] [CrossRef]
- Merriman, J. Remote Sensing and Hyperspectral Data to Estimate Wheat and Maize Crop Characteristics in the Yaqui Valley, Mexico. Master’s Thesis, Université Catholique de Louvain, Louvain-la-Neuve, Belgium, 2017. [Google Scholar]
- Daughtry, C.S.T.; Walthall, C.L.; Kim, M.S.; Brown de Colstoun, E.; McMurtrey, J.E., III. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sens. Environ. 2000, 74, 229–239. [Google Scholar] [CrossRef]
- Blackburn, G.A. Spectral indices for estimating photosynthetic pigment concentrations: A test using senescent tree leaves. Int. J. Remote Sens. 1998, 19, 657–675. [Google Scholar] [CrossRef]
- Reyns, P.; Spaepen, P.; De Baerdemaeker, J. Site-specific relationship between grain quality and yield. Precis. Agric. 2000, 2, 231–246. [Google Scholar] [CrossRef]
- Delin, S. Within-field variations in grain protein content—Relationships to yield and soil nitrogen and consistency in maps between years. Precis. Agric. 2004, 5, 565–577. [Google Scholar] [CrossRef]
- Diacono, M.; Castrignanò, A.; Troccoli, A.; De Benedetto, D.; Basso, B.; Rubino, P. Spatial and temporal variability of wheat grain yield and quality in a Mediterranean environment: A multivariate geostatistical approach. Field Crop. Res. 2012, 131, 49–62. [Google Scholar] [CrossRef]
- Shanahan, J.F.; Schepers, J.S.; Francis, D.D.; Varvel, G.E.; Wilhelm, W.W.; Tringe, J.M.; Schlemmer, M.R.; Major, D.J. Use of remote-sensing imagery to estimate corn grain yield. Agron. J. 2001, 93, 583–589. [Google Scholar] [CrossRef]
- Leon, C.T.; Shaw, D.R.; Cox, M.S.; Abshire, M.J.; Ward, B.; Wardlaw, M.C.; Watson, C. Utility of Remote Sensing in Predicting Crop and Soil Characteristics. Precis. Agric. 2003, 4, 359–384. [Google Scholar] [CrossRef]
- Inman, D.; Khosla, R.; Reich, R.; Westfall, D.G. Normalized difference vegetation index and soil color-based management zones in irrigated maize. Agron. J. 2008, 100, 60–66. [Google Scholar] [CrossRef]
- Blaes, X.; Chomé, G.; Lambert, M.J.; Traoré, P.S.; Schut, A.G.T.; Defourny, P. Quantifying fertilizer application response variability with VHR satellite NDVI time series in a rainfed smallholder cropping system of Mali. Remote Sens. 2016, 8, 531. [Google Scholar] [CrossRef]
- Blaes, X.; Lambert, M.J.; Chomé, G.; Traore, P.S.; De By, R.A.; Defourny, P. Yield mapping for different crops in Sudano-Sahelian smallholder farming systems: Results based on metric Worldview and decametric SPOT-5 Take5 time series. In ESA Living Planet: Proceedings of ESA Living Planet Symposium 2016, Prague, Czech Republic, 9–13 May 2016; ESA: Paris, France, 2016; Volume SP-740. [Google Scholar]
- Rouse, J.W.; Hass, R.H.; Schell, J.A.; Deering, D.W.; Harlan, J.C. Monitoring the Vernal Advancement of Retrogradation of Natural Vegetation; Type III, Final Report; NASA’s Goddard Space Flight Center: Greenbelt, MD, USA, 1974; p. 371.
- Zarco-Tejada, P.J.; Ustin, S.L.; Whiting, M.L. Temporal and spatial relationships between within-field yield variability in cotton and high-spatial hyperspectral remote sensing imagery. Agron. J. 2005, 97, 641–653. [Google Scholar] [CrossRef]
- Eitel, J.U.H.; Long, D.S.; Gessler, P.E.; Hunt, E.R. Combined spectral index to improve ground-based estimates of nitrogen status in dryland wheat. Agron. J. 2008, 100, 1694–1702. [Google Scholar] [CrossRef]
- Basnet, B.B.; Apan, A.A.; Kelly, R.M.; Jensen, T.A.; Strong, W.M.; Butler, D.G. Relating satellite imagery with grain protein content. In Proceedings of the Spatial Sciences 2003 Conference, Canberra, Australia, 22–26 September 2003; pp. 1–11. [Google Scholar]
- Feng, M.C.; Xiao, L.J.; Zhang, M.J.; Ding, G.W. Integrating remote sensing and GIS for prediction of winter wheat (Triticum aestivum) protein contents in Linfen (Shanxi), China. PLoS ONE 2014, 9, e80989. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Tian, Y.; Yao, X.; Zhu, Y.; Cao, W. Predicting grain yield and protein content in wheat by fusing multi-sensor and multi-temporal remote-sensing images. Field Crop. Res. 2014, 164, 178–188. [Google Scholar] [CrossRef]
- Hansen, P.M.; Jørgensen, J.R.; Thomsen, A. Predicting grain yield and protein content in winter wheat and spring barley using repeated canopy reflectance measurements and partial least squares regression. J. Agric. Sci. 2002, 139, 307–318. [Google Scholar] [CrossRef]
- Jensen, T.; Apan, A.; Young, F.; Zeller, L. Detecting the attributes of a wheat crop using digital imagery acquired from a low-altitude platform. Comput. Electron. Agric. 2007, 59, 66–77. [Google Scholar] [CrossRef] [Green Version]
- Xue, L.H.; Cao, W.X.; Yang, L.Z. Predicting grain yield and protein content in winter wheat at different N supply levels using canopy reflectance spectra. Pedosphere 2007, 17, 646–653. [Google Scholar] [CrossRef]
- Perry, E.M.; Fitzgerald, G.J.; Nuttall, J.G.; O’Leary, G.J.; Schulthess, U.; Whitlock, A. Rapid estimation of canopy nitrogen of cereal crops at paddock scale using a Canopy Chlorophyll Content Index. Field Crop. Res. 2012, 134, 158–164. [Google Scholar] [CrossRef]
- Becker-Reshef, I.; Vermote, E.; Lindeman, M.; Justice, C. A generalized regression-based model for forecasting winter wheat yields in Kansas and Ukraine using MODIS data. Remote Sens. Environ. 2010, 114, 1312–1323. [Google Scholar] [CrossRef]
- Dempewolf, J.; Adusei, B.; Becker-Reshef, I.; Hansen, M.; Potapov, P.; Khan, A.; Barker, B. Wheat yield forecasting for Punjab Province from vegetation index time series and historic crop statistics. Remote Sens. 2014, 6, 9653–9675. [Google Scholar] [CrossRef]
- Willis, P.R.; Carter, P.G.; Johannsen, C.J. Assessing yield parameters by remote sensing techniques. In Precision Agriculture; Robert, P.C., Rust, R.H., Larson, W.E., Eds.; American Society of Agronomy, Crop Science Society of America, Soil Science Society of America: Madison, WI, USA, 1999; pp. 1465–1473. [Google Scholar]
- Inoue, Y.; Miah, G.; Sakaiya, E.; Nakano, K.; Kawamura, K. NDSI Map and IPLS Using Hyperspectral Data for Assessment of Plant and Ecosystem Variables—With a Case Study on Remote Sensing of Grain Protein Content, Chlorophyll Content and Biomass in Rice. J. Remote Sens. Soc. Jpn. 2008, 28, 317–330. [Google Scholar]
- Inoue, Y.; Peñuelas, J.; Miyata, A.; Mano, M. Normalized difference spectral indices for estimating photosynthetic efficiency and capacity at a canopy scale derived from hyperspectral and CO2 flux measurements in rice. Remote Sens. Environ. 2008, 112, 156–172. [Google Scholar] [CrossRef]
- Stagakis, S.; Markos, N.; Sykioti, O.; Kyparissis, A. Monitoring canopy biophysical and biochemical parameters in ecosystem scale using satellite hyperspectral imagery: An application on a Phlomis fruticosa Mediterranean ecosystem using multiangular CHRIS/PROBA observations. Remote Sens. Environ. 2010, 114, 977–994. [Google Scholar] [CrossRef]
- Inoue, Y.; Sakaiya, E.; Zhu, Y.; Takahashi, W. Diagnostic mapping of canopy nitrogen content in rice based on hyperspectral measurements. Remote Sens. Environ. 2012, 126, 210–221. [Google Scholar] [CrossRef]
- Stratoulias, D.; Balzter, H.; Zlinszky, A.; Tóth, V.R. Assessment of ecophysiology of lake shore reed vegetation based on chlorophyll fluorescence, field spectroscopy and hyperspectral airborne imagery. Remote Sens. Environ. 2015, 157, 72–84. [Google Scholar] [CrossRef] [Green Version]
- Inoue, Y.; Guérif, M.; Baret, F.; Skidmore, A.; Gitelson, A.; Schlerf, M.; Darvishzadeh, R.; Olioso, A. Simple and robust methods for remote sensing of canopy chlorophyll content: A comparative analysis of hyperspectral data for different types of vegetation. Plant. Cell Environ. 2016, 39, 2609–2623. [Google Scholar] [CrossRef] [PubMed]
- Meisner, C.A.; Acevedo, E.; Flores, D.; Sayre, K.; Ortiz-Monasterio, J.I.; Byerlee, D. Wheat Production and Grower Practices in the Yaqui Valley, Sonora, Mexico; CIMMYT: Texcoco, Mexico, 1992; Volume 6, ISBN 9686127992. [Google Scholar]
- Zadoks, J.C.; Chang, T.T.; Konzak, C.F. A decimal code for the growth stages of cereals. Weed Res. 1974, 14, 415–421. [Google Scholar] [CrossRef]
- Gueymard, C. SMARTS2: A Simple Model of the Atmospheric Radiative Transfer of Sunshine: Algorithms and Performance Assessment; Florida Solar Energy Center: Cocoa, FL, USA, 1995. [Google Scholar]
- Gueymard, C.A. Interdisciplinary applications of a versatile spectral solar irradiance model: A review. Energy 2005, 30, 1551–1576. [Google Scholar] [CrossRef]
- Berni, J.A.J.; Zarco-Tejada, P.J.; Suárez, L.; Fereres, E.; Suarez, L.; Fereres, E. Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle. IEEE Trans. Geosci. Remote Sens. 2009, 47, 722–738. [Google Scholar] [CrossRef] [Green Version]
- Zarco-Tejada, P.J.; González-Dugo, V.; Berni, J.A.J. Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera. Remote Sens. Environ. 2012, 117, 322–337. [Google Scholar] [CrossRef] [Green Version]
- Zarco-Tejada, P.J.; González-Dugo, M.V.; Fereres, E. Seasonal stability of chlorophyll fluorescence quanti fi ed from airborne hyperspectral imagery as an indicator of net photosynthesis in the context of precision agriculture. Remote Sens. Environ. 2016, 179, 89–103. [Google Scholar] [CrossRef]
- Calderón, R.; Navas-Cortés, J.A.; Lucena, C.; Zarco-Tejada, P.J. High-resolution airborne hyperspectral and thermal imagery for early detection of Verticillium wilt of olive using fluorescence, temperature and narrow-band spectral indices. Remote Sens. Environ. 2013, 139, 231–245. [Google Scholar] [CrossRef] [Green Version]
- Calderón, R.; Navas-Cortés, J.A.; Zarco-Tejada, P.J. Early detection and quantification of Verticillium Wilt in olive using hyperspectral and thermal imagery over large areas. Remote Sens. 2015, 7, 5584–5610. [Google Scholar] [CrossRef]
- Pask, A.; Pietragalla, J.; Mullan, D. Physiological Breeding II: A Field Guide to Wheat Phenotyping; CIMMYT: Texcoco, Mexico, 2012; ISBN 9789706481825. [Google Scholar]
- Bramley, R.G.V.; White, R.E. An analysis of variability in the activity of nitrifiers in a soil under pasture. II. Some problems in the geostatistical analysis of biological soil properties. Aust. J. Soil Res. 1991, 29, 109–122. [Google Scholar] [CrossRef]
- Bramley, R.G.V. Understanding variability in winegrape production systems 2. Within vineyard variation in quality over several vintages. Aust. J. Grape Wine Res. 2005, 11, 33–42. [Google Scholar] [CrossRef]
- Isaaks, E.H.; Srivastava, R.M. Applied Geostatistics; Oxford University Press: New York, NY, USA, 1989. [Google Scholar]
- Rodrigues, F.A., Jr.; Ortiz-Monasterio, I.; Zarco-Tejada, P.J.; Schulthess, U.; Gérard, B. High resolution remote and proximal sensing to assess low and high yield areas in a wheat field. In Precision Agriculture 2015—Papers Presented at the 10th European Conference on Precision Agriculture, ECPA 2015; Wageningen Academic Publishers: Wageningen, The Netherlands, 2015. [Google Scholar]
- Webster, R.; Oliver, M.A. Geostatistics for Environmental Scientists; John Wiley & Sons: Hoboken, NJ, USA, 2007; ISBN 0470517263. [Google Scholar]
- AACC. Approved Methods of the AACC. In American Association of Cereal Chemists International; AACC: St. Paul, MN, USA, 2010; ISBN 978-1-891127-68-2. [Google Scholar]
- Minasny, B.; McBratney, A.B.; Whelan, B.M. VESPER Version 1.62; Australian Centre for Precision Agriculture: St. Louis, MO, USA, 2005. [Google Scholar]
- Feil, B. The inverse yield-protein relationship in cereals: Possibilities and limitations for genetically improving the grain protein yield. Trends Agron. 1997, 1, 103–119. [Google Scholar]
- Simmonds, N.W. The relation between yield and protein in cereal grain. J. Sci. Food Agric. 1995, 67, 309–315. [Google Scholar] [CrossRef]
- Slafer, G.A.; Andrade, F.H.; Feingold, S.E. Genetic improvement of bread wheat (Triticum aestivum L.) in Argentina: Relationships between nitrogen and dry matter. Euphytica 1990, 50, 63–71. [Google Scholar] [CrossRef]
- Whelan, B.M.; Taylor, J.A.; Hassall, J.A. Site-specific variation in wheat grain protein concentration and wheat grain yield measured on an Australian farm using harvester-mounted on-the-go sensors. Crop Pasture Sci. 2009, 60, 808–817. [Google Scholar] [CrossRef]
- Rodrigues, F.A.; Ortiz-Monasterio, I.; Zarco-Tejada, P.J.; Toledo, F.H.R.B. High resolution hyperspectral imagery to assess wheat grain protein in a farmer’s field. In Precision Agriculture 2016—Papers Presented at the 13th International Conference on Precision Agriculture, ECPA 2016; International Society of Precision Agriculture: Monticello, IL, USA, 2016; pp. 1–13. [Google Scholar]
- Huete, A.R.; Liu, H.Q.; Batchily, K.; Van Leeuwen, W. A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sens. Environ. 1997, 59, 440–451. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Tremblay, N.; Zarco-Tejada, P.J.; Dextraze, L. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sens. Environ. 2002, 81, 416–426. [Google Scholar] [CrossRef]
- Team, R.C. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2016. [Google Scholar]
- Wickham, H. The split-apply-combine strategy for data analysis. J. Stat. Softw. 2011, 40, 1–29. [Google Scholar] [CrossRef]
- Wong, M.T.F.; Asseng, S.; Zhang, H. A flexible approach to managing variability in grain yield and nitrate leaching at within-field to farm scales. Precis. Agric. 2006, 7, 405–417. [Google Scholar] [CrossRef]
- Wiegand, C.L.; Richardson, A.J.; Escobar, D.E.; Gerbermann, A.H. Vegetation indices in crop assessments. Remote Sens. Environ. 1991, 35, 105–119. [Google Scholar] [CrossRef]
- Moriondo, M.; Maselli, F.; Bindi, M. A simple model of regional wheat yield based on NDVI data. Eur. J. Agron. 2007, 26, 266–274. [Google Scholar] [CrossRef]
- Zheng, T.C.; Zhang, X.K.; Yin, G.H.; Wang, L.N.; Han, Y.L.; Chen, L.; Huang, F.; Tang, J.W.; Xia, X.C.; He, Z.H. Genetic gains in grain yield, net photosynthesis and stomatal conductance achieved in Henan Province of China between 1981 and 2008. Field Crop. Res. 2011, 122, 225–233. [Google Scholar] [CrossRef]
- Xiao, Y.G.; Qian, Z.G.; Wu, K.; Liu, J.J.; Xia, X.C.; Ji, W.Q.; He, Z.H. Genetic gains in grain yield and physiological traits of winter wheat in Shandong province, China, from 1969 to 2006. Crop Sci. 2012, 52, 44–56. [Google Scholar] [CrossRef]
- Aisawi, K.A.B.; Reynolds, M.P.; Singh, R.P.; Foulkes, M.J. The physiological basis of the genetic progress in yield potential of CIMMYT spring wheat cultivars from 1966 to 2009. Crop Sci. 2015, 55, 1749–1764. [Google Scholar] [CrossRef]
- Thenkabail, P.S.; Smith, R.B.; De Pauw, E. Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sens. Environ. 2000, 71, 158–182. [Google Scholar] [CrossRef]
- Richardson, A.D.; Duigan, S.P.; Berlyn, G.P. An evaluation of noninvasive methods to estimate foliar chlorophyll content. New Phytol. 2002, 153, 185–194. [Google Scholar] [CrossRef] [Green Version]
- Sims, D.A.; Gamon, J.A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Sylvester-Bradley, R.; Berry, P.; Blake, J.; Kindred, D.; Spink, J.; Bingham, I.; McVittie, J.; Foulkes, J.; Edwards, C.; Dodgson, G. The Wheat Growth Guide; H.G.C.A: London, UK, 2008. [Google Scholar]
- Hurcom, S.J.; Harrison, A.R.; Taberner, M. Assessment of biophysical vegetation properties through spectral decomposition techniques. Remote Sens. Environ. 1996, 56, 203–214. [Google Scholar] [CrossRef]
- Kaiser, H.F. The application of electronic computers to factor analysis. Educ. Psychol. Meas. 1960, 20, 141–151. [Google Scholar] [CrossRef]
- Slafer, G. Wheat development: Its role in phenotyping and improving crop adaptation. In Physiological Breeding I: Interdisciplinary Approaches to Improve Crop Adaptation; Reynolds, M.P., Pask, A.J.D., Mullan, D.M., Eds.; CIMMYT: Texcoco, Mexico, 2012; ISBN 9706481818. [Google Scholar]
- Dubey, R.P.; Ajwani, N.D.; Navalgund, R.R. Relation of wheat yield with parameters derived from a spectral growth profile. J. Indian Soc. Remote Sens. 1991, 19, 27–44. [Google Scholar] [CrossRef]
Image Date | Crop Growth Stage |
---|---|
14 February | Initiation of stem elongation (GS31) |
19 February | Stem elongation period |
27 February | Stem elongation period |
11 March | Booting (GS41) |
17 March | Heading (GS55) |
28 March | Anthesis (GS65) |
7 April | Grain filling (GS71) |
15 April | Late milk (GS77) |
25 April | Physiological maturity (GS87) |
7 May | Grain hard (GS92) |
Index | Formula | Reference |
---|---|---|
GY | ||
Enhanced vegetation index (EVI) | [82] | |
Modified triangular vegetation index 2# (MTVI2) | [83] | |
Normalized difference vegetation index (NDVI) | [41] | |
Optimized soil-adjusted vegetation index (OSAVI) | [84] | |
GPC | ||
Ratio: Modified chlorophyll absorption ratio index/Optimized soil-adjusted vegetation index (MCARI/OSAVI) | [31] | |
Pigment specific normalized difference c (PSNDc) | [32] | |
Pigment specific simple ratio for carotenoids (PSSRc) | [32] | |
Transformed chlorophyll absorption in reflectance index (TCARI) | [85] |
Code | Description of Crop Growth Stage | Dates of Used Images | Number of Mosaics |
---|---|---|---|
AUC1 | Whole time series | 14 February to 7 May | 10 |
AUC2 | Steam elongation (GS31) to booting (GS41) | 14 February to 11 March | 4 |
AUC3 | Booting (GS41) to anthesis (GS65) | 11 March to 28 March | 3 |
AUC4 | Heading (GS55) to anthesis (GS65) | 17 March to 28 March | 2 |
AUC5 | Steam elongation (GS31) to anthesis (GS65) | 14 February to 28 March | 6 |
AUC6 | Grain filling (GS71) to late milk (GS77) | 7 April to 15 April | 2 |
AUC7 | Grain filling (GS71) to physiological maturity (GS87) | 7 April to 25 April | 3 |
AUC8 | Grain filling (GS71) to grain hard (GS92) | 7 April to 7 May | 4 |
GY | GPC | |
---|---|---|
Maximum | 8.02 | 14.96 |
3º Quartile | 6.84 | 12.56 |
Median | 6.36 | 12.25 |
1º Quartile | 5.98 | 12.03 |
Minimum | 4.66 | 10.87 |
Mean | 6.41 | 12.32 |
Skewness | 0.02 | 1.25 |
Kurtosis | −0.14 | 5.67 |
CV | 11.51 | 4.15 |
| r Coefficient | Respective p-Value | Respective Degrees of Freedom | |
Maximum | 0.61 | 0.07 | 7 | |
3º Quartile | 0.08 | 0.80 | 9 | |
Median | −0.12 | 0.71 | 9 | |
1º Quartile | −0.26 | 0.30 | 15 | |
Minimum | −0.76 | 0.04 | 5 | |
Mean | −0.10 | 0.35 | 9 | |
Skewness | 0.10 | - | - | |
Kurtosis | −0.04 | - | - | |
n | 100 | - | - |
AUC1; #10 | AUC2; #4 | AUC3; #3 | AUC4; #2 | AUC5; #6 | AUC6; #2 | AUC7; #3 | AUC8; #4 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GY | GPC | GY | GPC | GY | GPC | GY | GPC | GY | GPC | GY | GPC | GY | GPC | GY | GPC | |
NDVI | 0.28 | 0.01 | 0.12 | 0.06 | 0.25 | 0.01 | 0.26 | 0.01 | 0.20 | 0.04 | 0.13 | 0.01 | 0.13 | 0.01 | 0.10 | 0.02 |
EVI | 0.32 | 0.02 | 0.15 | 0.08 | 0.25 | 0.02 | 0.25 | 0.01 | 0.22 | 0.06 | 0.22 | - | 0.22 | 0.01 | 0.18 | 0.01 |
OSAVI | 0.32 | 0.01 | 0.14 | 0.07 | 0.25 | 0.02 | 0.26 | 0.01 | 0.22 | 0.05 | 0.20 | - | 0.18 | 0.01 | 0.14 | 0.02 |
MTVI2 | 0.31 | 0.02 | 0.15 | 0.08 | 0.25 | 0.02 | 0.25 | 0.01 | 0.22 | 0.07 | 0.21 | - | 0.21 | 0.01 | 0.16 | 0.01 |
PSNDc | 0.28 | 0.01 | 0.11 | 0.05 | 0.25 | 0.01 | 0.26 | 0.01 | 0.19 | 0.04 | 0.14 | - | 0.15 | 0.01 | 0.12 | 0.02 |
MCARI/OSAVI | 0.08 | 0.06 | 0.06 | 0.06 | 0.01 | 0.08 | - | 0.07 | 0.05 | 0.10 | - | 0.07 | 0.09 | 0.07 | 0.03 | - |
PSSRc | 0.24 | 0.02 | 0.10 | 0.06 | 0.26 | 0.02 | 0.28 | 0.01 | 0.19 | 0.05 | 0.13 | - | 0.14 | 0.01 | 0.13 | 0.01 |
TCARI | 0.24 | 0.07 | 0.10 | 0.09 | 0.11 | 0.07 | 0.09 | 0.05 | 0.13 | 0.10 | 0.12 | 0.04 | 0.27 | 0.01 | 0.16 | - |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, F.A., Jr.; Blasch, G.; Defourny, P.; Ortiz-Monasterio, J.I.; Schulthess, U.; Zarco-Tejada, P.J.; Taylor, J.A.; Gérard, B. Multi-Temporal and Spectral Analysis of High-Resolution Hyperspectral Airborne Imagery for Precision Agriculture: Assessment of Wheat Grain Yield and Grain Protein Content. Remote Sens. 2018, 10, 930. https://doi.org/10.3390/rs10060930
Rodrigues FA Jr., Blasch G, Defourny P, Ortiz-Monasterio JI, Schulthess U, Zarco-Tejada PJ, Taylor JA, Gérard B. Multi-Temporal and Spectral Analysis of High-Resolution Hyperspectral Airborne Imagery for Precision Agriculture: Assessment of Wheat Grain Yield and Grain Protein Content. Remote Sensing. 2018; 10(6):930. https://doi.org/10.3390/rs10060930
Chicago/Turabian StyleRodrigues, Francelino A., Jr., Gerald Blasch, Pierre Defourny, J. Ivan Ortiz-Monasterio, Urs Schulthess, Pablo J. Zarco-Tejada, James A. Taylor, and Bruno Gérard. 2018. "Multi-Temporal and Spectral Analysis of High-Resolution Hyperspectral Airborne Imagery for Precision Agriculture: Assessment of Wheat Grain Yield and Grain Protein Content" Remote Sensing 10, no. 6: 930. https://doi.org/10.3390/rs10060930
APA StyleRodrigues, F. A., Jr., Blasch, G., Defourny, P., Ortiz-Monasterio, J. I., Schulthess, U., Zarco-Tejada, P. J., Taylor, J. A., & Gérard, B. (2018). Multi-Temporal and Spectral Analysis of High-Resolution Hyperspectral Airborne Imagery for Precision Agriculture: Assessment of Wheat Grain Yield and Grain Protein Content. Remote Sensing, 10(6), 930. https://doi.org/10.3390/rs10060930