On the Feasibility of Interhemispheric Patch Detection Using Ground-Based GNSS Measurements
Abstract
:1. Introduction
2. Methodology and Data Set
3. Test Period
4. Results and Discussion
4.1. The Feasibility of Patch Monitoring Using Ground-Based GNSS Receivers
4.2. The Analysis of Patch Occurrence with Relative STEC Values.
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bowline, M.D.; Sojka, J.J.; Schunk, R.W. Relationship of theoretical patch climatology to polar cap patch observations. Radio Sci. 1996, 31, 635–644. [Google Scholar] [CrossRef] [Green Version]
- Kullen, A.; Brittnacher, M.; Cumnock, J.A.; Blomberg, L.G. Solar wind dependence of the occurrence and motion of polar auroral arcs: A statistical study. J. Geophys. Res. 2002, 107, A11. [Google Scholar] [CrossRef]
- Li, G.; Ning, B.; Ren, Z.; Hu, L. Statistics of GPS ionospheric scintillation and irregularities over polar regions at solar minimum. GPS Solut. 2010, 14, 331–341. [Google Scholar] [CrossRef]
- Carlson, H.C. Sharpening our thinking about polar cap ionospheric patch morphology, research, and mitigation techniques. Radio Sci. 2012, 47, RS0L21. [Google Scholar] [CrossRef]
- Prikryl, P.; Jayachandran, P.T.; Chadwick, R.; Kelly, T.D. Climatology of GPS phase scintillation at northern high latitudes for the period from 2008 to 2013. Ann. Geophys. 2015, 33, 531–545. [Google Scholar] [CrossRef] [Green Version]
- Spicher, A.; Clausen, L.B.N.; Miloch, W.J.; Lofstad, V.; Jin, Y.; Moen, J.I. Interhemispheric study of polar cap patch occurrence based on Swarm in situ data. J. Geophys. Res. Space Phys. 2017, 122, 3837–3851. [Google Scholar] [CrossRef]
- Buchau, J.; Reinisch, B.; Weber, E.; Moore, J. Structure and dynamics of the winter polar cap F region. Radio Sci. 1983, 18, 995–1010. [Google Scholar] [CrossRef]
- Weber, E.; Buchau, J.; Moore, J.; Sharber, J.; Livingston, R.; Winningham, J.; Reinisch, B. F layer ionization patches in the polar cap. J. Geophys. Res. 1984, 89, 1683–1694. [Google Scholar] [CrossRef]
- Weber, E.; Klobuchar, J.; Buchau, J.; Carlson, H.; Livingston, R.; de la Beaujardiere, O.; McCready, M.; Moore, J.; Bishop, G. Polar cap F layer patches: Structure and dynamics. J. Geophys. Res. 1986, 91, 12121–12129. [Google Scholar] [CrossRef]
- Krankowski, A.; Shagimuratov, I.; Baran, L.; Epishov, I.; Tepenitzyna, N. The occurrence of polar cap patches in TEC fluctuations detected using GPS measurements in Southern Hemisphere. Adv. Space Res. 2006, 38, 2601–2609. [Google Scholar] [CrossRef]
- Pedersen, T.; Fejer, B.; Doe, R.; Weber, E. An incoherent scatter radar technique for determining two-dimensional horizontal ionization structure in polar cap F region patches. J. Geophys. Res. 2000, 105, 10637–10655. [Google Scholar] [CrossRef]
- Coley, W.; Heelis, R. Adaptive identification and characterization of polar ionization patches. J. Geophys. Res. 1995, 100, 23819–23827. [Google Scholar] [CrossRef]
- Robinson, R.M.; Tsunoda, R.T.; Vickrey, J.F.; Guerin, L. Sources of F region ionization enhancements in the nighttime auroral zone. J. Geophys. Res. 1985, 90, 7533–7546. [Google Scholar] [CrossRef]
- Crowley, G.; Ridley, A.J.; Deist, D.; Wing, S.; Knipp, D.J.; Emery, B.A.; Foster, J.; Heelis, R.; Hairston, M.; Reinisch, B.W. Transformation of high-latitude ionospheric F region patches into blobs during the March 21, 1990, storm. J. Geophys. Res. 2000, 105, 5215–5230. [Google Scholar] [CrossRef]
- Jin, Y.; Moen, J.I.; Miloch, W.J. GPS scintillation effects associated with polar cap patches and substorm auroral activity: Direct comparison. J. Space Weather Space Clim. 2014, 4, A23. [Google Scholar] [CrossRef]
- Lockwood, M.; Carlson, H.C. Production of polar cap electron density patches by transient magnetopause reconnection. Geophys. Res. Lett. 1992, 19, 1731–1734. [Google Scholar] [CrossRef]
- Sojka, J.J.; Bowline, M.D.; Schunk, R.W. Patches in the polar ionosphere: UT and seasonal dependence. J. Geophys. Res. 1994, 99, 14959–14970. [Google Scholar] [CrossRef]
- Moen, J.; Carlson, H.C.; Oksavik, K.; Nielsen, C.P.; Pryse, S.E.; Middleton, H.R.; McCrea, I.W.; Gallop, P. EISCAT observations of plasma patches at sub-auroral cusp latitudes. Ann. Geophys. 2006, 24, 2363–2374. [Google Scholar] [CrossRef] [Green Version]
- Clausen, L.B.N.; Moen, J.I. Electron density enhancements in the polar cap during periods of dayside reconnection. J. Geophys. Res. Space Phys. 2015, 120, 4452–4464. [Google Scholar] [CrossRef] [Green Version]
- Foster, J.C. Storm time plasma transport at middle and high latitudes. J. Geophys. Res. 1993, 98, 1675–1689. [Google Scholar] [CrossRef]
- Coster, A.J.; Skone, S. Monitoring storm-enhanced density using IGS reference station data. J. Geod. 2009, 83, 345–351. [Google Scholar] [CrossRef]
- Rodger, A.S.; Pinnock, M.; Dudeney, J.R.; Baker, K.B.; Greenwald, R.A. A new mechanism for polar patch formation. J. Geophys. Res. 1994, 99, 6425–6436. [Google Scholar] [CrossRef]
- Oksavik, K.; Ruohoniemi, J.M.; Greenwald, R.A.; Baker, J.B.H.; Moen, J.; Carlson, H.C.; Yeoman, T.K.; Lester, M. Observations of isolated polar cap patches by the European Incoherent Scatter (EISCAT) Svalbard and Super Dual Auroral Radar Network (SuperDARN) Finland radars. J. Geophys. Res. 2006, 111, A05310. [Google Scholar] [CrossRef]
- Sojka, J.J.; Bowline, M.D.; Schunk, R.W.; Decker, D.T.; Valladares, C.E.; Sheehan, R.; Anderson, D.N.; Heelis, R.A. Modeling polar cap F-region patches using time varying convection. Geophys. Res. Lett. 1993, 20, 1783–1786. [Google Scholar] [CrossRef]
- Valladares, C.; Decker, D.; Sheehan, R.; Anderson, D.; Bullett, T.; Reinisch, B. Formation of polar cap patches associated with north-to-south transitions of the interplanetary magnetic field. J. Geophys. Res. 1998, 103, 14657–14670. [Google Scholar] [CrossRef] [Green Version]
- Carlson, H.C.; Oksavik, K.; Moen, J.; Pedersen, T. Ionospheric patch formation: Direct measurements of the origin of a polar cap patch. Geophys. Res. Lett. 2004, 31, L08806. [Google Scholar] [CrossRef]
- Carlson, C.H.; Moen, J.; Oksavik, K.; Nielsen, C.; McCrea, I.W.; Pedersen, T.; Gallop, P. Direct observations of injection events of subauroral plasma into the polar cap. Geophys. Res. Lett. 2006, 33, L05103. [Google Scholar] [CrossRef]
- Coley, W.R.; Heelis, R.A. Seasonal and universal time distribution of patches in the northern and southern polar caps. J. Geophys. Res. 1998, 103, 29229–29237. [Google Scholar] [CrossRef] [Green Version]
- Rodger, A.S.; Graham, A.C. Diurnal and seasonal occurrence of polar patches. Ann. Geophys. 1996, 14, 533–537. [Google Scholar] [CrossRef]
- Noja, M.; Stolle, C.; Park, J.; Lьhr, H. Long-term analysis of ionospheric polar patches based on CHAMP TEC data. Radio Sci. 2013, 48, 289–301. [Google Scholar] [CrossRef] [Green Version]
- Jakowski, N.; Mayer, C.; Hoque, M.M.; Wilken, V. Total electron content models and their use in ionosphere monitoring. Radio Sci. 2011, 46, RS0D18. [Google Scholar] [CrossRef]
- Sieradzki, R. An analysis of selected aspects of irregularities oval monitoring using GNSS observations. J. Atmos. Sol. Terr. Phy. 2015, 129, 87–98. [Google Scholar] [CrossRef]
- Cherniak, I.; Zakharenkova, I. New advantages of the combined GPS and GLONASS observations for high-latitude ionospheric irregularities monitoring: Case study of June 2015 geomagnetic storm. Earth Planets Space 2017, 69, 66. [Google Scholar] [CrossRef]
- Sieradzki, R.; Paziewski, J. Study on reliable GNSS positioning with intense TEC fluctuations at high latitudes. GPS Solut. 2016, 20, 553–563. [Google Scholar] [CrossRef]
- Zhang, Q.-H.; Moen, J.; Lockwood, M.; McCrea, I.; Zhang, B.C.; McWilliams, K.A.; Zong, Q.; Zhang, S.; Ruohoniemi, J.; Thomas, E.; et al. Polar cap patch transportation beyond the classic scenario. J. Geophys. Res. Space Phys. 2016, 121, 9063–9074. [Google Scholar] [CrossRef]
- Durgonics, T.; Komjathy, A.; Verkhoglyadova, O.; Shume, E.B.; Benzon, H.-H.; Mannucci, A.J.; Butala, M.D.; Høeg, P.; Langley, R.B. Multiinstrument observations of a geomagnetic storm and its effects on the Arctic ionosphere: A case study of the 19 February 2014 storm. Radio Sci. 2017, 52. [Google Scholar] [CrossRef]
- Sieradzki, R.; Paziewski, J. GNSS-based analysis of ionospheric conditions around the North Pole during sequence of geomagnetic storms in March 2012. EGU Gen. Assembly 2018, 20, 6211. [Google Scholar]
- Hernandez-Pajares, M.; Juan, J.M.; Sanz, J. Medium-scale traveling ionospheric disturbances affecting GPS measurements: Spatial and temporal analysis. J. Geophys. Res. 2006, 111, A07S11. [Google Scholar] [CrossRef]
- Paziewski, J.; Sieradzki, R. Integrated GPS+BDS instantaneous medium baseline RTK positioning: Signal analysis, methodology and performance assessment. Adv. Space Res. 2017, 60, 2561–2573. [Google Scholar] [CrossRef]
- Sieradzki, R.; Paziewski, J. MSTIDS impact on GNSS observations and its mitigation in rapid static positioning at medium baselines. Ann. Geophys. 2016, 58, A0661. [Google Scholar]
- Nykiel, G.; Zanimonskiy, Y.; Yampolski, Y.; Figurski, M. Efficient usage of dense GNSS networks in central urope for the visualization and investigation of ionospheric TEC variations. Sensors 2017, 17, 2298. [Google Scholar] [CrossRef]
- Astafyeva, E.; Yasyukevich, Y.; Maksikov, A.; Zhivetiev, I. Geomagnetic storms, super-storms, and their impacts on GPS-based navigation systems. Space Weather 2014, 12, 508–525. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z. A new automated cycle slip detection and repair method for a single dual-frequency GPS receiver. J. Geod. 2011, 85, 171–183. [Google Scholar] [CrossRef]
- Wu, C.-C.; Liou, K.; Lepping, R.P.; Hutting, L.; Plunkett, S.; Howard, R.A.; Socker, D. Earth, The first super geomagnetic storm of solar cycle 24: “The St. Patrick’s day event (17 March 2015)”. Earth Planets Space 2016, 68, 151. [Google Scholar] [CrossRef]
- Marubashi, K.; Cho, K.-S.; Kim, R.-S.; Kim, S.; Park, S.-H.; Ishibashi, H. The 17 March 2015 storm: The associated magnetic flux rope structure and the storm development. Earth Planets Space 2016, 68, 173. [Google Scholar] [CrossRef]
- Cherniak, I.; Zakharenkova, I.; Redmon, R. Dynamics of the high-latitude ionospheric irregularities during the March 17, 2015 St. Patrick’s Day storm: Ground-based GPS measurements. Space Weather 2015, 13, 585–597. [Google Scholar] [CrossRef]
- Astafyeva, E.; Zakharenkova, I.; Förster, M. Ionospheric response to the 2015 St. Patrick’s Day storm: A global multi-instrumental overview. J. Geophys. Res. Space Phys. 2015, 120, 9023–9037. [Google Scholar] [CrossRef]
- Nava, B.; Rodríguez-Zuluaga, J.; Alazo-Cuartas, K.; Kashcheyev, A.; Migoya-Orué, Y.; Radicella, S.M.; Amory-Mazaudier, C.; Fleury, R. Middle- and low-latitude ionosphere response to 2015 St. Patrick’s Day geomagnetic storm. J. Geophys. Res. Space Phys. 2016, 121, 3421–3438. [Google Scholar] [CrossRef]
- Krypiak-Gregorczyk, A.; Wielgosz, P.; Borkowski, A. Ionosphere Model for European Region Based on Multi-GNSS Data and TPS Interpolation. Remote Sens. 2017, 9, 1221. [Google Scholar] [CrossRef]
- Prikryl, P.; Ghoddousi-Fard, R.; Weygand, J.M.; Viljanen, A.; Connors, M.; Danskin, D.W.; Jayachandran, P.T.; Jacobsen, K.S.; Andalsvik, Y.L.; Thomas, E.G.; et al. GPS phase scintillation at high latitudes during the geomagnetic storm of 17–18 March 2015. J. Geophys. Res. Space Phys. 2016, 121, 10448–10465. [Google Scholar] [CrossRef]
- Jin, Y.; Oksavik, K. GPS Scintillations and Losses of Signal Lock at High Latitudes During the 2015 St. Patrick’s Day Storm. J. Geophys. Res. 2018, 123, 7943–7957. [Google Scholar] [CrossRef]
- Olsen, N.; Friis-Christensen, E.; Floberghagen, R.; Alken, P.; Beggan, C.; Chulliat, A.; Doornbos, E.; Encarnação, J.; Hamilton, B.; Hulot, G.; et al. The Swarm Satellite Constellation Application and Research Facility (SCARF) and Swarm data products. Earth Planets Space 2013, 65, 1189–1200. [Google Scholar] [CrossRef] [Green Version]
- Shepherd, S.G. Altitude-adjusted corrected geomagnetic coordinates: Definition and functional approximations. J. Geophys. Res. Space 2014, 119, 7501–7521. [Google Scholar] [CrossRef] [Green Version]
- Feltens, J. Chapman Profile Approach for 3-d Global TEC Representation, IGS Presentation. In Proceedings of the 1998 IGS Analysis Centers Workshop, ESOC, Darmstadt, Germany, 9–11 February 1998; pp. 285–297. [Google Scholar]
- Rideout, W.; Coster, A. Automated GPS processing for global total electron content data. GPS Solut. 2006, 10, 219–228. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sieradzki, R.; Paziewski, J. On the Feasibility of Interhemispheric Patch Detection Using Ground-Based GNSS Measurements. Remote Sens. 2018, 10, 2044. https://doi.org/10.3390/rs10122044
Sieradzki R, Paziewski J. On the Feasibility of Interhemispheric Patch Detection Using Ground-Based GNSS Measurements. Remote Sensing. 2018; 10(12):2044. https://doi.org/10.3390/rs10122044
Chicago/Turabian StyleSieradzki, Rafal, and Jacek Paziewski. 2018. "On the Feasibility of Interhemispheric Patch Detection Using Ground-Based GNSS Measurements" Remote Sensing 10, no. 12: 2044. https://doi.org/10.3390/rs10122044