Improving Log Loading Efficiency for Improved Sustainable Transport within the Irish Forest and Biomass Sectors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Utilization of Load Volume and Weight
Truck Type | Truck Configuration | Volume Capacity (m3) |
---|---|---|
1 | Articulated/3 bays capacity | 67.6 |
2 | Articulated/4 bays capacity | 78.2 |
3 | Rigid + Trailer/4 bays capacity | 90.3 |
2.3. Solid/Bulk Volume Conversion Factor
No. | Crane (Y/N) | Axles | Configuration | No. Bays | Bulk Volume (m3) | Solid Volume (m3) | DGVW (kg) | Payload (kg) | GVW (kg) | Tare Weight (kg) |
---|---|---|---|---|---|---|---|---|---|---|
1 | N | 5 (2 + 3) | Articulated | 3 | 45.47 | 30.92 | 42,000 | 31,440 | 46,060 | 14,620 |
2 | Y | 6 (3 + 3) | Rigid + Trailer | 4 | 37.18 | 25.28 | 44,000 | 24,380 | 44,900 | 20,520 |
3 | Y | 6 (3 + 3) | Rigid + Trailer | 5 | 39.47 | 26.84 | 44,000 | 26,020 | 46,460 | 20,440 |
4 | Y | 5 (2 + 3) | Articulated | 3 | 42.75 | 29.07 | 42,000 | 29,620 | 46,920 | 17,300 |
5 | Y | 6 (3 + 3) | Articulated | 3 | 39.02 | 26.53 | 44,000 | 24,580 | 42,340 | 17,760 |
6 | Y | 6 (3 + 3) | Articulated | 3 | 41.76 | 28.39 | 44,000 | 26,080 | 43,640 | 17,560 |
7 | Y | 6 (3 + 3) | Rigid + Trailer | 4 | 42.09 | 28.62 | 44,000 | 24,840 | 43,420 | 18,580 |
8 | N | 6 (3 + 3) | Articulated | 4 | 41.85 | 28.46 | 44,000 | 26,040 | 41,600 | 15,560 |
9 | N | 5 (2+3) | Articulated | 4 | 52.75 | 35.87 | 42,000 | 30,020 | 44,480 | 14,460 |
10 | N | 6 (3+3) | Articulated | 4 | 45.32 | 30.82 | 44,000 | 27,860 | 44,020 | 16,160 |
12 | N | 5 (2+3) | Articulated | 3 | 38.33 | 26.06 | 42,000 | 26,460 | 40,580 | 14,120 |
2.4. Load Weight Determination
2.5. Legal Maximum Payload (LMP)
Condition | Truck Configuration | Truck Vol. Type | No. Axles | DGVW (kg) |
---|---|---|---|---|
C1 | Rigid + Trailer with crane | T2 | 6 (3 + 3) | 44,000 |
C2 | Truck articulated no crane | T1 | 6 (3 + 3) | 44,000 |
T2 | 6 (3 + 3) | 44,000 | ||
C3 | Truck articulated with crane | T1 | 6 (3 + 3) | 44,000 |
C4 | Truck articulated no crane | T1 | 5 (2 + 3) | 42,000 |
T2 | 5 (2 + 3) | 42,000 | ||
C5 | Truck articulated with crane | T1 | 5 (2 + 3) | 42,000 |
2.6. Loaded Volume Fraction (LVF)
3. Results
3.1. Utilization of Weight and Volume Capacity
Condition | Truck Vol. Type | Over the Legal Weight Limit | Under the Legal Weight Limit | ||||
---|---|---|---|---|---|---|---|
% of Trucks | Underused Vol. (m3) | (kg) | % of Trucks | Underused Vol. (m3) | (kg) | ||
C1 | T2 | 60 | 26.7 | 1228 | 40 | 27.5 | 845 |
C2 | T1 | 63 | 6.63 | 2084 | 37 | 7.52 | 836 |
T2 | 62 | 23.06 | 900 | 38 | 24.1 | 1913 | |
C3 | T1 | 64 | 8.1 | 1711 | 36 | 10.73 | 828 |
C4 | T1 | 70 | 7.83 | 2574 | 30 | 10.4 | 1447 |
T2 | 100 | 21.2 | 3620 | - | - | - | |
C5 | T1 | 50 | 8.38 | 5050 | 50 | 7.45 | 1020 |
3.2. Solid/Bulk Volume Conversion Factor
3.3. Density with MC Variation and Load Determination
MC % | Density (kg/m3) | Wood in T1 (kg) at 34.16 m3 | Wood in T2 (kg) at 45.54 m3 |
---|---|---|---|
0 | 377 | 12,876 | 17,169 |
30 | 539 | 18,395 | 24,527 |
40 | 628 | 21,461 | 28,614 |
50 | 754 | 25,753 | 34,337 |
60 | 943 | 32,191 | 42,921 |
70 | 1257 | 42,921 | 57,229 |
3.4. Legal Maximum Payload
Condition | Truck Type | Tare Weight (kg) | LMP (kg) |
---|---|---|---|
C1 | T2 | 19,496 | 24,504 (±0.99%) |
C2 | T1 | 15,247 | 28,753 (±1.46%) |
T2 | 16,033 | 27,967 (±0.95%) | |
C3 | T1 | 18,144 | 25,856 (±1.53%) |
C4 | T2 | 14,402 | 27,598 (±0.99%) |
T1 | 14,707 | 27,293 (±2.60%) | |
C5 | T1 | 17,185 | 24,815 (±1.62%) |
3.5. Volume Fraction
Truck Volume (%) | 100% | 90% | 80% | 70% | 60% | 55% | 45% | |
---|---|---|---|---|---|---|---|---|
Condition | LMP (kg) | Stanchion Height (m) | ||||||
2.5 | 2.25 | 2.00 | 1.75 | 1.5 | 1.38 | 1.30 | ||
Maximum MC (%) | ||||||||
C1-T2 | 24,504 | 25 | 36 | 43 | 50 | 57 | 61 | 68 |
C2-T1 | 28,753 | 55 | 59 | 64 | 68 | 72 | ||
C2-T2 | 27,967 | 38 | 44 | 50 | 56 | 63 | 66 | 72 |
C3-T1 | 25,856 | 50 | 55 | 60 | 65 | 70 | - | - |
C4-T1 | 27,598 | 53 | 58 | 62 | 67 | 72 | ||
C4-T2 | 27,293 | 37 | 43 | 49 | 55 | 62 | 65 | 71 |
C5-T1 | 24,815 | 48 | 53 | 58 | 63 | 68 | 71 | - |
4. Discussion and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Department of the Environment Heritage and Local Government. Ireland: National Climate Change Strategy 2007–2012; Department of the Environment, Heritage and Local Government: Dublin, Ireland, 2007; p. 60. [Google Scholar]
- Phillips, J.; Redmond, J.; Mac Siurtain, M.; Nemesova, A. Roundwood Production from Private Sector Forests 2009–2028. A Geospatial Forecast; COFORD (National Council for Forest Research and Development): Dublin, Ireland, 2009. [Google Scholar]
- ECMT (European Conference of Ministers of Transport). Regulatory Reform in Road Freight Transport. In Proceedings of the International Seminar, Paris, France, 29–30 March 2001; p. 84.
- Devlin, G.; McDonnell, K.; Ward, S. Timber haulage routing in Ireland: An analysis using GIS and GPS. J. Transp. Geogr. 2008, 16, 63–72. [Google Scholar] [CrossRef]
- Devlin, G.; Klvac, R.; McDonnell, K. Fuel efficiency and CO2 emissions of biomass based haulage in Ireland—A case study. Energy 2013, 54, 55–62. [Google Scholar] [CrossRef]
- Road Traffic (Construction, Use of Vehicles). Guidelines on Maximum Weight and Dimensions of Mechanically Propelled Vehicles and Trailers; Department of Transport: Dublin, Ireland, 2003. [Google Scholar]
- Yang, S.; Liu, T.; Cheng, Y. Automatic measurement of payload for heavy vehicles using strain gages. Measurement 2008, 41, 491–502. [Google Scholar] [CrossRef]
- Martin, A.; Owende, P.; Holden, N.; Ward, S.; O’Mahony, M. Designation of timber extraction routes in a GIS using road maintenance cost data. For. Product J. 2001, 51, 32–38. [Google Scholar]
- U.S. Environmental Protection Agency. Smart Way Weight Reduction: A Glance at Clean Freight Strategies; U.S. Environmental Protection Agency: Washington, DC, USA, 2009. [Google Scholar]
- Angus-Hankin, C.; Stokes, B.; Twaddle, A. The transportation of fuelwood from forest to facility. Biomass Bioenerg. 1995, 9, 191–203. [Google Scholar] [CrossRef]
- Talbot, B.; Suadicani, K. Road transport of forest chips: Containers vs. bulk trailers. For. Stud./Metsanduslikud Uurim. 2006, 45, 11–22. [Google Scholar]
- Johansson, J.; Liss, J.; Gullberg, T.; Björheden, T. Transport and handling of forest energy bundles—advantages and problems. Biomass Bioenerg. 2006, 30, 334–341. [Google Scholar] [CrossRef]
- Beardsell, M. Decreasing the Cost of Hauling Timber through Increasing Payload. Ph.D. Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 1986. [Google Scholar]
- Bustos, O.; Bussenius, W. Optimization of load distribution on forest trucks. In Seminar on Environmentally Sound Forest Roads and Wood Transport; FAO: Sinaia, Romania, 1996; p. 424. [Google Scholar]
- Hamsley, A.; Greene, W.G.; Siry, J.; Mendell, B. Improving timber trucking performance by reducing variability of log truck weights. South. J. Appl. For. 2007, 31, 12–16. [Google Scholar]
- Gallagher, T.; Mc Donald, M.; Smidt, M.; Tufts, R. Let’s Talk Trucking: Weights and Loading Methods, Technical Paper; Forest Resources Association Inc.: Rockville, MD, USA, 2004. [Google Scholar]
- Acuna, M.; Anttila, P.; Sikanen, L.; Prinz, R.; Asikainen, A. Predicting and Controlling Moisture Content to Optimise Forest Biomass Logistics. Croat. J. For. Eng. 2012, 33, 225–238. [Google Scholar]
- Coillte. Coillte Annual Report 2012. Available online: http://annualreport2012.coillte.ie/index.php?id=47 (accessed on 10 March 2015).
- Murphy, G.; Kofman, P.; Kent, T. Modeling air drying of Sitka spruce (Picea sitchensis ) biomass in off-forest storage yards in Ireland. For. Prod. J. 2012, 62, 443–449. [Google Scholar]
- Adobe Systems. Using Adobe Photoshop CS5: Help and Tutorials; Adobe Systems Inc.: San Jose, CA, USA, 2011. [Google Scholar]
- Chen, B.; Fu, Z.; Pan, Y.; Wang, J.; Zeng, Z. Single Leaf Area Measurement Using Digital Camera Image. In Computer and Computing Technologies in Agriculture IV SE-64; Li, D., Liu, Y., Chen, Y., Eds.; Springer: Berlin, Germary, 2011; Volume 345, pp. 525–530. [Google Scholar]
- James, R.R.; Newcombe, G. Defoliation patterns and genetics of insect resistance in cottonwoods. Canad. J. For. Res. 2000, 30, 85–90. [Google Scholar] [CrossRef]
- Kofman, P.D.; Kent, T. Storage and seasoning of conifer roundwood in the forest. Available online: http://www.coford.ie/media/coford/content/publications/projectreports/cofordconnects/ccn09-ht17.pdf (accessed on 10 March 2015).
- Wood Handbook—Wood as an Engineering Material; General Technical Report FPL-GTR-190; U.S. Department of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, USA, 2010.
- Becerra, F. Evaluation of Six Tools for Estimating Woody Biomass Moisture Content. Master’s Thesis, Oregon State University, Corvallis, OR, USA, 2012; p. 146. [Google Scholar]
- Šušnjar, M.; Horvat, D.; Zorić, M.; Pandur, Z.; Vusić, D. Comparison of Real Axle Loads and Wheel Pressure of Truck Units for Wood Transportation with Legal Restrictions. In Proceedings of FORMEC 2011: Pushing the Boundaries with Research and Innovation in Forest Engineering, Graz, Austria, 9–13 October 2011.
- Tufts, R.; Gallagher, T.; McDonald, T.; Smidt, M. Let’s Talk Trucking: Truck Performance and Fuel Consumption; Tech. Pap.05-P-3; Forest Resources Association Inc.: Rockville, MD, USA, 2004. [Google Scholar]
- Lang, A.H.; Mendell, B.C. Sustainable Wood Procurement: What the Literature Tells Us. J. For. 2012, 110, 157–163. [Google Scholar]
- Gallagher, T.; Smidt, M.; Tufts, R.; McDonald, T. Increasing Truck Payloads and Performance. For. Oper. Rev. 2005, 7, 18–19. [Google Scholar]
- Tufts, R.; Gallagher, T.; McDonald, T.; Smidt, M. Trucks and Trailers in the South; Forest Resources Association Inc.: Rockville, MD, USA, 2005. [Google Scholar]
- Shaffer, R.; Stuart, W. A checklist for efficient log trucking. In Virginia Cooperative Extension Publication 420–094; Virginia Tech.: Blacksburg, VA, USA, 2009; p. 5. [Google Scholar]
- Pletts, T. The Feasibility of Automatic on-Board Weighing Systems in the South African Sugarcane Transport Industry. Master’s Thesis, University of KwaZulu-Natal, Dublin, Ireland, 2009; p. 104. [Google Scholar]
- Round Haulage of Round Timber: Code of Practice. Available online: http://www.forestry.gov.uk/pdf/TimberHaulageCodeofPractice.pdf/$file/TimberHaulageCodeofPractice.pdf (accessed on 10 March 2015).
- Devlin, G. Assessing the Accuracy of New Innovative on Board Weighing Devices for Timber Haulage. In Proceedings of the Forest Industry Transport Group Conference, Port Laoise, UK, 6 September 2013.
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sosa, A.; Klvac, R.; Coates, E.; Kent, T.; Devlin, G. Improving Log Loading Efficiency for Improved Sustainable Transport within the Irish Forest and Biomass Sectors. Sustainability 2015, 7, 3017-3030. https://doi.org/10.3390/su7033017
Sosa A, Klvac R, Coates E, Kent T, Devlin G. Improving Log Loading Efficiency for Improved Sustainable Transport within the Irish Forest and Biomass Sectors. Sustainability. 2015; 7(3):3017-3030. https://doi.org/10.3390/su7033017
Chicago/Turabian StyleSosa, Amanda, Radomir Klvac, Enda Coates, Tom Kent, and Ger Devlin. 2015. "Improving Log Loading Efficiency for Improved Sustainable Transport within the Irish Forest and Biomass Sectors" Sustainability 7, no. 3: 3017-3030. https://doi.org/10.3390/su7033017
APA StyleSosa, A., Klvac, R., Coates, E., Kent, T., & Devlin, G. (2015). Improving Log Loading Efficiency for Improved Sustainable Transport within the Irish Forest and Biomass Sectors. Sustainability, 7(3), 3017-3030. https://doi.org/10.3390/su7033017