i = 1 | ${\stackrel{~}{R}}_{5},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{5},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{5}$ | ${\stackrel{~}{R}}_{2},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{3},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{2}$ | ${\stackrel{~}{R}}_{5},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{4},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{3}$ | ${\stackrel{~}{R}}_{4},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{3},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{5}$ | ${\stackrel{~}{R}}_{4},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{4},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{5}$ | ${\stackrel{~}{R}}_{3},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{1},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{2}$ |

i = 2 | ${\stackrel{~}{R}}_{3},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{4},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{3}$ | ${\stackrel{~}{R}}_{5},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{5},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{4}$ | ${\stackrel{~}{R}}_{2},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{4},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{2}$ | ${\stackrel{~}{R}}_{2},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{3},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{2}$ | ${\stackrel{~}{R}}_{2},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{4},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{5}$ | ${\stackrel{~}{R}}_{2},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{4},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{1}$ |

i = 3 | ${\stackrel{~}{R}}_{2},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{3},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{3}$ | ${\stackrel{~}{R}}_{2},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{2},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{5}$ | ${\stackrel{~}{R}}_{3},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{4},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{3}$ | ${\stackrel{~}{R}}_{4},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{2},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{3}$ | ${\stackrel{~}{R}}_{5},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{4},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{5}$ | ${\stackrel{~}{R}}_{3},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{4},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{4}$ |

i = 4 | ${\stackrel{~}{R}}_{5},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{4},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{5}$ | ${\stackrel{~}{R}}_{5},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{3},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{2}$ | ${\stackrel{~}{R}}_{3},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{4},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{4}$ | ${\stackrel{~}{R}}_{1},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{4},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{3}$ | ${\stackrel{~}{R}}_{3},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{4},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{5}$ | ${\stackrel{~}{R}}_{3},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{4},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{3}$ |

i = 5 | ${\stackrel{~}{R}}_{4},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{4},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{5}$ | ${\stackrel{~}{R}}_{5},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{3},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{4}$ | ${\stackrel{~}{R}}_{5},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{3},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{5}$ | ${\stackrel{~}{R}}_{4},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{3},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{4}$ | ${\stackrel{~}{R}}_{4},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{3},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{3}$ | ${\stackrel{~}{R}}_{2},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{3},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{4}$ |

i = 6 | ${\stackrel{~}{R}}_{2},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{3},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{4}$ | ${\stackrel{~}{R}}_{5},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{3},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{5}$ | ${\stackrel{~}{R}}_{2},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{3},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{3}$ | ${\stackrel{~}{R}}_{3},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{3},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{3}$ | ${\stackrel{~}{R}}_{5},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{5},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{4}$ | ${\stackrel{~}{R}}_{2},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{3},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{3}$ |

i = 7 | ${\stackrel{~}{R}}_{5},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{4},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{3}$ | ${\stackrel{~}{R}}_{4},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{4},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{4}$ | ${\stackrel{~}{R}}_{4},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{3},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{3}$ | ${\stackrel{~}{R}}_{3},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{3},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{3}$ | ${\stackrel{~}{R}}_{5},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{3},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{3}$ | ${\stackrel{~}{R}}_{2},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{2},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{1}$ |

i = 8 | ${\stackrel{~}{R}}_{4},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{3},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{3}$ | ${\stackrel{~}{R}}_{3},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{4},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{5}$ | ${\stackrel{~}{R}}_{1},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{4},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{3}$ | ${\stackrel{~}{R}}_{5},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{3},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{3}$ | ${\stackrel{~}{R}}_{4},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{4},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{3}$ | ${\stackrel{~}{R}}_{3},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{3},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{2}$ |

i = 9 | ${\stackrel{~}{R}}_{5},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{3},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{5}$ | ${\stackrel{~}{R}}_{3},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{4},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{5}$ | ${\stackrel{~}{R}}_{5},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{4},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{3}$ | ${\stackrel{~}{R}}_{5},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{5},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{3}$ | ${\stackrel{~}{R}}_{3},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{4},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{3}$ | ${\stackrel{~}{R}}_{2},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{4},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{3}$ |

i = 10 | ${\stackrel{~}{R}}_{3},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{4},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{3}$ | ${\stackrel{~}{R}}_{3},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{4},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{4}$ | ${\stackrel{~}{R}}_{3},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{4},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{3}$ | ${\stackrel{~}{R}}_{4},{\stackrel{~}{R}}_{2},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{5}$ | ${\stackrel{~}{R}}_{3},{\stackrel{~}{R}}_{4},{\stackrel{~}{R}}_{1}$ | ${\stackrel{~}{R}}_{3},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{4},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{5}$ |

i = 11 | ${\stackrel{~}{R}}_{5},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{4},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{5}$ | ${\stackrel{~}{R}}_{5},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{5},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{3}$ | ${\stackrel{~}{R}}_{3},{\stackrel{~}{R}}_{2},{\stackrel{~}{R}}_{4}$ | ${\stackrel{~}{R}}_{4},{\stackrel{~}{R}}_{3},{\stackrel{~}{R}}_{2}$ | ${\stackrel{~}{R}}_{3},{\stackrel{~}{R}}_{2},{\stackrel{~}{R}}_{3}$ | ${\stackrel{~}{R}}_{3},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{5},\text{\hspace{0.17em}}{\stackrel{~}{R}}_{3}$ |