Concentrations of Available Heavy Metals in Mediterranean Agricultural Soils and their Relation with Some Soil Selected Properties: A Case Study in Typical Mediterranean Soils
Abstract
:1. Introduction
2. Experimental Section
2.1. Study Area and Sampling
2.2. Analytical Methods
2.3. Statistical Analyses
2.4. Baseline Concentrations
3. Results and Discussion
Statistical Parameters | SOM (%) | N (%) | Soil Carbonates (%) | pH | CEC cmolckg−1 | CE25 dS m−1 | P2O5 (mg/100 g) | K2O (mg/100 g) |
---|---|---|---|---|---|---|---|---|
MINV | 0.2 | 0.03 | 0.1 | 4.5 | 3.8 | 0.01 | 4.0 | 18 |
AM | 1.5 | 0.10 | 5.5 | 6.9 | 15.8 | 0.11 | 197 | 220 |
MAXV | 4.4 | 0.31 | 16.4 | 8.9 | 71.5 | 1.00 | 5920 | 3268 |
STD | 0.6 | 0.04 | 4.2 | 1.1 | 10.2 | 0.11 | 413 | 185 |
GM | 1.4 | 0.09 | 3.6 | 6.9 | 13.5 | 0.09 | 120 | 186 |
Statistical Parameters | Cd | Cr | Cu | Ni | Pb | Zn | Zn EqT |
---|---|---|---|---|---|---|---|
MINV | <d.l. | 10.8 | 5.4 | 5.2 | 7.7 | 10.1 | 63 |
AM | 0.6 | 48.4 | 16.7 | 23.6 | 19.1 | 29.6 | 252 |
MAXV | 0.7 | 89.0 | 45.0 | 48.6 | 41.9 | 65.6 | 506 |
STD | 0.1 | 25.5 | 9.1 | 13.6 | 8.9 | 15.1 | 135 |
GM | 0.6 | 41.1 | 14.6 | 19.6 | 17.1 | 25.9 | 214 |
Statistical Parameters | Cd | Cr | Cu | Ni | Pb | Zn | Zn EqB |
---|---|---|---|---|---|---|---|
MINV | <d.l. | <d.l. | <d.l. | <d.l. | <d.l. | <d.l. | 0.3 |
AM | 0.24 | 0.85 | 1.23 | 1.95 | 3.16 | 0.64 | 19.4 |
MAXV | 0.55 | 3.30 | 10.00 | 6.60 | 13.00 | 5.00 | 130 |
STD | 0.23 | 0.79 | 1.15 | 1.30 | 2.33 | 0.58 | 14.5 |
GM | 0.15 | 0.50 | 0.86 | 1.48 | 2.25 | 0.51 | 14.3 |
Heavy Metals | In this work | Bucolieri et al., 2010 | Masas et al., 2009 | Gisbert et al., 2006 | Ramos 2006 | Antolin et al., 2005 | Walker et al., 2003 |
---|---|---|---|---|---|---|---|
Cd | 0.24 ± 0.23 | n.d. | n.d. | n.d. | n.d. | 0.012–0.013 | n.d. |
Cr | 0.85 ± 0.79 | n.d. | 1.5 ± 0.5 | n.d. | n.d. | n.d. | n.d. |
Cu | 1.23 ± 1.15 | 5.40 ± 5.67 | 2.5 ± 1.2 | 0.9–8.8 | 15.3 ± 4.3 | 1.64–1.19 | 11.3 |
Ni | 1.95 ±1.30 | 0.41 ± 0.32 | 1.3 ± 0.9 | n.d | n.d. | n.d | n.d. |
Pb | 3.16 ± 2.33 | 2.09 ± 1.92 | 5.8 ± 3.2 | 22.1–179 | n.d. | 1.34–1.75 | 28.2–32.5 |
Zn | 0.64 ± 0.58 | 3.67 ± 3.27 | 7.8 ± 9.7 | 10.5–7.7 | 2.2 ± 1.2 | 0.77–2.41 | 15.2–14.4 |
3.1. Baseline Concentrations
Percentile | Cd | Cr | Cu | Pb | Ni | Zn |
---|---|---|---|---|---|---|
5% | 0.01 | 0.05 | 0.14 | 0.24 | 0.35 | 0.14 |
25% | 0.07 | 0.18 | 0.53 | 1.30 | 0.83 | 0.32 |
50% | 0.16 | 0.55 | 1.00 | 2.50 | 1.70 | 0.50 |
75% | 0.37 | 1.10 | 1.60 | 4.60 | 2.70 | 0.72 |
90% | 0.50 | 1.70 | 2.37 | 6.10 | 3.56 | 1.00 |
95% | 0.70 | 2.00 | 3.30 | 6.80 | 3.94 | 1.20 |
99% | 0.92 | 2.30 | 5.70 | 7.70 | 4.40 | 1.90 |
3.2. Correlation Analysis
Parameters | pH | SOM | P2O5 | K2O | Soil Carbonates | EC25 | Cd | Cr | Cu | Ni | Pb | Zn |
---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | 1 | |||||||||||
SOM | 0.357 (#) | 1 | ||||||||||
P2O5 | 0.391 (#) | 0.178 (#) | 1 | |||||||||
K2O | 0.429 (#) | 0.346 (#) | 0.428 (#) | 1 | ||||||||
Soil Carbonates | 0.510 (#) | 0.313 (#) | −0.281 (#) | n.s. | 1 | |||||||
EC25 | 0.283 (#) | 0.208 (#) | 0.257 (#) | 0.344 (#) | 1 | |||||||
Cd | 0.507 (#) | 0.294 (#) | 0.183 (#) | 0.194 (#) | 0.587 (#) | 0.150 (#) | 1 | |||||
Cr | 0.480 (#) | 0.251 (#) | 0.143 (#) | 0.265 (#) | 0.486 (#) | 0.132 (#) | 0.536 (#) | 1 | ||||
Cu | 0.583 (#) | 0.369 (#) | 0.264 (#) | 0.330 (#) | n.s. | 0.121 (#) | 0.182 (#) | 0.224 (#) | 1 | |||
Ni | 0.554 (#) | 0.289 (#) | 0.190 (#) | 0.247 (#) | 0.299 (#) | n.s. | 0.393 (#) | 0.413 (#) | 0.535 (#) | 1 | ||
Pb | 0.616 (#) | 0.359 (#) | 0.311 (#) | 0.409 (#) | 0.515 (#) | 0.217 (#) | 0.544 (#) | 0.443 (#) | 0.416 (#) | 0.398 (#) | 1 | |
Zn | 0.354 (#) | 0.415 (#) | 0.297 (#) | 0.245 (#) | 0.134 (*) | 0.182 (#) | 0.307 (#) | 0.204 (#) | 0.340 (#) | 0.213 (#) | 0.296 (#) | 1 |
Zn EqB | 0.610 (#) | 0.351 (#) | 0.232 (#) | 0.297 (#) | 0.281 (#) | n.s. | 0.407 (#) | 0.412 (#) | 0.663 (#) | 0.971 (#) | 0.451 (#) | 0.294 (#) |
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ramos, M. Metals in vineyard soils of the Penedès area (NE Spain) after compost application. J. Environ. Manag. 2006, 78, 209–215. [Google Scholar] [CrossRef]
- Kosmas, C.; Danalatos, N.; López-Bermúdez, F.; Romero-Díaz, M. The effect of land use on soil erosion and land degradation under Mediterranean conditions. In Mediterranean Desertification: A Mosaic of Processes and Responses; Geeson, N., Brandt, C., Thornes, J., Eds.; Wiley: Chichester, UK, 2002; pp. 57–70. [Google Scholar]
- Zalidis, G.; Stamatiadis, S.; Takavakoglou, V.; Eskridge, K.; Misopolinos, N. Impacts of agricultural practices on soil and water quality in The Mediterraneam region and proposed assessment methodology. Agric. Ecosyst. Environ. 2002, 88, 137–146. [Google Scholar] [CrossRef]
- Romic, M.; Romic, D. Heavy metal distribution in agricultural topsoils in urban area. Environ. Geol. 2003, 43, 795–805. [Google Scholar]
- Kelepertzis, E. Accumulation of heavy metals in agricultural soils of Mediterranean: Insights from Argolina Basin, Paloponnese, Grece. Geoderma 2014, 221–222, 82–90. [Google Scholar] [CrossRef]
- Borrego, C. Water, air and soil pollution problems in Portugal. Sci. Total Environ. 1993, 129, 55–70. [Google Scholar] [CrossRef]
- Loures, L.; Panagopoulos, T. From derelict industrial areas towards multifunctional landscapes and urban renaissance. WSEAS Trans. Environ. Dev. 2007, 3, 181–188. [Google Scholar]
- Loures, L.; Santos, R.; Panagopoulos, T. Urban parks and sustainable city planning—The case of Portimão, Portugal. WSEAS Trans. Environ. Dev. 2007, 3, 171–180. [Google Scholar]
- Loures, L.; Heuer, T.; Horta, D.; Silva, S.; Santos, R. Multifunctional clusters in Post-industrial Landscapes: Rising from what’s left. WSEAS Trans. Environ. Dev. 2008, 4, 619–628. [Google Scholar]
- De Tammerman, L.; Vanongeval, L.; Boon, W.; Hoenig, M. Heavy metal content of arable soils in Northern Beliguim. Water Air Soil Pollut. 2003, 148, 61–76. [Google Scholar] [CrossRef]
- Rodríguez-Martín, J.; López-Arias, M.; Grau-Corbí, J. Heavy metals contents in agricultural topsoils in the Ebro basin (Spain). Application of the multivariate geoestatistical methods to study spatial variations. Environ. Pollut. 2006, 144, 1001–1012. [Google Scholar] [CrossRef] [PubMed]
- Gil, C.; Ramos-Miras, J.; Roca-Perez, L.; Boluda, R. Determination and assessment of mercury content in calcareous soils. Chemosphere 2010, 78, 409–415. [Google Scholar] [CrossRef] [PubMed]
- Romaguera, F.; Boluda, R.; Fornes, F.; Abad, M. Comparison of three sequential extraction procedures for trace element partitioning in three contaminated Mediterranean soils. Environ. Geochem. Health 2008, 30, 171–175. [Google Scholar] [CrossRef] [PubMed]
- Adriano, D. Trace Elements in Terrestrial Environments: Biochemistry, Bioavailability and Risks of Metals; Springer-Verlag: New York, NY, USA, 2001. [Google Scholar]
- Abollino, O.; Aceto, M.; Malandrino, M.; Mentasti, E.; Sarzanini, C.; Petrella, F. Heavy metals in agricultural soils from Piedmont, Italy. Distribution, speciation and chemometric data treatment. Chemosphere 2002, 49, 545–557. [Google Scholar] [CrossRef] [PubMed]
- Vig, K.; Megharaj, M.; Sethunathan, N.; Naidu, R. Bioavailability and toxicity of cadmium to microorganisms and their activities in soil: A review. Adv. Environ. Res. 2003, 8, 121–135. [Google Scholar] [CrossRef]
- Andreu, V.; Boluda, R. Application of contamination indexes on different farming soils. Bull. Environ. Contam. Toxicol. 1995, 54, 228–236. [Google Scholar] [CrossRef] [PubMed]
- Gil, C.; Boluda, R.; Ramos, J. Determination and evaluation of cadmium lead and nickel in greenhouse soils of Almería (Spain). Chemosphere 2004, 55, 1027–1034. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Alcalá, I.; Clemente, R.; Bernal, M. Metal Availability and chemical properties in the rhizosphere of Lupinus albus L. growing in a high-metal calcareous soil. Water Air Soil Pollut. 2009, 201, 283–293. [Google Scholar] [CrossRef]
- Meyer, J. The utility of the terms “bioavailability” and “bioavailable fraction” for metals. Mar. Environ. Res. 2002, 53, 417–423. [Google Scholar] [CrossRef] [PubMed]
- Peijnenburg, W.; Jager, T. Monitoring approaches to assess bioaccessibility and bioavailability of metals: Matrix issues. Ecotoxicol. Environ. Saf. 2003, 56, 63–77. [Google Scholar] [CrossRef] [PubMed]
- Cao, A.; Cappai, G.; Carucci, A.; Lai, T. Heavy metal bioavailability and chelate mobilization efficiency in an assisted phytoextraction process. Environ. Geochem. Health 2008, 30, 115–119. [Google Scholar] [CrossRef] [PubMed]
- De Vivo, B.; Somma, R.; Ayuso, R.; Calderoni, G.; Lima, A.; Pagliuca, S.; Sava, A. Pb isotopes and toxic metals in floodplain and stream sediments from the Volturno river basin, Italy. Environ. Geol. 2001, 41, 101–112. [Google Scholar] [CrossRef]
- Inácio, M.; Pereira, V.; Pinto, M. The Soil Geochemical Atlas of Portugal: Overview and applications. J. Geochem. Explor. 2008, 98, 22–33. [Google Scholar] [CrossRef]
- Albanese, S.; de Vivo, B.; Lima, A.; Cicchella, D.; Civitillo, D.; Cosenza, A. Geochemical baselines and risk assessment of the Bagnoli brownfield site coastal sea sediments (Naples, Italy). J. Geochem. Explor. 2010, 105, 19–33. [Google Scholar] [CrossRef]
- Roca-Pérez, L.; Gil, C.; Cervera, M.; Gonzálvez, A.; Ramos-Miras, J.; Ponsa, V.; Bech, J.; Boluda, R. Selenium and heavy metals content in some Mediterranean soils. J. Geochem. Explor. 2010, 107, 110–116. [Google Scholar] [CrossRef]
- Albanese, S.; de Vito, B.; Lima, A.; Cicchella, D. Geochemical background and baseline values of toxic elements in stream sediments of Campania region (Italy). J. Geochem. Explor. 2007, 93, 21–34. [Google Scholar] [CrossRef]
- Guillén, M.; Delgado, J.; Albanese, S.; Nieto, J.; Lima, A.; de Vivo, B. Environmental geochemical mapping of Huelva municipality soils (SW Spain) as a tool to determine background and baseline values. J. Geochem. Explor. 2011, 109, 59–69. [Google Scholar] [CrossRef]
- Galán, E.; Fernández-Caliani, J.; González, I.; Aparicio, P.; Romero, A. Influence of geological setting on geochemical baselines of trace elements in soils. Application to soils of South-West Spain. J. Geochem. Explor. 2008, 98, 89–106. [Google Scholar] [CrossRef]
- Tume, P.; Bech, J.; Tume, L.; Bech, J.; Reverter, F.; Longan, L.; Cendoya, P. Concentrations and distributions of Ba, Cr, Sr, V, Al, and Fe in Torrelles soil profiles (Catalonia, Spain). J. Geochem. Explor. 2008, 96, 94–105. [Google Scholar] [CrossRef]
- Díez, M.; Simón, M.; Martín, F.; Dorronsoro, C.; García, I.; van Gestel, C. Ambient trace element background concentrations in soils and their use in risk assessment. Sci. Total Environ. 2009, 407, 4622–4632. [Google Scholar] [CrossRef] [PubMed]
- Tarvainen, T.; Kallio, E. Baselines of certain bioavailable and total heavy metal concentrations in Finland. Appl. Geochem. 2002, 17, 975–980. [Google Scholar] [CrossRef]
- Baldantoni, D.; Leone, A.; Lovieno, P.; Morra, L.; Zaccardelli, M.; Alfani, A. Total and available soil trace element concentrations in two Mediterranean agricultural systems treated with municipal waste compost or conventional mineral fertilizers. Chemosphere 2010, 80, 1006–1013. [Google Scholar] [CrossRef] [PubMed]
- Nunes, J. Los Suelos del Perímetro Regable del Caia (Portugal): Tipos, Fertilidade, e Impacto del Riego en sus Propriedades Químicas. Ph.D. Dissertation, Faculdad de Ciencias, Universidad de Extremadura, Badajoz, Spain, 2003. [Google Scholar]
- Roca-Pérez, L.; Pérez-Bermúdez, P.; Boluda, R. Soil characteristics, mineral nutrients, biomass, and cardenolide production in Digitalis obscura wild populations. J. Plant Nutr. 2002, 25, 2015–2026. [Google Scholar] [CrossRef]
- United States Department of Agriculture. Soil Survey Laboratory Methods Manual; United States Department of Agriculture: Lincoln, NE, USA, 2004.
- Lindsay, W.L.; Norvell, W.A. Development of a DTPA soil test for zinc, iron, manganese and cupper. Soil Sci. Soc. Am. J. 1978, 42, 421–428. [Google Scholar] [CrossRef]
- Hooda, P.; Alloway, B. The plant availability and DTPA extractability of trace metals in sludge-amended soils. Sci. Total Environ. 1994, 149, 39–51. [Google Scholar] [CrossRef]
- Soriano-Disla, J.; Gómez, I.; Guerrero, C.; Jordan, M.; Navarro-Pedreño, J. Soil factors related to heavy metal bioavailability after sewage sludge application. Fresenius Environ. Bull. 2008, 17, 1839–1845. [Google Scholar]
- Hao, X.; Zhou, D.; Huang, D.; Cang, L.; Zhang, L.; Wang, H. Heavy Metal Transfer from Soil to Vegetable in Southern Jiangsu Province. China Pedosphere 2009, 19, 305–311. [Google Scholar] [CrossRef]
- Tack, F.; Vanhaesebroeck, T.; Verloo, M.; van Rompaey, K.; van Ranst, E. Mercury baseline levels in Flemish soils (Belgium). Environ. Pollut. 2005, 134, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Miras, J.; Roca-Perez, L.; Guzmán-Palomino, M.; Boluda, R.; Gil, C. Background levels and baseline values of available heavy metals in Mediterranean greenhouse soils (Spain). J. Geochem. Explor. 2011, 110, 186–192. [Google Scholar] [CrossRef]
- Fleischhauer, H.; Korte, N. Formulation of cleanup standards for trace elements with probability plots. Environ. Manag. 1990, 14, 95–105. [Google Scholar] [CrossRef]
- Nziguheba, G.; Smolders, E. Inputs of trace elements in agricultural soils via phosphate fertilizers in European countries. Sci. Total Environ. 2008, 390, 53–57. [Google Scholar] [CrossRef] [PubMed]
- Cheraghi, M.; Lorestani, B.; Merrikhpour, H. Investigation of the effects of phosphate fertilizer application on the heavy metal content in agricultural soils with different cultivation patterns. Biol. Trace Element Res. 2012, 145, 87–92. [Google Scholar] [CrossRef]
- Caridad-Cancela, R.; Vidal-Vázquez, E.; Vieira, S.; Abreu, C.; Paz-González, A. Assesing the spatial uncertainity of mapping trace elements in cultivated fields. Commun. Soil Sci. Plant Anal. 2005, 36, 253–274. [Google Scholar] [CrossRef]
- Peris, M.; Recatalá, L.; Micó, C.; Sánchez, R.; Sánchez, J. Heavy metal contents in horticultural crops of a representative area of the European Mediterranean region. Sci. Total Environ. 2007, 378, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Antolín, M.; Pascual, I.; García, C.; Polo, A.; Sánchez-Díaz, M. Growth, yield and solute content of barley in soils treated with sewage sludge under semiarid Mediterranean conditions. Field Crops Res. 2005, 94, 224–237. [Google Scholar] [CrossRef]
- Buccolieri, A.; Buccolieri, G.; Dell’Atti, A.; Strisciullo, G.; Gagliano-Candela, R. Monitoring of total and bioavailable heavy metals concentration in agricultural soils. Environ. Monit. Assess. 2010, 168, 547–560. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zheng, C.; Tu, C.; Zhou, D. Studies on loading capacity of agricultural soils for heavy metals and its applications in China. Appl. Geochem. 2001, 16, 1397–1403. [Google Scholar] [CrossRef]
- Matschullat, J.; Ottenstein, R.; Reimann, C. Geochemical background—Can we calculate it? Environ. Geol. 2000, 39, 990–1000. [Google Scholar] [CrossRef]
- Horckmans, L.; Swennen, R.; Deckers, J.; Maquil, R. Local background concentrations of trace elements in soils: A case study in the Grand Duchy of Luxembourg. Catena 2005, 59, 279–304. [Google Scholar] [CrossRef]
- Massas, I.; Ehaliotis, C.; Kalivas, D.; Panagopoulou, G. Concentrations and availability indicators of soil heavy metals; the case of children’s playgrounds in the city of Athens (Greece). Water Air Soil Pollut. 2010, 212, 51–63. [Google Scholar] [CrossRef]
- Römkens, P.; Guo, H.; Chu, L.; Liu, T.; Chiang, C.; Koopmans, G. Characterization of soil heavy metal pools in paddy fields in Taiwan: Chemical extraction and solid-solution partitioning. J. Soil Sediments 2009, 9, 216–228. [Google Scholar] [CrossRef]
- Vega, F.; Covelo, E.; Andrade, M.; Marcet, P. Relationships between heavy metals content and soil properties in minesoils. Anal. Chim. Acta 2004, 524, 141–150. [Google Scholar] [CrossRef]
- Businelli, D.; Massaccesi, L.; Said-Pullicino, D.; Gigliotti, G. Long-term distribution, mobility and plant availability of compost-derived heavy metals in a landfill covering soil. Sci. Total Environ. 2009, 407, 1426–1435. [Google Scholar] [CrossRef] [PubMed]
- Tarvainen, T.; Jarva, J.; Kahelin, H. Geochemical baselines in relation to analytical methods in the Itä-Uusimaa and Pirkanmaa regions, Finland. Geochem. Explor. Environ. Anal. 2009, 9, 81–92. [Google Scholar] [CrossRef]
- Alloway, B. Heavy Metals in Soils; Blackie and Son Ltd.: London, UK, 1995. [Google Scholar]
- Acosta, J.; Faz, A.; Martínez-Martínez, S. Identification of heavy metal sources by multivariable analysis in a typical Mediterranean city (SE Spain). Environ. Monit. Assess. 2010, 169, 519–530. [Google Scholar] [CrossRef] [PubMed]
- Lim, T.; Tay, J.; Teh, C. Contaminant time effect on lead and cadmium fraction in a tropical coastal clay. J. Environ. Q. 2002, 31, 806–812. [Google Scholar] [CrossRef]
- Lu, A.; Zhang, S.; Shan, X. Time effect of the fractionation of heavy metals in soils. Geoderma 2005, 125, 225–234. [Google Scholar] [CrossRef]
- Massas, I.; Ehaliotis, C.; Gerontidis, S.; Sarris, E. Elevated heavy metal concentrations in top soils of an Aegean island town (Greece): Total and available forms, origin and distribution. Environ. Monit. Assess. 2009, 151, 105–116. [Google Scholar] [CrossRef] [PubMed]
- Gupta, U.; Gupta, S. Trace element toxicity relationships to crop production and livestock and human health: Implications for management. Commun. Soil Sci. Plant Anal. 1998, 29, 1491–1522. [Google Scholar] [CrossRef]
- Gimeno-García, E.; Andreu, V.; Boluda, R. Heavy metals incidence in the application of inorganic fertilizers and pesticides to rice farming soils. Environ. Pollut. 1996, 92, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Hatje, V.; Payne, T.; Hill, D.; McOrist, G.; Birch, G.; Szymczak, R. Kinetics of trace element uptake and release by particles in estuarine waters: Effects of pH, salinity, and particle loading. Environ. Int. 2003, 29, 619–629. [Google Scholar] [CrossRef] [PubMed]
- Acosta, J.; Jansen, B.; Kalbitz, K.; Faz, A.; Martínez-Martínez, S. Salinity increases mobility of heavy metals in soils. Chemosphere 2011, 85, 1318–1324. [Google Scholar] [CrossRef] [PubMed]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nunes, J.R.; Ramos-Miras, J.; Lopez-Piñeiro, A.; Loures, L.; Gil, C.; Coelho, J.; Loures, A. Concentrations of Available Heavy Metals in Mediterranean Agricultural Soils and their Relation with Some Soil Selected Properties: A Case Study in Typical Mediterranean Soils. Sustainability 2014, 6, 9124-9138. https://doi.org/10.3390/su6129124
Nunes JR, Ramos-Miras J, Lopez-Piñeiro A, Loures L, Gil C, Coelho J, Loures A. Concentrations of Available Heavy Metals in Mediterranean Agricultural Soils and their Relation with Some Soil Selected Properties: A Case Study in Typical Mediterranean Soils. Sustainability. 2014; 6(12):9124-9138. https://doi.org/10.3390/su6129124
Chicago/Turabian StyleNunes, José Rato, José Ramos-Miras, António Lopez-Piñeiro, Luís Loures, Carlos Gil, José Coelho, and Ana Loures. 2014. "Concentrations of Available Heavy Metals in Mediterranean Agricultural Soils and their Relation with Some Soil Selected Properties: A Case Study in Typical Mediterranean Soils" Sustainability 6, no. 12: 9124-9138. https://doi.org/10.3390/su6129124
APA StyleNunes, J. R., Ramos-Miras, J., Lopez-Piñeiro, A., Loures, L., Gil, C., Coelho, J., & Loures, A. (2014). Concentrations of Available Heavy Metals in Mediterranean Agricultural Soils and their Relation with Some Soil Selected Properties: A Case Study in Typical Mediterranean Soils. Sustainability, 6(12), 9124-9138. https://doi.org/10.3390/su6129124