Site-Specific Phytoremediation Potential of Plants in Urban Polluted Sites in Romania: A Case Study in Baia Mare
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Sample Processing
2.2. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Godwill, A.E.; Paschaline Udoka, F.; Friday, N.N.; Unachukwu, M. Mechanism and health effects of heavy metal toxicity in humans. In Poisoning in the Modern World—New Tricks for an Old Dog? Karcioglu, O., Arslan, B., Eds.; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef]
- Oyewo, O.A.; Adeniyi, A.; Bopape, M.F.; Onyango, M.S. Heavy metal mobility in surface water and soil, climate change, and soil interactions. In Climate Change and Soil Interactions; Elsevier: Amsterdam, The Netherlands, 2020; pp. 51–88. [Google Scholar]
- Alloway, B.J. Heavy metals and metalloids as micronutrients for plants and animals. In Heavy Metals in Soils: Trace Metals and Metalloids in Soils and Their Bioavailability; Springer: Dordrecht, the Netherlands, 2013; pp. 195–209. [Google Scholar]
- Păcurar, F.; Marușca, T.; Scrob, N.; Vaida, I.; Nicola, N. The ecological and agronomic study of some grasslands phytocenoses from the site Natura 2000 ROSCI0002. Apuseni-Rom. J. Grassl. Forage Crops 2023, 27, 9–28. [Google Scholar]
- Wuana, R.A.; Okieimen, F.E. Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. Int. Sch. Res. Not. 2011, 2011, 402647. [Google Scholar] [CrossRef]
- Wang, L.; Hou, D.; Shen, Z.; Zhu, J.; Jia, X.; Ok, Y.S.; Tack, F.M.; Rinklebe, J. Field trials of phytomining and phytoremediation: A critical review of influencing factors and effects of additives. Crit. Rev. Environ. Sci. Technol. 2020, 50, 2724–2774. [Google Scholar] [CrossRef]
- Shen, X.; Dai, M.; Yang, J.; Sun, L.; Tan, X.; Peng, C.; Ali, I.; Naz, I. A critical review on the phytoremediation of heavy metals from environment: Performance and challenges. Chemosphere 2022, 291, 132979. [Google Scholar] [CrossRef]
- Gavrilescu, M. Enhancing phytoremediation of soils polluted with heavy metals. Curr. Opin. Biotechnol. 2022, 74, 21–31. [Google Scholar] [CrossRef]
- van der Ent, A.; Kopittke, P.M.; Schat, H.; Chaney, R.L. Hydroponics in physiological studies of trace element tolerance and accumulation in plants focussing on metallophytes and hyperaccumulator plants. Plant Soil 2024, 501, 573–594. [Google Scholar] [CrossRef]
- Naila, A.; Meerdink, G.; Jayasena, V.; Sulaiman, A.Z.; Ajit, A.B.; Berta, G. A Review on Global Metal Accumu-Lators—Mechanism, Enhancement, Commercial Application, and Research Trend. Environ. Sci. Pollut. Res. 2019, 26, 26449–26471. [Google Scholar] [CrossRef]
- Kopittke, P.M.; Wang, P.; Lombi, E.; Donner, E. Synchrotron-based X-Ray approaches for examining toxic trace metal (loid) s in soil–plant systems. J. Environ. Qual. 2017, 46, 1175–1189. [Google Scholar] [CrossRef]
- Rahman, Z.; Singh, V.P. The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr) (VI), mercury (Hg), and lead (Pb)) on the total environment: An overview. Environ. Monit. Assess. 2019, 191, 419. [Google Scholar] [CrossRef]
- Aminedi, R.; Ram, H.; Kumar, G.; Koramutla, M.K.; Vasupalli, N.; Deshmukh, R.; Negi, M.; Bhattacharya, R. Mechanisms of plant resistance to metalloid ions and potential biotechnological applications. In Metalloids in Plants: Advances and Future Prospects; John Wiley & Sons: Hoboken, NJ, USA, 2020; pp. 185–211. [Google Scholar]
- Angulo-Bejarano, P.I.; Puente-Rivera, J.; Cruz-Ortega, R. Metal and metalloid toxicity in plants: An overview on molecular aspects. Plants 2021, 10, 635. [Google Scholar] [CrossRef]
- Martínez-Alcalá, I.; Bernal, M.P. Environmental impact of metals, metalloids, and their toxicity. In Metalloids in Plants: Advances and Future Prospects; John Wiley & Sons: Hoboken, NJ, USA, 2020; pp. 451–488. [Google Scholar]
- Yu, G.; Ma, J.; Jiang, P.; Li, J.; Gao, J.; Qiao, S.; Zhao, Z. The mechanism of plant resistance to heavy metal. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2019; Volume 310, p. 052004. [Google Scholar]
- Akhtar, N.; Syakir Ishak, M.I.; Bhawani, S.A.; Umar, K. Various natural and anthropogenic factors responsible for water quality degradation: A review. Water 2021, 13, 2660. [Google Scholar] [CrossRef]
- Narendrula-Kotha, R.; Theriault, G.; Mehes-Smith, M.; Kalubi, K.; Nkongolo, K. Metal toxicity and resistance in plants and microorganisms in terrestrial ecosystems. Rev. Environ. Contam. Toxicol. 2020, 249, 1–27. [Google Scholar] [PubMed]
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and health impacts of air pollution: A review. Front. Public Health 2020, 8, 14. [Google Scholar] [CrossRef]
- Ali, M.A.; Fahad, S.; Haider, I.; Ahmed, N.; Ahmad, S.; Hussain, S.; Arshad, M. Oxidative Stress and Antioxidant Defense in Plants Exposed to Metal/Metalloid Toxicity. In Reactive Oxygen, Nitrogen and Sulfur Species in Plants; Hasanuzzaman, M., Fotopoulos, V., Nahar, K., Fujita, M., Eds.; Wiley: Hoboken, NJ, USA, 2019; pp. 353–370. ISBN 978-1-119-46869-1. [Google Scholar]
- Fryzova, R.; Pohanka, M.; Martinkova, P.; Cihlarova, H.; Brtnicky, M.; Hladky, J.; Kynicky, J. Oxidative stress and heavy metals in plants. In Reviews of Environmental Contamination and Toxicology; Springer International Publishing: Cham, Switzerland, 2018; Volume 245, pp. 129–156. [Google Scholar]
- Al Mahmud, J.; Bhuyan, M.B.; Anee, T.I.; Nahar, K.; Fujita, M.; Hasanuzzaman, M. Reactive oxygen species metabolism and antioxidant defense in plants under metal/metalloid stress. In Plant Abiotic Stress Tolerance: Agronomic, Molecular and Biotechnological Approaches; Springer: Cham, Switzerland, 2019; pp. 221–257. [Google Scholar]
- Shahid, M.; Pourrut, B.; Dumat, C.; Nadeem, M.; Aslam, M.; Pinelli, E. Heavy-metal-induced reactive oxygen species: Phytotoxicity and physicochemical changes in plants. Rev. Environ. Contam. Toxicol. 2014, 232, 1–44. [Google Scholar] [PubMed]
- Chmielowska-Bąk, J.; Deckert, J. Plant recovery after metal stress—A review. Plants 2021, 10, 450. [Google Scholar] [CrossRef] [PubMed]
- Riyazuddin, R.; Nisha, N.; Ejaz, B.; Khan, M.I.; Kumar, M.; Ramteke, P.W.; Gupta, R. A comprehensive review on the heavy metal toxicity and sequestration in plants. Biomolecules 2021, 12, 43. [Google Scholar] [CrossRef]
- Kumar, D.; Kumar, S.; Shukla, V.; Kumar, N. Adaptation strategies of plants against common inorganic pollutants and metals. In Plant Adaptation Strategies in Changing Environment; Springer: Singapore, 2017; pp. 315–328. [Google Scholar]
- Yadav, V.; Arif, N.; Kováč, J.; Singh, V.P.; Tripathi, D.K.; Chauhan, D.K.; Vaculík, M. Structural modifications of plant organs and tissues by metals and metalloids in the environment: A review. Plant Physiol. Biochem. 2021, 159, 100–112. [Google Scholar] [CrossRef]
- Clemens, S.; Ma, J.F. Toxic heavy metal and metalloid accumulation in crop plants and foods. Annu. Rev. Plant Biol. 2016, 67, 489–512. [Google Scholar] [CrossRef]
- Page, V.; Feller, U. Heavy metals in crop plants: Transport and redistribution processes on the whole plant level. Agronomy 2015, 5, 447–463. [Google Scholar] [CrossRef]
- Tangahu, B.V.; Sheikh Abdullah, S.R.; Basri, H.; Idris, M.; Anuar, N.; Mukhlisin, M. A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int. J. Chem. Eng. 2011, 2011, 939161. [Google Scholar] [CrossRef]
- Gaga, I.; Păcurar, F.; Vaida, I.; Plesa, A.; Rotar, I. Responses of Diversity and Productivity to Organo-Mineral Fertilizer Inputs in a High-Natural-Value Grassland, Transylvanian Plain, Romania. Plants 2022, 11, 1975. [Google Scholar] [CrossRef]
- Rotar, I.; Cirebea, M.; Vidican, R.; Păcurar, F.; Mălinaş, A.; Ranta, O. Productivity of Festuca rubra L.–Agrostis capillaris L. Grasslands. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca. Agric. 2015, 72, 519–521. [Google Scholar] [CrossRef] [PubMed]
- Păcurar, F.; Morea, A.; Gârda, N. Productivity and biodiversity evolution of Festuca rubra grasslands during a seven years period. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca. Agric. 2008, 65, 1843–5246. [Google Scholar]
- SPIRE. Deliverable 7.1.1. Available online: https://spire.city/index.php/project-deliverables/ (accessed on 20 November 2025).
- Available online: https://uia.urban-initiative.eu/en/uia-cities/baia-mare (accessed on 20 November 2025).
- Chojnacka, K.; Chojnacki, A.; Gorecka, H.; Górecki, H. Bioavailability of heavy metals from polluted soils to plants. Sci. Total Environ. 2005, 337, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Yan, A.; Wang, Y.; Tan, S.N.; Mohd Yusof, M.L.; Ghosh, S.; Chen, Z. Phytoremediation: A promising approach for revegetation of heavy metal-polluted land. Front. Plant Sci. 2020, 11, 359. [Google Scholar] [CrossRef]
- Hajara, E.W.; Sulaiman, A.Z.; Sakinah, A.M. Assessment of heavy metals tolerance in leaves, stems and flowers of Stevia rebaudiana plant. Procedia Environ. Sci. 2014, 20, 386–393. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2016; Available online: http://www.R-project.org/ (accessed on 20 November 2025).
- Revelle, W. Psych: Procedures for Psychological, Psychometric, and Personality Research, R. Package version 2.5.6; Northwestern University: Evanston, IL, USA, 2020. [Google Scholar]
- de Mendiburu, F. Agricolae: Statistical Procedures for Agricultural Research. R. Package Version 2020, 1.3-2. Available online: https://CRAN.Rproject.org/package=agricolae (accessed on 20 November 2025).
- Oksanen, J.; Simpson, G.; Blanchet, F.; Kindt, R.; Legendre, P.; Minchin, P.; O’Hara, R.; Solymos, P.; Stevens, M.; Szoecs, E.; et al. _Vegan: Community Ecology Package_. R Package Version 2.6-4. 2022. Available online: https://CRAN.R-project.org/package=vegan (accessed on 20 November 2025).
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S, 4th ed.; Springer: New York, NY, USA, 2002; ISBN 0-387-95457-0. [Google Scholar]
- Vaida, I.; Păcurar, F.; Rotar, I.; Tomoș, L.; Stoian, V. Changes in Diversity Due to Long-Term Management in a High Natural Value Grassland. Plants 2021, 10, 739. [Google Scholar] [CrossRef]
- Stoian, V.; Vidican, R.; Florin, P.; Corcoz, L.; Pop-Moldovan, V.; Vaida, I.; Vâtcă, S.-D.; Stoian, V.A.; Pleșa, A. Exploration of Soil Functional Microbiomes—A Concept Proposal for Long-Term Fertilized Grasslands. Plants 2022, 11, 1253. [Google Scholar] [CrossRef]
- Paradis, E.; Schliep, K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 2019, 35, 526–528. [Google Scholar] [CrossRef]
- Mihali, C.; Dippong, T.; Butean, C.; Goga, F. Heavy metals and as content in soil and in plants in the Baia Mare mining and metallurgical area (NW of Roumania). Rev. Roum. Chim. 2017, 62, 373–379. [Google Scholar]
- Vidican, R.; Păcurar, F.; Vâtcă, S.D.; Pleșa, A.; Stoian, V. Arbuscular Mycorrhizas Traits and Yield of Winter Wheat Profiled by Mineral Fertilization. Agronomy 2020, 10, 846. [Google Scholar] [CrossRef]
- Marușca, T.; Păcurar, F.; Memedemin, D.; Oprea, A.; Vaida, I.; Taulescu, E.; Nicola, N. Ecological, Agronomic and Anthropogenic Characterization of the Habitat 62C0* Ponto-Sarmatian Steppes in the North of Dobrogea (Romania). Bull. Univ. Agric. Sci. Vet.-Med. Cluj-Napoca. Agric. 2022, 79, 42–53. [Google Scholar] [CrossRef] [PubMed]
- Mălinas, A.; Rotar, I.; Vidican, R.; Iuga, V.; Păcurar, F.; Mălinas, C.; Moldovan, C. Designing a Sustainable Temporary Grassland System by Monitoring Nitrogen Use Efficiency. Agronomy 2020, 10, 149. [Google Scholar] [CrossRef]
- Corcoz, L.; Păcurar, F.; Pop-Moldovan, V.; Vaida, I.; Pleșa, A.; Stoian, V.; Vidican, R. Long-Term Fertilization Alters Mycorrhizal Colonization Strategy in the Roots of Agrostis capillaris. Agriculture 2022, 12, 847. [Google Scholar] [CrossRef]
- Pop, B.; Corcoz, L.; Gheorghiță, A.; Pleșa, A.; Stoian, V.; Vidican, R. Dynamics of Functional Microbiome in Polluted Soil After One Year of Bioremediation. Sci. Papers. Ser. A Agron. 2025, 68, 171. [Google Scholar]
- DalCorso, G.; Manara, A.; Piasentin, S.; Furini, A. Nutrient metal elements in plants. Metallomics 2014, 6, 1770–1788. [Google Scholar] [CrossRef]
- Chandra, R.; Kumar, V. Phytoextraction of heavy metals by potential native plants and their microscopic observation of root growing on stabilized distillery sludge as a prospective tool for in situ phytoremediation of industrial waste. Environ. Sci. Pollut. Res. 2017, 24, 2605–2619. [Google Scholar] [CrossRef]
- Păcurar, F.; Reif, A.; Rusḑea, E. Conservation of oligotrophic grassland of high nature value (HNV) through sustainable use of Arnica montana in the Apuseni Mountains, Romania. In Medicinal Agroecology; CRC Press: Boca Raton, FL, USA, 2023. [Google Scholar]
- Reif, A.; Ruşdea, E.; Păcurar, F.; Rotar, I.; Brinkmann, K.; Auch, E.; Goia, A.; Bühler, J. A Traditional Cultural Landscape in Transformation. Mt. Res. Dev. 2008, 28, 18–22. [Google Scholar] [CrossRef]
- Cirebea, M.; Rotar, I.; Vidican, R.; Păcurar, F.; Malinas, A.; Ranta, O. Characterization phyto-socio-ecological of Agrostis capillaris L. Grasslands. Bull. Univ. Agric. Sci. Veter-Med. Cluj-Napoca. Agric. 2016, 73, 189. [Google Scholar] [CrossRef]
- Cirebea, M.; Rotar, I.; Păcurar, F.; Vidican, R.; Plesa, A.; Mălinaș, A. Influence of Mineral Fertilization with UAN on a Natural Meadow Festuca Rubra with Agrostis Capillaris. Rom. J. Grassl. Forage Crops 2015, 11, 25–30. [Google Scholar]
- Reif, A.; Auch, E.; Bühler, J.; Brinkmann, K.; Goia, A.I.; Păcurar, F.; Rusdea, E. Landschaft Und Landnutzung Im Apusenigebirge Rumäniens. Carinth. II 2005, 195, 161–201. [Google Scholar]
- Păcurar, F.S.; Rotar, I.; Vaida, I. The Effects of Wild Boar Disturbances on the Agronomical Value of Semi-Natural Grasslands. Rom. J. Grassl. Forage Crops 2019, 20, 27–34. [Google Scholar]
- Păcurar, F.; Rotar, I.; Vidican, R.; Vaida, I.; Pleșa, A.; Stoian, V.; Tomoș, L.; Ghețe, A. Density-Based Assessment of Adonis Vernalis Abundance in Native Habitats. Sci. Pap. Ser. A Agron. 2025, 68. [Google Scholar]
- Vaida, I.; Rotar, I.; Păcurar, F. The Cumulative Effect of Manure on a Festuca Rubra Grasslands for 15 Years. Bull. Univ. Agric. Sci. Vet.-Med. Cluj-Napoca. Agric. 2017, 74, 126. [Google Scholar] [CrossRef] [PubMed]
- MBG. Missouri Botanical Garden—Gardening Help. Available online: http://www.missouribotanicalgarden.org/PlantFinder/ (accessed on 20 November 2025).
- PFAF—Plants for a Future. Available online: https://pfaf.org (accessed on 20 November 2025).
- CABI. 2019a, Acer Platanoides. Available online: https://www.cabi.org/isc/datasheet/2883 (accessed on 20 November 2025).
- NCSU. North Carolina State University—Extension Gardener Plant Toolbox. Available online: https://plants.ces.ncsu.edu/plants/ (accessed on 20 November 2025).
- Caudullo, G.; de Rigo, D. Acer platanoides in Europe: Distribution, habitat, usage and threats. In European Atlas of Forest Tree Species; Publication Office of the European Union: Luxembourg, 2016; p. e019159. [Google Scholar]
- Xue, W.; Jiang, Y.; Shang, X.; Zou, J. Characterisation of early responses in lead accumulation and localization of Salix babylonica L. roots. BMC Plant Biol. 2020, 20, 296. [Google Scholar] [CrossRef] [PubMed]
- Aksoy, A.; Demirezen, D.İ. Fraxinus excelsior as a Biomonitor of Heavy Metal Pollution. Pol. J. Environ. Stud. 2006, 15, 27–33. [Google Scholar]
- Dobrowolska, D.; Hein, S.; Oosterbaan, A.; Wagner, S.; Clark, J.O.; Skovsgaard, J.P. A review of European ash (Fraxinus excelsior L.): Implications for silviculture. Forestry 2011, 84, 133–148. [Google Scholar] [CrossRef]
- Balázsi, Á.; Păcurar, F.; Mihu-Pintilie, A.; Konold, W. How Do Public Institutions on Nature Conservation and Agriculture Contribute to the Conservation of Species-Rich Hay Meadows? Int. J. Conserv. Sci. 2018, 9, 549–564. [Google Scholar]
- OECD. Section 2—European White Birch (Betula pendula Roth). In Safety Assessment of Transgenic Organisms, Volume 2: OECD Consensus Documents; OECD Publishing: Paris, France, 2006. [Google Scholar] [CrossRef]
- Ansari, A.A.; Gill, S.S.; Gill, R.; Lanza, G.R.; Newman, L. (Eds.) Phytoremediation: Management of Environmental Contaminants; Springer: Berlin/Heidelberg, Germany, 2014; Volume 1. [Google Scholar]
- Malá, J.; Machova, P.; Cvrckova, H.; Vanek, T. Heavy metals uptake by the hybrid aspen and rowan-tree clones. J. For. Sci. 2007, 53, 491–497. [Google Scholar] [CrossRef]
- Coşkun, M. Toxic metals in the Austrian pine (Pinus nigra) bark in the Thrace region, Turkey. Environ. Monit. Assess. 2006, 121, 173–179. [Google Scholar] [CrossRef]
- Abu-Darwish, M.; Rivka, O. Heavy metals content and essential oil yield of Juniperus phoenicea L. in different origins in Jordan. Environ. Eng. Manag. J. 2014, 13, 3009–3014. [Google Scholar] [CrossRef]
- Zheljazkov, V.D.; Nielsen, N.E. Studies on the effect of heavy metals (Cd, Pb, Cu, Mn, Zn and Fe) upon the growth, productivity and quality of lavender (Lavandula angustifolia Mill.) production. J. Essent. Oil Res. 1996, 8, 259–274. [Google Scholar] [CrossRef]
- Li, G.-Y.; Nan, H.; Ding, D.-X.; Zheng, J.-F.; Liu, Y.-l.; Wang, Y.-D.; Nie, X.-Q. Screening of Plant Species for Phytoremediation of Uranium, Thorium, Barium, Nickel, Strontium and Lead Contaminated Soils from a Uranium Mill Tailings Repository in South China. Bull. Environ. Contam. Toxicol. 2011, 86, 646–652. [Google Scholar] [CrossRef] [PubMed]
- Hammad, D.; Thu, K.; Miyazaki, T. Particulate Matter Phytoremediation Effectiveness of Japanese Prunus × Yedoensis Tree Through Spring and Summer Season. E3S Web Conf. 2023, 465, 02030. [Google Scholar] [CrossRef]
- Sângeorzan, D.D.; Rotar, I.; Vidican, R.; Păcurar, F.; Ranta, O. Romania’s diet footprints: Minimum arable land and ecological footprint of consumption, from 1961 to 2013. Rom. J. Grassl. Forage Crops 2018, 18, 65. [Google Scholar]
- Vaida, I.; Rotar, I.; Vidican, R. The influence of mineral fertilization on Festuca rubra grassland. Rom. J. Grassl. Forage Crops 2017, 15, 81–85. [Google Scholar]
- Boros, M.N.; Smical, I.; Micle, V.; Lichtscheidl-Schultz, I. Heavy metal pollution of soils from BAIA-Mare–Case study: Cuprom Industrial Area. Sci. Papers. Ser. E Land Reclam. Earth Obs. Surv. Environ. Eng. 2015, IV, 99–106. [Google Scholar]


| Heavy Metal | Metabolic Role in Plant | Bioavailability to Plants | Non-Phytotoxic Levels (mg/kg) | Highest Concentration Reached in Plants (mg/kg) |
|---|---|---|---|---|
| Pb | − | low | 3 | >40,000 |
| Cu | + | readily | <45 | >20,000 |
| Zn | + | readily | <160 | >50,000 |
| Cd | − | readily | 2 | >10,000 |
| Sources | [36,37] | [37,38] | [38] | [37] |
| El | Site | Sp | % | Sp | % | Sp | % | Sp | % |
|---|---|---|---|---|---|---|---|---|---|
| Pb | CR | Bet | 8 ± 0.57 efg | Cal | 23.66 ± 14.16 cdefg | MG | 53 ± 10.01 b | ||
| Rey | 7± 7 fg | Sal | 29.16 ± 9.00 cdef | ||||||
| CT | All | 19.66 ± 0.33 cdefg | Frax | 2± 2 g | Lav | 35.66± 16.16 bcde | |||
| Pin | 27± 15 cdefg | Rob | 16.33± 16.33 defg | SVi | 15.33± 2.027 defg | ||||
| FE | Bet | 8± 0 efg | Part | 9.33± 0.33 efg | Rey | 45± 4.50 bcd | Sal | 18.33± 18.33 cdefg | |
| RO | Acer | 27± 13.50 cdefg | Bet | 15.33± 15.33 defg | Rey | 15.66± 15.66 defg | |||
| Rob | 21.66± 12.17 cdefg | Sal | 22.33± 14.83 cdefg | SVi | 33.66± 13.16 bcdef | ||||
| URB | EQ | 49.66± 13.67 bc | Jun | 7.5± 0.28 efg | Lav | 101.66± 5.69 a |
| El | Site | Sp | % | Sp | % | Sp | % | Sp | % |
|---|---|---|---|---|---|---|---|---|---|
| Cd | CR | Bet | 20.33 ± 4.09 b | Cal | 58.33 ± 49.33 b | MG | 58.71 ± 43.71 b | ||
| Rey | 64 ± 46.02 b | Sal | 271.08± 116.97 b | ||||||
| CT | All | 16± 3.21 b | Frax | 21.33± 2.84 b | Lav | 52± 34 b | Pin | 59.33± 48.34 b | |
| Rey | 18.33± 2.02 b | Rob | 51.66± 30.17 b | SVi | 24± 2.51 b | ||||
| FE | Bet | 22± 0.57 b | MG | 15.83± 1.90 b | Part | 20.66± 2.33 b | |||
| Rey | 130.66± 111.66 b | Sal | 623.33± 593.33 a | SVi | 17.33± 0.88 b | ||||
| RO | Acer | 72.66± 52.20 b | Bet | 277.33± 252.84 ab | Rey | 279.33± 260.33 ab | |||
| Rob | 16.33± 3.28 b | Sal | 327.33± 299.33 ab | SVi | 347.66± 321.16 ab | ||||
| URB | EQ | 135.66± 121.17 b | Jun | 20± 1.29 b | Lav | 133± 118.00 b | Pru | 24.33± 2.33 b | |
| Rey | 23.66± 2.40 b | Sal | 23.66± 2.40 b | Sorb | 9.333± 4.70 b | SVi | 20.33± 2.33 b |
| El | Site | Sp | % | Sp | % | Sp | % | Sp | % |
|---|---|---|---|---|---|---|---|---|---|
| Cu | CR | Bet | 39.66 ± 1.85 abcde | Cal | 29 ± 14.50 bcde | MG | 26 ± 11.15 de | ||
| Rey | 38.28 ± 3.74 bcde | Sal | 41.41 ± 4.68 abcd | ||||||
| CT | All | 38± 19.13 bcde | Frax | 25.33± 12.66 de | Lav | 35.33± 12.19 bcde | Pin | 32.66± 10.39 bcde | |
| Rey | 42.66± 2.18 abcd | Rob | 39.33± 7.21 abcde | SVi | 48.66± 1.85 abcd | ||||
| FE | Bet | 43.66± 0.33 abcd | MG | 27.83± 8.84 cde | Part | 38± 1.52 bcde | Rey | 36.33± 11.68 bcde | |
| Sal | 44± 9.01 abcd | SVi | 53± 2.64 ab | ||||||
| RO | Acer | 36.66± 9.33 bcde | Bet | 35.33± 6.17 bcde | Rey | 35± 4.50 bcde | |||
| Rob | 37.33± 11.72 bcde | Sal | 38.33± 5.66 abcde | SVi | 37.33± 6.69 bcde | ||||
| URB | EQ | 46.66± 10.83 abcd | Jun | 43± 0.70 abcd | Lav | 62± 22.50 a | Pru | 14± 14 e | |
| Rey | 40.33± 0.66 abcde | Sal | 45.5± 1.80 abcd | Sorb | 46.33± 1.20 abcd | SVi | 49.66± 0.66 abc |
| El | Site | Sp | % | Sp | % | Sp | % | Sp | % |
|---|---|---|---|---|---|---|---|---|---|
| Zn | CR | Bet | 235.66 ± 4.40 cdef | Cal | 83.33 ± 41.68 f | MG | 120.14 ± 28.95 f | ||
| CT | All | 92± 1.15 f | Frax | 65.66± 1.66 f | Lav | 56.33± 14.71 f | Pin | 79.66± 32.33 f | |
| Rey | 187.33± 4.97 def | Rob | 49.66± 24.87 f | SVi | 1056.6± 13.33 a | ||||
| FE | Bet | 269.66± 4.807 bcdef | MG | 86.33± 4.90 f | Part | 127± 1.52 ef | Rey | 195.66± 74.34 cdef | |
| Sal | 1030± 515.00 a | SVi | 628± 14.93 b | ||||||
| RO | Acer | 91.66± 34.33 f | Bet | 397.33± 193.69 bcdef | Rey | 505.66± 252.84 bcd | Rob | 119± 4.58 f | |
| Sal | 456.33± 221.71 bcde | SVi | 565.66± 266.33 bc | ||||||
| URB | EQ | 214± 74.51 cdef | Jun | 60.25± 1.10 f | Lav | 229.66± 30.83 cdef | Pru | 79± 1 f | |
| Rey | 533± 9.018 bc | Sal | 361.33± 64.94 bcdef | Sorb | 123± 2.081 ef | SVi | 456.33± 11.85 bcde |
| El | Sit | Sp | % | Sp | % | Sp | % | Sp | % | Sp | % | Sp | % | Sp | % |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Pb | CR | Acapi | 75± 4.16 a | Bet | 21.66± 5.17 de | ||||||||||
| FR | Bet | 63.67± 2.33 b | Rey | 31± 15.63 cd | Svi | 31± 0.5 cde | SVi | 22.5± 0.5 de | |||||||
| RO | Acer | 15.67± 2.03 ef | Bet | 21.67± 5.17 de | Cal | 8.67± 0.33 fg | Sal | 6± 3 fg | Sorb | 37.33± 5.24 c | |||||
| URB | EQ | 25.67± 5.67 de | |||||||||||||
| Cu | CR | Acapi | 95.33± 5.61 a | Bet | 44.67± 1.2 def | Cal | 50.33± 7.36 cde | MG | 49.33± 3.84 cdef | Rey | 38± 1.15 f | Sal | 58± 1.53 bc | ||
| FR | Acapi | 48± 2 cdef | Bet | 50.67± 1.2 cde | Rey | 67± 2.52 b | Sal | 52± 3.21 cd | Svi | 50 ± 1 cdef | SVi | 45 ± 1 def | |||
| RO | Bet | 45.67 ± 1.86 def | Cal | 44 ± 1.15 def | Rob | 42± 2.52 def | Sal | 44 ± 2.52 def | Sorb | 49 ± 3 cdef | ± | ||||
| URB | Cal | 40.33 ± 1.33 ef | EQ | 50 ± 4.51 cdef | Jun | 43.33 ± 2.6 def | Pru | 26 ± 13.0 g | Rey | 34.67 ± 1.76 fg | Sorb | 43.67 ± 1.2 def | |||
| Cd | CR | Acapi | 14.33± 1.33 defg | Bet | 14.33± 1.76 defg | Cal | 0± 0 h | MG | 13± 1.53 fg | Rey | 14± 2.52 efg | Sal | 26.33± 4.91 a | ||
| FR | Acapi | 25.33 ± 3.28 ab | Bet | 11± 1 fg | Pan | 18± 3.79 bcdef | Rey | 17± 2.52 cdef | Sal | 21.67± 2.33 abcd | Svi | 20± 0.5 abcde | SVi | 21.5± 6.5 abcdef | |
| RO | Acer | 19.67± 1.67 abcdef | Bet | 14.33 ± 0.33 defg | Cal | 14± 1 efg | Rob | 14± 3.21 efg | Sal | 24.33 ± 1.76 abc | Sorb | 14.67 ± 1.2 defg | |||
| URB | Cal | 9.33 ± 4.81 g | EQ | 22.33 ± 1.45 abc | Jun | 18.67 ± 0.88 bcdef | Pru | 18 ± 3.79 bcdef | Rey | 22.67 ± 3.48 abc | Sorb | 17.3 ± 1.45 cdef | |||
| Zn | CR | Acapi | 451.33± 17.3 ef | Bet | 521.67± 22.4 e | Cal | 91± 20.0 lm | MG | 244± 51.0 ij | Rey | 368.67± 13.4 gh | Sal | 169± 13.5 k | ||
| FR | Acapi | 1096.6± 66.9 c | Bet | 169.33± 11.0 jk | Pan | 78± 7 lm | Rey | 429± 22.5 fg | Sal | 2093.3± 63.6 a | Svi | 1140± 10 c | SVi | 995± 15 d | |
| RO | Acer | 107 ± 21.5 klm | Bet | 1306.6 ± 29.0 b | Cal | 309.33 ± 21.1 hi | Rob | 71.3 ± 0.88 m | Sal | 1156.6 ± 13.3 c | Sorb | 146.33 ± 1.86 kl | |||
| URB | Cal | 254.33 ± 4.33 i | EQ | 436 ± 20.8 fg | Jun | 77.3 ± 5.46 lm | Pru | 88.6 ± 14.1 lm | Rey | 100 ± 13.5 klm | Sorb | 109 ± 4.51 klm |
| Indicator | Romplumb | Ferneziu | Colonia Topitorilor | Urbis | Craica |
|---|---|---|---|---|---|
| Cd | 16.46 ± 4.83 a | 10.69 ± 2.22 ab | 6.26 ± 1.67 b | 17.22 ± 1.21 a | 11.00 ± 0.60 ab |
| Cu | 429.94 ± 211.55 bc | 506.67 ± 50.82 b | 113.46 ± 20.20 c | 1055.11 ± 213.32 a | 239.00 ± 22.14 bc |
| Pb | 2125.11 ± 820.46 a | 1984.11 ± 231.17 a | 318.67 ± 48.30 b | 2442.22 ± 416.25 a | 308.67 ± 29.68 b |
| Zn | 1384.11 ± 645.36 b | 992.78 ± 86.93 b | 273.00 ± 41.14 | 2691.11 ± 668.07 a | 326.00 ± 26.01 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Pop, B.; Pleșa, A.; Papina, C.; Gheorghiță, A.; Stoian, V.; Vidican, R. Site-Specific Phytoremediation Potential of Plants in Urban Polluted Sites in Romania: A Case Study in Baia Mare. Sustainability 2026, 18, 1386. https://doi.org/10.3390/su18031386
Pop B, Pleșa A, Papina C, Gheorghiță A, Stoian V, Vidican R. Site-Specific Phytoremediation Potential of Plants in Urban Polluted Sites in Romania: A Case Study in Baia Mare. Sustainability. 2026; 18(3):1386. https://doi.org/10.3390/su18031386
Chicago/Turabian StylePop, Bianca, Anca Pleșa, Codruț Papina, Alexandra Gheorghiță, Vlad Stoian, and Roxana Vidican. 2026. "Site-Specific Phytoremediation Potential of Plants in Urban Polluted Sites in Romania: A Case Study in Baia Mare" Sustainability 18, no. 3: 1386. https://doi.org/10.3390/su18031386
APA StylePop, B., Pleșa, A., Papina, C., Gheorghiță, A., Stoian, V., & Vidican, R. (2026). Site-Specific Phytoremediation Potential of Plants in Urban Polluted Sites in Romania: A Case Study in Baia Mare. Sustainability, 18(3), 1386. https://doi.org/10.3390/su18031386

