River Water Quality of Major Rivers in Slovenia in the Context of Climate Change
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methods
2.4. Data Analysis and Processing
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| BOD | Biochemical oxygen demand |
| ARSO | Slovenian Environment Agency |
References
- Molina, M.O.; Soares, P.M.M.; Lima, M.; Gaspar, T.; Lima, D.; Ramos, A.; Russo, A.; Trigo, R. Updated Insights on Climate Change-Driven Temperature Variability across Historical and Future Periods. Clim. Change 2025, 178, 97. [Google Scholar] [CrossRef]
- Zscheischler, J.; Raymond, C.; Chen, Y.; Le Grix, N.; Libonati, R.; Rogers, C.D.W.; White, C.J.; Wolski, P. Compound Weather and Climate Events in 2024. Nat. Rev. Earth Environ. 2025, 6, 240–242. [Google Scholar] [CrossRef]
- Folton, N.; Martin, E.; Arnaud, P.; L’Hermite, P.; Tolsa, M. A 50-Year Analysis of Hydrological Trends and Processes in a Mediterranean Catchment. Hydrol. Earth Syst. Sci. 2019, 23, 2699–2714. [Google Scholar] [CrossRef]
- Forster, P.M.; Smith, C.; Walsh, T.; Lamb, W.F.; Lamboll, R.; Cassou, C.; Hauser, M.; Hausfather, Z.; Lee, J.-Y.; Palmer, M.D.; et al. Indicators of Global Climate Change 2024: Annual Update of Key Indicators of the State of the Climate System and Human Influence. Earth Syst. Sci. Data 2025, 17, 2641–2680. [Google Scholar] [CrossRef]
- Basim, K.; Al-Saadi, R.; Abdulameer, L.; Al Maimuri, N.; Al-Dujaili, A. Climate Change Impacts on River Hydraulics: A Global Synthesis of Hydrological Shifts, Ecological Consequences, and Adaptive Strategies. Water Conserv. Sci. Eng. 2025, 10, 48. [Google Scholar] [CrossRef]
- van Vliet, M.T.H.; Thorslund, J.; Strokal, M.; Hofstra, N.; Flörke, M.; Ehalt Macedo, H.; Nkwasa, A.; Tang, T.; Kaushal, S.S.; Kumar, R.; et al. Global River Water Quality under Climate Change and Hydroclimatic Extremes. Nat. Rev. Earth Environ. 2023, 4, 687–702. [Google Scholar] [CrossRef]
- Bonacci, O. Factors Affecting Variations in the Hydrological Cycle at Different Temporal and Spatial Scale. Acta Hydrotech. 2023, 36, 1–15. [Google Scholar] [CrossRef]
- Bonacci, O.; Žaknić-Ćatović, A.; Roje-Bonacci, T. Comparative Hydrological Analysis at Two Stations on the Boundary River Sotla/Sutla (Slovenia-Croatia). Acta Hydrotech. 2025, 38, 15–27. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, H.; Li, J.; Li, Y.; Zhang, L.; Zhao, R.; Hu, X.; Ren, N.; Tian, Y. Natural and Anthropogenic Imprints on Seasonal River Water Quality Trends across China. npj Clean Water 2025, 8, 49. [Google Scholar] [CrossRef]
- Dorado-Guerra, D.Y.; Paredes-Arquiola, J.; Pérez-Martín, M.Á.; Corzo-Pérez, G.; Ríos-Rojas, L. Effect of Climate Change on the Water Quality of Mediterranean Rivers and Alternatives to Improve Its Status. J. Environ. Manag. 2023, 348, 119069. [Google Scholar] [CrossRef]
- Rose, K.C.; Bierwagen, B.; Bridgham, S.D.; Carlisle, D.M.; Hawkins, C.P.; Poff, N.L.; Read, J.S.; Rohr, J.R.; Saros, J.E.; Williamson, C.E. Indicators of the Effects of Climate Change on Freshwater Ecosystems. Clim. Change 2023, 176, 23. [Google Scholar] [CrossRef]
- Vigiak, O.; Udias, A.; Pistocchi, A.; Zanni, M.; Aloe, A.; Grizzetti, B. Probability Maps of Anthropogenic Impacts Affecting Ecological Status in European Rivers. Ecol. Indic. 2021, 126, 107684. [Google Scholar] [CrossRef]
- Diamond, J.S.; Moatar, F.; Recoura-Massaquant, R.; Chaumot, A.; Zarnetske, J.; Valette, L.; Pinay, G. Hypoxia Is Common in Temperate Headwaters and Driven by Hydrological Extremes. Ecol. Indic. 2023, 147, 109987. [Google Scholar] [CrossRef]
- Kazmi, S.S.U.H.; Wang, Y.Y.L.; Cai, Y.-E.; Wang, Z. Temperature Effects in Single or Combined with Chemicals to the Aquatic Organisms: An Overview of Thermo-Chemical Stress. Ecol. Indic. 2022, 143, 109354. [Google Scholar] [CrossRef]
- Maurya, J.; Misra, A.K. Modeling the Impact of Harmful Algal Blooms on Aquatic Life and Human Health. Eur. Phys. J. Plus 2025, 140, 391. [Google Scholar] [CrossRef]
- Riyadh, A.; Peleato, N.M. Natural Organic Matter Character in Drinking Water Distribution Systems: A Review of Impacts on Water Quality and Characterization Techniques. Water 2024, 16, 446. [Google Scholar] [CrossRef]
- Publications Office of the European Union. Europe’s State of Water 2024—The Need for Improved Water Resilience; Publications Office of the European Union: Luxembourg, 2024.
- Olsson, F.; Mackay, E.B.; Spears, B.M.; Barker, P.; Jones, I.D. Interacting Impacts of Hydrological Changes and Air Temperature Warming on Lake Temperatures Highlight the Potential for Adaptive Management. Ambio 2025, 54, 402–415. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.; Srivastava, R.K.; Bhatt, A.K. Battling Air and Water Pollution; Springer: Singapore, 2025. [Google Scholar]
- Anh, N.T.; Can, L.D.; Nhan, N.T.; Schmalz, B.; Luu, T. Le Influences of Key Factors on River Water Quality in Urban and Rural Areas: A Review. Case Stud. Chem. Environ. Eng. 2023, 8, 100424. [Google Scholar] [CrossRef]
- Moatar, F.; Gailhard, J. Water Temperature Behaviour in the River Loire since 1976 and 1881. Comptes Rendus Geosci. 2006, 338, 319–328. [Google Scholar] [CrossRef]
- Kaznowska, E.; Wasilewicz, M.; Hejduk, A.; Stelmaszczyk, M.; Hejduk, L. Long-Term Trends and Characteristics of Water Temperature Extremes of a Large Lowland River During the Summer Season from 1920 to 2023—Case Study of the Bug River in Poland, Eastern Europe. Sustainability 2025, 17, 11189. [Google Scholar] [CrossRef]
- Ficklin, D.L.; Hannah, D.M.; Wanders, N.; Dugdale, S.J.; England, J.; Klaus, J.; Kelleher, C.; Khamis, K.; Charlton, M.B. Rethinking River Water Temperature in a Changing, Human-Dominated World. Nat. Water 2023, 1, 125–128. [Google Scholar] [CrossRef]
- UN-Water. 2030 Strategy; UN-Water: Geneva, Switzerland, 2019. [Google Scholar]
- Twardosz, R.; Walanus, A.; Guzik, I. Warming in Europe: Recent Trends in Annual and Seasonal Temperatures. Pure Appl. Geophys. 2021, 178, 4021–4032. [Google Scholar] [CrossRef]
- ARSO Animation—Deviation of the Annual Mean Air Temperature 1981–2020. 2025. Available online: https://meteo.arso.gov.si/met/sl/climate/current/animacija_temperatura/ (accessed on 17 November 2025).
- Łaszewski, M. Heat Fluxes and River Energy Budget on the Example of Lowland Świder River. Quaest. Geogr. 2015, 34, 65–74. [Google Scholar] [CrossRef]
- ARSO Time Series for Slovenia. Available online: https://meteo.arso.gov.si/met/sl/climate/current/climate_series/ (accessed on 17 November 2025).
- ARSO Data of Automated Hydrological Stations. 2025. Available online: http://hmljn.arso.gov.si/vode/podatki/ (accessed on 17 November 2025).
- DEM Drava River. Available online: https://www.dem.si/sl/v-sozvocju-z-okoljem/reka-drava/ (accessed on 17 November 2025).
- Slovenian Water Agency Drava Region Sector. Available online: https://www.gov.si/drzavni-organi/organi-v-sestavi/direkcija-za-vode/o-direkciji/urad-za-vzdrzevanje-voda/sektor-obmocja-drave/ (accessed on 17 November 2025).
- Ogrin, D. Climate Types in Slovenia. Geogr. Vestn. 1996, 68, 39–56. [Google Scholar]
- Ogrin, D.; Repe, B.; Štaut, L.; Svetlin, D.; Ogrin, M. Climate Classification of Slovenia Based on Data from the Period 1991–2020. Dela 2023, 2023, 5–89. [Google Scholar] [CrossRef]
- ARSO Thematic Maps: Temperatures and Precipitation; Trends and Deviations. Available online: https://meteo.arso.gov.si/met/sl/climate/maps/ (accessed on 16 January 2026).
- Arnes, O. About Slovenian Climate. Available online: https://ifeelslovenia.splet.arnes.si/o-podnebju/ (accessed on 16 January 2026).
- Geo ZS Geology Map. Available online: https://ogk100.geo-zs.si/ (accessed on 16 January 2026).
- Vengust, A.; Koroša, A.; Urbanc, J.; Mali, N. Development of Groundwater Flow Models for the Integrated Management of the Alluvial Aquifer Systems of Dravsko Polje and Ptujsko Polje, Slovenia. Hydrology 2023, 10, 68. [Google Scholar] [CrossRef]
- European Environment Agency Natura. 2000. Available online: https://biodiversity.europa.eu/natura2000/en/natura2000 (accessed on 16 January 2026).
- Ravbar, N.; Goldscheider, N. Comparative Application of Four Methods of Groundwater Vulnerability Mapping in a Slovene Karst Catchment. Hydrogeol. J. 2009, 17, 725–733. [Google Scholar] [CrossRef]
- ARSO Meteo. Available online: https://meteo.arso.gov.si/ (accessed on 16 January 2026).
- SIST DIN 38404-4:2000; German Standard Methods for the Examination of Water, Waste Water and Sludge—Physical and Physico-Chemical Parameters (Group C)—Determination of Temperature (C4). Slovenian Institute for Standardization (SIST): Ljubljana, Slovenia, 2000.
- ISO 17289:2014; Water Quality—Determination of Dissolved Oxygen—Optical Sensor Method. International Organization for Standardization: Geneva, Switzerland, 2014.
- ISO 5815-2:2003; Water Quality—Determination of Biochemical Oxygen Demand After n Days (BODₙ)—Part 2: Method for Undiluted Samples. International Organization for Standardization: Geneva, Switzerland, 2003.
- R Core Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2025; Available online: http://www.r-project.org (accessed on 17 November 2025).
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [PubMed]
- Mikoš, M.; Muck, P.; Savić, V. The Sava River Channel Changes in Slovenia. Acta Hydrotech. 2015, 28, 101–118. [Google Scholar]
- Schwarz, U. Sava White Book: The River Sava—Threats and Restoration Potential; EuroNatur: Radolfzell, Germany; Riverwatch: Wien, Austria, 2016. [Google Scholar]
- ARSO Monitoring of Watercourses for Discharges from Municipal and Industrial Wastewater Treatment Plants: Report for 2023. Available online: https://www.gov.si/assets/organi-v-sestavi/ARSO/Vode/Stanje-voda/Porocilo-o-ekoloskem-stanju-vodotokov-za-iztoki-iz-cistilnih-naprav-za-leto-2023.pdf (accessed on 28 November 2025). (In Slovene)
- Andrews, R.M.; Hayes, D.B.; Zorn, T.G. Multimodel Evaluation of Longitudinal Stream Temperature Gradient and Dominant Influencing Factors in Michigan Streams. River Res. Appl. 2022, 38, 1829–1842. [Google Scholar] [CrossRef]
- Zhi, W.; Ouyang, W.; Shen, C.; Li, L. Temperature Outweighs Light and Flow as the Predominant Driver of Dissolved Oxygen in US Rivers. Nat. Water 2023, 1, 249–260. [Google Scholar] [CrossRef]
- Bonacci, O.; Žaknić-Ćatović, A.; Roje-Bonacci, T. Significant Rise in Sava River Water Temperature in the City of Zagreb Identified across Various Time Scales. Water 2024, 16, 2337. [Google Scholar] [CrossRef]
- Širca, A.; Rajar, R. Thermal Load of the Sava River in Slovenia after Construction of a Chain of Run-of-the-River HPPs. In Proceedings of the IAHR Europe Congress—New Challenges in Hydraulic Researchand Engineering; Aronne, A., Elena, N., Eds.; Research Publishing: Singapore, 2018. [Google Scholar]
- Bonacci, O.; Đurin, B.; Bonacci, T.R.; Bonacci, D. The Influence of Reservoirs on Water Temperature in the Downstream Part of an Open Watercourse: A Case Study at Botovo Station on the Drava River. Water 2022, 14, 3534. [Google Scholar] [CrossRef]
- Chapra, S.C.; Camacho, L.A.; McBride, G.B. Impact of Global Warming on Dissolved Oxygen and BOD Assimilative Capacity of the World’s Rivers: Modeling Analysis. Water 2021, 13, 2408. [Google Scholar] [CrossRef]
- Rajesh, M.; Rehana, S. Impact of Climate Change on River Water Temperature and Dissolved Oxygen: Indian Riverine Thermal Regimes. Sci. Rep. 2022, 12, 9222. [Google Scholar] [CrossRef] [PubMed]
- Yavuz, V.S. Impact of Temperature and Flow Rate on Oxygen Dynamics and Water Quality in Major Turkish Rivers. Sci. Rep. 2025, 15, 22830. [Google Scholar] [CrossRef] [PubMed]
- Graham, D.J.; Bierkens, M.F.P.; Jones, E.R.; Sutanudjaja, E.H.; van Vliet, M.T.H. Climate Change Drives Low Dissolved Oxygen and Increased Hypoxia Rates in Rivers Worldwide. Nat. Clim. Change 2025, 15, 1348–1354. [Google Scholar] [CrossRef]
- Patel, H.; Jariwala, N. Analyzing the Effect of Temperature on DO and BOD of the Tapi River Using QUAL2Kw Model. Int. J. Innov. Technol. Explor. Eng. 2023, 12, 1–5. [Google Scholar] [CrossRef]
- Liu, L.; Zhao, X.; Zhou, L.; Liu, J.; Li, W.; Zhang, B.; Ling, J.; Wu, F. Comparative Analysis of Machine Learning Based Dissolved Oxygen Predictions in the Yellow River Basin: The Role of Diverse Environmental Predictors. J. Environ. Manag. 2025, 393, 127138. [Google Scholar] [CrossRef]
- Chen, S.; Huang, J.; Wang, P.; Tang, X.; Zhang, Z. A Coupled Model to Improve River Water Quality Prediction towards Addressing Non-Stationarity and Data Limitation. Water Res. 2024, 248, 120895. [Google Scholar] [CrossRef]
- Zhi, W.; Appling, A.P.; Golden, H.E.; Podgorski, J.; Li, L. Deep Learning for Water Quality. Nat. Water 2024, 2, 228–241. [Google Scholar] [CrossRef]
- Granata, F.; Zhu, S.; Di Nunno, F. Dissolved Oxygen Forecasting in the Mississippi River: Advanced Ensemble Machine Learning Models. Environ. Sci. Adv. 2024, 3, 1537–1551. [Google Scholar] [CrossRef]
- Rinke, K.; Mi, C.; Magee, M.R.; Carey, C.C. Increasing Exposure to Global Climate Change and Hopes for the Era of Climate Adaptation: An Aquatic Perspective. Ambio 2025, 54, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Wang, W.; Huang, R.; Su, R. A Review of Typical Water Pollution Control and Cost-Benefit Analysis in China. Front. Environ. Sci. 2024, 12, 1406155. [Google Scholar] [CrossRef]








| River | Length [km] | Q100 [m3/s] | Qaverage [m3/s] | Qmin [m3/s] |
|---|---|---|---|---|
| Drava | 140 | 2800 | 300 | 90 |
| Mura | 95 | 1500 | 171 | 50 |
| Sava | 220 | 4000 | 300 | 80 |
| River | Station | Coordinates | Catchment Area [km2] | Stationing [km] |
|---|---|---|---|---|
| Drava | Tribej | 499,135; 161,540 | 12,059 | 138 |
| Ormož | 589,280; 140,480 | 15,366 | 11.5 | |
| Mura | Gornja Radgona | 575,900; 171,595 | 10,197 | 107 |
| Mota | 597,668; 156,295 | 10,919 | 89 | |
| Orlovšček | 602,557; 155,544 | 12,042 * | 61 | |
| Sava | Otoče | 441,504; 129,832 | 909 | 900 |
| Prebačevo | 453,385; 118,865 | 1467 | 873 | |
| Šentjakob | 468,083; 104,506 | 2285 | 847 | |
| Podgračeno | 550,679; 81,795 | 10,231 | 737 | |
| Jesenice ND | 554,146; 79,800 | 10,928 | 728 |
| Station | Temperature n | Temperature (°C) M_pm_m | Temperature (°C) Med_IQR | Temperature (°C) Range |
| Tribej | 91 | 11.41 ± 0.65 | 11.90 (6.15–16.95) | 0.60–25.70 |
| Ormož | 440 | 12.11 ± 0.31 | 12.50 (6.60–17.60) | 0.10–24.60 |
| Gornja Radgona | 117 | 10.94 ± 0.56 | 11.10 (5.20–16.30) | 1.20–21.80 |
| Mota | 54 | 11.54 ± 0.87 | 11.50 (6.55–17.48) | 0.10–22.20 |
| Orlovšček | 83 | 12.07 ± 0.69 | 11.80 (7.35–18.00) | 0.10–23.10 |
| Otoče | 55 | 9.19 ± 0.48 | 8.60 (6.45–11.80) | 2.50–15.60 |
| Prebačevo | 61 | 9.81 ± 0.61 | 9.30 (5.80–12.80) | 2.00–23.40 |
| Šentjakob | 61 | 10.72 ± 0.58 | 11.20 (6.70–14.30) | 1.70–20.70 |
| Podgračeno | 56 | 14.03 ± 0.83 | 12.25 (8.55–19.62) | 4.10–25.70 |
| Jesenice | 398 | 13.43 ± 0.29 | 12.10 (8.50–17.78) | 2.20–26.10 |
| Station | BOD_n | BOD (mg/L) M_pm_m | BOD (mg/L) Med_IQR | BOD (mg/L) Range |
| Tribej | 91 | 0.89 ± 0.03 | 0.90 (0.70–1.10) | 0.50–1.50 |
| Ormož | 440 | 1.04 ± 0.02 | 1.00 (0.70–1.20) | 0.50–2.80 |
| Gornja Radgona | 117 | 1.22 ± 0.04 | 1.20 (0.90–1.50) | 0.50–2.90 |
| Mota | 54 | 1.25 ± 0.06 | 1.20 (0.92–1.50) | 0.50–2.60 |
| Orlovšček | 83 | 1.26 ± 0.06 | 1.20 (0.90–1.50) | 0.50–4.20 |
| Otoče | 55 | 0.74 ± 0.04 | 0.60 (0.50–0.90) | 0.50–1.40 |
| Prebačevo | 61 | 0.89 ± 0.07 | 0.80 (0.60–1.00) | 0.50–4.10 |
| Šentjakob | 61 | 0.93 ± 0.07 | 0.80 (0.50–1.10) | 0.50–2.70 |
| Podgračeno | 56 | 1.11 ± 0.07 | 1.00 (0.70–1.40) | 0.50–3.10 |
| Jesenice | 398 | 1.04 ± 0.03 | 0.90 (0.60–1.37) | 0.50–4.10 |
| Station | Oxygen Saturation_n | Oxygen Saturation (%)_M_pm_m | Oxygen Saturation (%)_Med_IQR | Oxygen Saturation (%)_Range |
| Tribej | 91 | 95.84 ± 1.06 | 99.00 (93.50–101.00) | 67.00–115.00 |
| Ormož | 440 | 96.04 ± 0.46 | 98.00 (92.00–102.00) | 67.00–118.00 |
| Gornja Radgona | 117 | 96.12 ± 0.88 | 99.00 (95.00–101.00) | 60.00–118.00 |
| Mota | 54 | 94.35 ± 1.27 | 98.00 (91.00–99.75) | 69.00–109.00 |
| Orlovšček | 83 | 94.17 ± 1.16 | 98.00 (91.50–100.00) | 64.00–111.00 |
| Otoče | 55 | 103.61 ± 0.73 | 104.00 (101.00–107.00) | 90.00–116.00 |
| Prebačevo | 61 | 96.52 ± 1.02 | 98.00 (93.00–102.00) | 71.00–112.00 |
| Šentjakob | 61 | 101.21 ± 0.81 | 102.00 (99.00–104.00) | 81.00–116.00 |
| Podgračeno | 56 | 97.84 ± 1.20 | 98.00 (94.50–102.00) | 70.00–119.00 |
| Jesenice | 397 | 98.85 ± 0.34 | 99.00 (96.00–103.00) | 60.00–117.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Krzyk, M.; Radulović, L.; Šraj, M. River Water Quality of Major Rivers in Slovenia in the Context of Climate Change. Sustainability 2026, 18, 1338. https://doi.org/10.3390/su18031338
Krzyk M, Radulović L, Šraj M. River Water Quality of Major Rivers in Slovenia in the Context of Climate Change. Sustainability. 2026; 18(3):1338. https://doi.org/10.3390/su18031338
Chicago/Turabian StyleKrzyk, Mario, Lana Radulović, and Mojca Šraj. 2026. "River Water Quality of Major Rivers in Slovenia in the Context of Climate Change" Sustainability 18, no. 3: 1338. https://doi.org/10.3390/su18031338
APA StyleKrzyk, M., Radulović, L., & Šraj, M. (2026). River Water Quality of Major Rivers in Slovenia in the Context of Climate Change. Sustainability, 18(3), 1338. https://doi.org/10.3390/su18031338

