Optimal Use of Supercritical CO2 as Heat Transfer Fluid for Geothermal System
Abstract
1. Introduction
2. Physical and Mathematical Model
2.1. Physical Model and Assumptions
2.2. Mathematical Models
2.3. Boundary Conditions and Solution Procedure
3. Results and Discussions
3.1. Influence of Mass Flow Rate
3.2. Influence of Back Pressure at Outlet
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
| density, kg/m3 | |
| flow velocity vector, m/s | |
| h | specific enthalpy, J/kg |
| thermal conductivity, W/(m·K) | |
| T | temperature, K |
| Q | heat transfer induced by the temperature difference between flowing fluid and surrounding rock, J |
| x | axial coordinate, m |
| r | radial coordinate, m |
| the component of on i axis, m/s | |
| P | pressure, Pa |
| inverse reduced temperature, dimensionless | |
| reduced density, dimensionless | |
| R | specific gas constant, R = 0.1889 kJ/(kg·K) |
| Helmholtz energy, dimensionless | |
| partial derivative of the Helmholtz energy, dimensionless | |
| excess thermal conductivity, W/(m·K) | |
| thermal conductivity in the critical region, W/(m·K) | |
| isobaric heat capacity, J/(kgK) | |
| Qcr | heat loss of flowing fluid to surrounding rock, J |
| convective heat transfer coefficient between casing wall and flowing working fluid in the production well, W/(m2·K) | |
| inner diameter of the casing, m | |
| outer diameter of the casing, m | |
| viscosity, μPa·s | |
| viscosity in the zero-density limit, μPa·s | |
| excess viscosity, μPa·s | |
| viscosity in the critical region, μPa·s | |
| flow friction coefficient, dimensionless | |
| the symmetric part of local speed gradient tensor, dimensionless | |
| Fi | mass force component on i axis, m/s2 |
| p | stress, Pa |
| Kronecker delta | |
| thermal conductivity of casing body, W/(m·K) | |
| l | length of finite unit, m |
| temperature of formation rock, K | |
| the mass in an infinitesimal unit, kg | |
| m | mass flow rate, kg/s |
| d | equivalent diameter, m |
References
- Elkhatat, A.; Al-Muhtaseb, S. Climate Change and Energy Security: A Comparative Analysis of the Role of Energy Policies in Advancing Environmental Sustainability. Energies 2024, 17, 3179. [Google Scholar] [CrossRef]
- Osman, A.I.; Deka, T.J.; Baruah, D.C.; Rooney, D.W. Critical challenges in biohydrogen production processes from the organic feedstocks. Biomass Conv. Bioref. 2023, 13, 8383–8401. [Google Scholar] [CrossRef]
- International Renewable Energy Association (ARENA). Renewable Capacity Statistics 2018; International Renewable Energy Agency (ARENA): Abu Dhabi, United Arab Emirates, 2018. [Google Scholar]
- Goldstein, B.A.; Hill, A.J.; Long, A.; Budd, A.R.; Holgate, F.; Malavazos, M. Hot rock geothermal energy plays in Australia. In Proceedings of the Thirty-Fourth Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, 9–11 February 2009. [Google Scholar]
- Ricks, W.; Voller, K.; Galban, G.; Norbeck, J.H.; Jenkins, J.D. The role of flexible geothermal power in decarbonized electricity systems. Nat. Energy 2025, 10, 28–40. [Google Scholar] [CrossRef]
- Raza, M.A.; Al-Khasawneh, M.A.; Alharthi, Y.Z.; Faheem, M.; Haider, R.; Kumar, L. Power generation expansion planning with high penetration of geothermal energy—Potential, prospects and policy. Environ. Sustain. Indic. 2025, 26, 100614. [Google Scholar] [CrossRef]
- Kurek, K.A.; van Ophem, J.; Strojny, J. Arguments for a Community-Based Approach to Geothermal Energy Development. Energies 2024, 17, 2299. [Google Scholar] [CrossRef]
- Gładysz, P.; Pająk, L.; Andresen, T.; Strojny, M.; Sowiżdżał, A. Process Modeling and Optimization of Supercritical Carbon Dioxide-Enhanced Geothermal Systems in Poland. Energies 2024, 17, 3769. [Google Scholar] [CrossRef]
- Meirbekova, R.; Bonciani, D.; Olafsson, D.I.; Korucan, A.; Derin-Güre, P.; Harcouët-Menou, V.; Bero, W. Opportunities and Challenges of Geothermal Energy: A Comparative Analysis of Three European Cases—Belgium, Iceland, and Italy. Energies 2024, 17, 4134. [Google Scholar] [CrossRef]
- Cai, X.; Liu, Z.; Xu, K.; Li, B.; Zhong, X.; Yang, M. Numerical simulation study of an Enhanced Geothermal System with a five-spot pattern horizontal well based on thermal-fluid-solid coupling. Appl. Therm. Eng. 2025, 258, 124649. [Google Scholar] [CrossRef]
- Chen, J.; Jiang, F. Designing multi-well layout for enhanced geothermal system to better exploit hot dry rock geothermal energy. Renew. Energy 2015, 74, 37–48. [Google Scholar] [CrossRef]
- Memon, A.R.; Makauskas, P.; Kaminskaitė-Baranauskienė, I.; Pal, M. Repurposing depleted hydrocarbon reservoirs for geothermal energy: A case study of the Vilkyčiai Cambrian sandstone in Lithuania. Energy Rep. 2025, 14, 243–253. [Google Scholar] [CrossRef]
- Asai, P.; Panja, P.; McLennan, J.; Moore, J. Performance evaluation of enhanced geothermal system (EGS): Surrogate models, sensitivity study and ranking key parameters. Renew. Energy 2018, 122, 184–195. [Google Scholar] [CrossRef]
- Tester, J.W.; Herzog, H.J. Economic Predictions for Heat Mining: A Review and Analysis of Hot Dry Rock (HDR) Geothermal Energy Technology; Office of Scientific & Technical Information Technical Reports; Energy Laboratory, Massachusetts Institute of Technology: Cambridge, MA, USA, 1990. [Google Scholar]
- Lukawski, M.Z.; Anderson, B.J.; Augustine, C.; Capuano, L.E., Jr.; Beckers, K.F.; Livesay, B.; Tester, J.W. Cost analysis of oil, gas, and geothermal well drilling. J. Pet. Sci. Eng. 2014, 118, 1–14. [Google Scholar] [CrossRef]
- Li, J.-B.; Wang, H.; Wang, T.; Li, H.; Guo, C.; Yang, D. Feasibility analysis of converting abandoned oil and gas wells into geothermal wells and power generation. Geoenergy Sci. Eng. 2025, 253, 213985. [Google Scholar] [CrossRef]
- Taghadom, K.; Khosravani, H.; Mohammad; Rahimpour, R. Geothermal Energy Exploitation from Oil Field. In Encyclopedia of Renewable Energy, Sustainability and the Environment, 1st ed.; Rahimpour, M.R., Ed.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 105–116. ISBN 9780323939416. [Google Scholar]
- Liu, Z.; Yang, W.; Xu, K.; Zhang, Q.; Yan, L.; Li, B.; Cai, X.; Yang, M. Research progress of technologies and numerical simulations in exploiting geothermal energy from abandoned wells: A review. Geoenergy Sci. Eng. 2023, 224, 211624. [Google Scholar] [CrossRef]
- Prabodh, P.; Yan, F.; Hanifatu, A.; Zulkarnain, K.; Mark, A.; Dodi, H. The Arun gas field in Indonesia: Resource management of a mature field. In Proceedings of the SPE Asia Pacific Conference on Integrated Modelling for Asset Management, Kuala Lumpur, Malaysia, 29–30 March 2004. [Google Scholar]
- Yang, S.; Wang, S.; Wang, L.; He, C.; Dong, P. Evaluation and development of fractured buried-hill condensate gas reservoir- taking Qianmiqiao buried-hill condensate gas reservoir as an example. Nat. Gas Geosci. 2006, 17, 857–861, (In Chinese with English Abstract). [Google Scholar]
- Zhang, L.; Pei, J.; Ren, S. Heat mining capacity and energy utilization efficiency of SCCO2-HDR geothermal system. Renew. Energy Resour. 2014, 32, 114–119. [Google Scholar]
- Brown, D.W. A hot dry rock geothermal energy concept utilizing supercritical CO2 instead of water. In Proceedings of the Twenty-Fifth Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, 24–26 January 2000; Stanford University: Stanford, CA, USA, 2000. [Google Scholar]
- Pruess, K. Enhanced geothermal systems (EGS) using CO2 as working fluid—A novel approach for generating renewable energy with simultaneous sequestration of carbon. Geothermics 2006, 35, 351–367. [Google Scholar] [CrossRef]
- Spycher, N.; Pruess, K. A Phase-Partitioning Model for CO2–Brine Mixtures at Elevated Temperatures and Pressures: Application to CO2-Enhanced Geothermal Systems. Transp. Porous Media 2010, 82, 173–196. [Google Scholar] [CrossRef]
- Wan, Y.; Xu, T.; Pruess, K. Impact of fluid-rock interactions on enhanced geothermal systems with CO2 as heat transmission fluid. In Proceedings of the Thirty-Sixth Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, 31 January–2 February 2011; Stanford University: Stanford, CA, USA, 2011. [Google Scholar]
- Gaus, I. Role and impact of CO2–rock interactions during CO2 storage in sedimentary rocks. Int. J. Greenh. Gas Control 2010, 4, 73–89. [Google Scholar] [CrossRef]
- Zhang, L.; Li, X.; Zhang, Y.; Cui, G.; Tan, C.; Ren, S. CO2 injection for geothermal development associated with EGR and geological storage in depleted high-temperature gas reservoirs. Energy 2017, 123, 139–148. [Google Scholar] [CrossRef]
- Xu, T.; Pruess, K.; Apps, J. Numerical Studies of Fluid-Rock Interactions in Enhanced Geothermal Systems (EGS) with CO2 as Working Fluid; Ernest Orlando Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 2008. [Google Scholar]
- Cui, G.; Zhang, L.; Tan, C.; Ren, S. Injection of supercritical CO2 for geothermal exploitation from sandstone and carbonate reservoirs: CO2–water–rock interactions and their effects. J. CO2 Util. 2017, 20, 113–128. [Google Scholar] [CrossRef]
- Zhang, X.; Lu, Y.; Tang, J.; Zou, Z.; Liao, Y. Experimental study on fracture initiation and propagation in shale using supercritical carbon dioxide fracturing. Fuel 2017, 190, 370–378. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, G.; Jiang, Y.; Xian, X.; Liu, Q.; Zhang, D.; Tan, J. Supercritical carbon dioxide fracturing in shale and the coupled effects on the permeability of fractured shale: An experimental study. J. Nat. Gas Sci. Eng. 2016, 36, 369–377. [Google Scholar] [CrossRef]
- Jiang, Y.; Qin, C.; Kang, Z.; Zhou, J.; Li, Y.; Liu, H.; Song, X. Experimental study of supercritical CO2 fracturing on initiation pressure and fracture propagation in shale under different triaxial stress conditions. J. Nat. Gas Sci. Eng. 2018, 55, 382–394. [Google Scholar] [CrossRef]
- Span, R.; Wagner, W. A new equation of state for CO2 covering the fluid region from the triple-point temperature to 1100 K at pressure up to 800 MPa. J. Phys. Chem. Ref. Data 1996, 25, 1509–1596. [Google Scholar] [CrossRef]
- Wang, P.; Ni, H.; Wang, R. Modeling the flow of carbon dioxide during the drilling of oil, gas, and geothermal energy. Int. J. Heat Mass Transf. 2019, 138, 443–453. [Google Scholar] [CrossRef]
- Fenghour, A.; Wakeham, W.A. The viscosity of carbon dioxide. J. Phys. Chem. Ref. Data 1998, 27, 31–44. [Google Scholar] [CrossRef]
- Vesovic, V.; Wakeham, W.A.; Olchowy, G.A.; Sengers, J.V.; Watson, J.T.R.; Millat, J. The Transport Properties of Carbon Dioxide. J. Phys. Chem. Ref. Data 1990, 19, 763–808. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, B.; Wang, J.; Hou, L. Experimental study on the friction coefficient of supercritical carbon dioxide in pipes. Int. J. Greenh. Gas Control. 2014, 25, 151–161. [Google Scholar] [CrossRef]
- Spalding, D.B. Lectures in Mathematical Models of Turbulence; Academic Press: London, UK, 1972. [Google Scholar]
- Deng, S.; Li, X.; Yang, Z.; Yi, L.; Rao, D. Flow and heat transfer for non-Newtonian CO2 mixed fluid injection in the wellbore. Fuel 2025, 381, 133647. [Google Scholar] [CrossRef]
- Sultan, Z.B.; Sheng, J.J. Strategic approach to EGS working fluid selection: Performance assessment of water and CO2. Energy 2025, 319, 13494. [Google Scholar] [CrossRef]
















| Well Depth = 1500 m | Geothermal Gradient = 0.06 K/m |
|---|---|
| Inner diameter of the casing = 0.1086 m | Reservoir temperature = 398.15 K |
| Outer diameter of the casing = 0.1270 m | Outlet pressure = 8, 9, 10 MPa |
| Thermal conductivity of the casing = 45 W/(m·K) | Mass flow rate = 25, 30, 35 kg/s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Liu, C.; Sun, L.; Wang, L.; Song, W.; Yu, Z. Optimal Use of Supercritical CO2 as Heat Transfer Fluid for Geothermal System. Sustainability 2026, 18, 483. https://doi.org/10.3390/su18010483
Liu C, Sun L, Wang L, Song W, Yu Z. Optimal Use of Supercritical CO2 as Heat Transfer Fluid for Geothermal System. Sustainability. 2026; 18(1):483. https://doi.org/10.3390/su18010483
Chicago/Turabian StyleLiu, Chengcheng, Lianzhong Sun, Lei Wang, Weiqiang Song, and Zhicheng Yu. 2026. "Optimal Use of Supercritical CO2 as Heat Transfer Fluid for Geothermal System" Sustainability 18, no. 1: 483. https://doi.org/10.3390/su18010483
APA StyleLiu, C., Sun, L., Wang, L., Song, W., & Yu, Z. (2026). Optimal Use of Supercritical CO2 as Heat Transfer Fluid for Geothermal System. Sustainability, 18(1), 483. https://doi.org/10.3390/su18010483
