Difference in Soil Fertility Agricultural Training, Local Livestock Feed Use and Weather Information Access: A Comparative Study of Small-Scale Farmers in Mozambique and Zambia
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area Description
2.2. Methodological Framework
2.3. Conceptual Framework
2.4. Data Sources and Sampling
2.5. Data Analysis
2.6. Ethical Consideration
2.7. Methodological Limitations
3. Results
3.1. Descriptive Statistics
3.2. Demographic, Social, and Economic Indicators
3.3. Agroforestry and Soil Fertility Indicators
3.4. Farmers’ Capacity Building in Soil Fertility and Livestock Management Indicators
3.5. Farmers’ Capacity, Access, and Utilization of Weather Information for Sustainable Agricultural Planning
4. Discussion
4.1. Demographic, Social, and Economic Factors
4.2. Agroforestry and Soil Fertility Management Practices
4.3. Farmers’ Capacity Building in Soil Fertility and Livestock Feed Management
4.4. Farmers’ Capacity, Access, and Utilization of Weather Information
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- OECD/FAO. Agriculture in Sub-Saharan Africa: Prospects and Challenges for the Next Decade; FAO: Rome, Italy, 2016; pp. 59–95. [Google Scholar]
- Tchuenga, G.T.S.; Tchindjang, M.; Ngome, P.I.T.; Degrande, A.; Basga, S.D.; Saha, F. Agricultural Innovations and Adaptations to Climate Change in the Northern Cameroon Region. Sustainability 2024, 16, 10096. [Google Scholar] [CrossRef]
- Demissie, T.; Gebrechorkos, S.H. Spatio-Temporal Trends in Precipitation, Temperature, and Extremes: A Study of Malawi and Zambia (1981–2021). Sustainability 2024, 16, 3885. [Google Scholar] [CrossRef]
- Mohan, D.; Abhishek, K.; Sarswat, A.; Patel, M.; Singh, P.; Pittman, C.U. Pittman, Biochar production and applications in soil fertility and carbon sequestration–a sustainable solution to crop-residue burning in India. RSC Adv. 2018, 8, 508–520. [Google Scholar] [CrossRef]
- Matos, A.; Barraza, L.; Ruiz-Mallén, I. Linking Conservation, Community Knowledge, and Adaptation to Extreme Climatic Events: A Case Study in Gorongosa National Park, Mozambique. Sustainability 2021, 13, 6478. [Google Scholar] [CrossRef]
- Semosa, P.D. The Impact of Climate Change on the Agricultural Sector in SADC Countries. Sustainability 2025, 17, 5177. [Google Scholar] [CrossRef]
- Boudalia, S.; Dawit Teweldebirhan, M.; Ariom, T.O.; Diouf, N.S.; Nambeye, E.; Mwatitha Gondwe, T.; Mbo’o-Tchouawou, M.; Okoth, S.A.; Huyer, S. Gendered Gaps in the Adoption of Climate-Smart Agriculture in Africa and How to Overcome Them. Sustainability 2024, 16, 5539. [Google Scholar] [CrossRef]
- McCordic, C.; Abrahamo, E. Family Structure and Severe Food Insecurity in Maputo and Matola, Mozambique. Sustainability 2019, 11, 267. [Google Scholar] [CrossRef]
- Somanje, A.N.; Mwansa, L.M.; Chisanga, K. Spatial Distribution Analysis of Community Radio Stations as Means for Promoting Climate Change Adaptation Measures in Agriculture under COVID-19 Scenario, Southern Province, Zambia. Sustainability 2022, 14, 15380. [Google Scholar] [CrossRef]
- Somanje, A.N.; Mohan, G.; Saito, O. Evaluating farmers’ perception toward the effectiveness of agricultural extension services in Ghana and Zambia. Agric. Food Secur. 2021, 10, 53. [Google Scholar] [CrossRef]
- Somanje, A.N.; Crespo, O.; Zinyengere, N. Conservation Agriculture Among Farmers in Kalomo, Zambia. In Beyond Agricultural Impacts; Elsevier: Amsterdam, The Netherlands, 2017; pp. 77–99. [Google Scholar]
- Nkomoki, W.; Bavorová, M.; Banout, J. Factors Associated with Household Food Security in Zambia. Sustainability 2019, 11, 2715. [Google Scholar] [CrossRef]
- Kiwia, A.; Kimani, D.; Harawa, R.; Jama, B.; Sileshi, G.W. Sustainable Intensification with Cereal-Legume Intercropping in Eastern and Southern Africa. Sustainability 2019, 11, 2891. [Google Scholar] [CrossRef]
- Manono, B.O.; Gichana, Z. Agriculture-Livestock-Forestry Nexus: Pathways to Enhanced Incomes, Soil Health, Food Security and Climate Change Mitigation in Sub-Saharan Africa. Earth 2025, 6, 74. [Google Scholar] [CrossRef]
- Zavale, H.; Matchaya, G.; Vilissa, D.; Nhemachena, C.; Nhlengethwa, S.; Wilson, D. Dynamics of the Fertilizer Value Chain in Mozambique. Sustainability 2020, 12, 4691. [Google Scholar] [CrossRef]
- Mphande, E.; Umar, B.B.; Kunda-Wamuwi, C.F. Gender and Legume Production in a Changing Climate Context: Experiences from Chipata, Eastern Zambia. Sustainability 2022, 14, 11901. [Google Scholar] [CrossRef]
- Partey, S.; Zougmoré, R.; Ouédraogo, M.; Thevathasan, N. Why Promote Improved Fallows as a Climate-Smart Agroforestry Technology in Sub-Saharan Africa? Sustainability 2017, 9, 1887. [Google Scholar] [CrossRef]
- Yuan, Y.; Chen, H.; Yuan, W.; Williams, D.; Walker, J.T.; Shi, W. Is biochar-manure co-compost a better solution for soil health improvement and N2O emissions mitigation? Soil Biol. Biochem. 2017, 113, 14–25. [Google Scholar] [CrossRef]
- Smith, P. Soil carbon sequestration and biochar as negative emission technologies. Glob. Change Biol. 2016, 22, 1315–1324. [Google Scholar] [CrossRef] [PubMed]
- Rogers, P.M.; Fridahl, M.; Yanda, P.; Hansson, A.; Pauline, N.; Haikola, S. Socio-Economic Determinants for Biochar Deployment in the Southern Highlands of Tanzania. Energies 2021, 15, 144. [Google Scholar] [CrossRef]
- United Nations. The Sustainable Development Goals Report; United Nations: Geneva, Switzerland, 2017. [Google Scholar] [CrossRef]
- Waage, J.; Yap, C.; Bell, S.; Levy, C.; Mace, G.; Pegram, T.; Unterhalter, E.; Dasandi, N.; Hudson, D.; Kock, R.; et al. Governing the UN Sustainable Development Goals: Interactions, infrastructures, and institutions. Lancet Glob. Health 2015, 3, e251–e252. [Google Scholar] [CrossRef]
- Sigaúque, I.; Macucule, P.A.; Mulandane, F.C.; Brito, D.R.A.; Jamal, S.A.; Delespaux, V.; Neves, L.C.B.G. Parasitological and molecular identification of Trypanosoma species circulating in cattle and tsetse flies in Matutuine District, Maputo Province, Mozambique. Rend. Lincei. Sci. Fis. Nat. 2022, 33, 501–512. [Google Scholar] [CrossRef]
- Shaffer, L.J. Rain Rituals as a Barometer of Vulnerability in an Uncertain Climate. J. Ecol. Anthropol. 2017, 19, 1–17. [Google Scholar] [CrossRef]
- Rijal, P.; Pimentel, C.; Carvalho, H.; Matias, J.; Garrido, S. Sustainable Business Models for Residual Agroforestry Biomass Valorization: A Cross Case Analysis. In Design, Simulation, Manufacturing: The Innovation Exchange; Springer Nature: Cham, Switzerland, 2025; pp. 117–126. [Google Scholar]
- Cox, A.J.; Sseguya, H. ICT supported extension services in conservation agriculture information access for small holder farmers in Laikipia County, Kenya. In Proceedings of the International Symposium on Technology and Society, Dublin, Ireland, 11–12 November 2015; Volume 2016. [Google Scholar] [CrossRef]
- Nakano, Y.; Tsusaka, T.W.; Aida, T.; Pede, V.O. Is farmer-to-farmer extension effective? The impact of training on technology adoption and rice farming productivity in Tanzania. World Dev. 2018, 105, 336–351. [Google Scholar] [CrossRef]
- Ntshangase, N.L.; Muroyiwa, B.; Sibanda, M. Farmers’ Perceptions and Factors Influencing the Adoption of No-Till Conservation Agriculture by Small-Scale Farmers in Zashuke, KwaZulu-Natal Province. Sustainability 2018, 10, 555. [Google Scholar] [CrossRef]
- Abdul-Razak, M.; Kruse, S. The adaptive capacity of smallholder farmers to climate change in the Northern Region of Ghana. Clim. Risk Manag. 2017, 17, 104–122. [Google Scholar] [CrossRef]
- Hernández-Morcillo, M.; Burgess, P.; Mirck, J.; Pantera, A.; Plieninger, T. Scanning agroforestry-based solutions for climate change mitigation and adaptation in Europe. Environ. Sci. Policy 2018, 80, 44–52. [Google Scholar] [CrossRef]
- Becerra-Encinales, J.F.; Bernal-Hernandez, P.; Beltrán-Giraldo, J.A.; Cooman, A.P.; Reyes, L.H.; Cruz, J.C. Agricultural extension for adopting technological practices in developing countries: A scoping review of barriers and dimensions. Sustainability 2024, 16, 3555. [Google Scholar] [CrossRef]
- Duku, M.H.; Gu, S.; Hagan, E. A comprehensive review of biomass resources and biofuels potential in Ghana. Renew. Sustain. Sustain. Energy Rev. 2011, 15, 404–415. [Google Scholar] [CrossRef]
- Creswell, J.W. Research Design: Qualitative, Quantitative and Mixed Approaches, 3rd ed.; Sage Publications: London, UK, 2009. [Google Scholar]
- Creswell, J.W.; Clark, V.L.P. Designing and Conducting Mixed Methods Research; Sage Publications: London, UK, 2017. [Google Scholar]
- Khatri, A.; Lallawmkimi, M.C.; Rana, P.; Panigrahi, C.K.; Minj, A.; Koushal, S.; Ali, M.U. Integration of ICT in agricultural extension services: A review. J. Exp. Agric. Int. 2024, 46, 394–410. [Google Scholar] [CrossRef]
- Tata, J.; McNamara, P. Social Factors That Influence Use of ICT in Agricultural Extension in Southern Africa. Agriculture 2016, 6, 15. [Google Scholar] [CrossRef]
- Barakabitze, A.A.; Kitindi, E.J.; Sanga, C.; Shabani, A.; Philipo, J.; Kibirige, G. New technologies for disseminating and communicating agriculture knowledge and information: Challenges for agricultural research institutes in Tanzania. Electron. J. Inf. Syst. Dev. Ctries. 2015, 70, 1–12. [Google Scholar] [CrossRef]
- Lakshminarasimhappa, M.C. Web-Based and Smart Mobile APP for Data Collection: Kobo Toolbox/Kobo Collect. J. Indian Libr. Assoc. 2021, 57, 72–79. [Google Scholar]
- South, J.; Coan, S.; Woodward, J.; Bagnall, A.M.; Rippon, S. Asset Based Community Development: Co-Designing an Asset-Based Evaluation Study for Community Research. Sage Open 2024, 14, 21582440241240836. [Google Scholar] [CrossRef]
- Garamszegi, L.Z.; Møller, A.P. Effects of sample size and intraspecific variation in phylogenetic comparative studies: A meta-analytic review. Biol. Rev. 2010, 85, 797–805. [Google Scholar] [CrossRef]
- Geampana, A.; Perrotta, M. Using interview excerpts to facilitate focus group discussion. Qual. Res. 2025, 25, 130–146. [Google Scholar] [CrossRef]
- Mudege, N.N.; Chevo, T.; Nyekanyeka, T.; Kapalasa, E.; Demo, P. Gender Norms and Access to Extension Services and Training among Potato Farmers in Dedza and Ntcheu in Malawi. J. Agric. Educ. Ext. 2016, 22, 291–305. [Google Scholar] [CrossRef]
- Fern, E.F. The use of Focus Groups for Idea Generation: The Effects of Group Size, Acquaintanceship, and Moderator on Response Quantity and Quality. J. Mark. Res. 1982, 19, 1–13. [Google Scholar] [CrossRef]
- Emmanuel, D.; Owusu-Sekyere, E.; Owusu, V.; Jordaan, H. Impact of agricultural extension service on adoption of chemical fertilizer: Implications for rice productivity and development in Ghana. NJAS-Wageningen J. Life Sci. 2016, 79, 41–49. [Google Scholar] [CrossRef]
- Parmar, I.S.; Soni, P.; Kuwornu, J.K.M.; Salin, K.R. Evaluating farmers’ access to agricultural information: Evidence from semi-arid region of Rajasthan state, India. Agriculture 2019, 9, 60. [Google Scholar] [CrossRef]
- Yaya, S.; Bishwajit, G.; Ekholuenetale, M.; Shah, V.; Kadio, B.; Udenigwe, O. Urban-rural difference in satisfaction with primary healthcare services in Ghana. BMC Health Serv. Res. 2017, 17, 776. [Google Scholar] [CrossRef]
- McKinney, W.P. The Inexact Use of Fisher’s Exact Test in Six Major Medical Journals. JAMA J. Am. Med. Assoc. 1989, 261, 3430. [Google Scholar] [CrossRef]
- Parajuli, R.; Doneys, P. Exploring the role of telemedicine in improving access to healthcare services by women and girls in rural Nepal. Telemat. Inform. 2017, 34, 1166–1176. [Google Scholar] [CrossRef]
- Moyo, R.; Salawu, A. A survey of communication effectiveness by agricultural extension in the Gweru district of Zimbabwe. J. Rural Stud. 2018, 60, 34–42. [Google Scholar] [CrossRef]
- Coe, R.; Waring, M.; Hedges, L.V.; Ashley, L.D. (Eds.) Research Methods and Methodologies in Education; SAGE Publications Limited: London, UK, 2025. [Google Scholar]
- Msoffe, G.; Chengula, A.; Kipanyula, M.J.; Mlozi, M.R.S.; Sanga, C.A. Poultry Farmers’ Information needs and Extension advices in Kilosa, Tanzania: Evidence from Mobile-based Extension, Advisory and Learning System (MEALS). Libr. Philos. Pract. 2018, 11, 155–164. [Google Scholar] [CrossRef]
- Baird, T.D.; Hartter, J. Livelihood diversification, mobile phones and information diversity in Northern Tanzania. Land Use Policy 2017, 67, 460–471. [Google Scholar] [CrossRef]
- Isaya, E.L.; Agunga, R.; Sanga, C.A. Sources of agricultural information for women farmers in Tanzania. Inf. Dev. 2018, 34, 77–89. [Google Scholar] [CrossRef]
- Baffoe, G.; Matsuda, H. Why do rural communities do what they do in the context of livelihood activities? Exploring the livelihood priority and viability nexus. Community Dev. 2017, 48, 715–734. [Google Scholar] [CrossRef]
- Nyantakyi-Frimpong, H.; Bezner-Kerr, R. The relative importance of climate change in the context of multiple stressors in semi-arid Ghana. Glob. Environ. Change 2015, 32, 40–56. [Google Scholar] [CrossRef]
- Murray, U.; Gebremedhin, Z.; Brychkova, G.; Spillane, C. Smallholder Farmers and Climate Smart Agriculture: Technology and Labor-productivity Constraints amongst Women Smallholders in Malawi. Gend. Technol. Dev. 2016, 20, 117–148. [Google Scholar] [CrossRef] [PubMed]
- Chahal, N.; Com, B.; Panwar, T.; Pathak, V. Gender Equality and Sustainability: Interlinked Pathways to Inclusive Development. In Proceedings of the International Conference on Sustainable Development Goals-Challenge, Moradabad, India, 25–26 April 2025. [Google Scholar]
- UN Women. Climate Change, Gender and Food Security in the Pacific; United Nations: Suva, Fiji, 2014; Available online: https://asiapacific.unwomen.org (accessed on 21 October 2025).
- Prahmana, R.C.I.; Hartanto, D.; Kusumaningtyas, D.A.; Ali, R.M. Muchlas, Community radio-based blended learning model: A promising learning model in remote area during pandemic era. Heliyon 2021, 7, e07511. [Google Scholar] [CrossRef] [PubMed]
- Pretty, J.; Toulmin, C.; Williams, S. Sustainable intensification in African agriculture. Int. J. Agric. Sustain. 2011, 9, 5–24. [Google Scholar] [CrossRef]
- Wynes, S.; Nicholas, K.A. The climate mitigation gap: Education and government recommendations miss the most effective individual actions. Environ. Res. Lett. 2017, 12, 074024. [Google Scholar] [CrossRef]
- Guilherme, N.K.P., Jr.; Rodrigues, A.C. Microcosms of the Skills Ecosystem: Building Communities of Practice (CoPs) to Tackle Food Insecurity and Youth Unemployment in Northern Mozambique. Soc. Sci. 2025, 14, 396. [Google Scholar] [CrossRef]
- Mugwisi, T.; Mostert, J.; Ocholla, D.N. Access to and Utilization of Information and Communication Technologies by Agricultural Researchers and Extension Workers in Zimbabwe. Inf. Technol. Dev. 2015, 21, 67–84. [Google Scholar] [CrossRef]



| Variable | N | Minimum | Maximum | Mean | Std. Deviation | |
|---|---|---|---|---|---|---|
| Statistic | Statistic | Statistic | Statistic | Std. Error | Statistic | |
| Age | 498 | 16 | 89 | 44.41 | 0.63 | 13.96 |
| Household size | 289 | 0 | 24 | 6.83 | 0.22 | 3.780 |
| Farmland size | 498 | 0 | 300 | 4.47 | 0.65 | 14.43 |
| Annual income ($) | 498 | 0 | 5846 | 432.31 | 30.91 | 689.82 |
| Number of radios | 475 | 0 | 8 | 0.55 | 0.03 | 0.69 |
| Number of tractors | 475 | 0 | 1 | 0.00 | 0.00 | 0.065 |
| Number of ridgers | 475 | 0 | 2 | 0.04 | 0.01 | 0.21 |
| Number of cultivators | 475 | 0 | 3 | 0.18 | 0.02 | 0.43 |
| Number of chaff cutters | 475 | 0 | 3 | 0.08 | 0.02 | 0.36 |
| Number of oxcarts | 475 | 0 | 21 | 0.31 | 0.06 | 1.21 |
| Number of bicycles | 475 | 0 | 4 | 0.54 | 0.03 | 0.64 |
| Number of harrows | 475 | 0 | 8 | 0.17 | 0.02 | 0.53 |
| Number of vehicles | 475 | 0 | 2 | 0.03 | 0.01 | 0.19 |
| Number of televisions | 475 | 0 | 3 | 3 | 0.19 | 0.02 |
| Number of goats_ | 475 | 0 | 500 | 7.95 | 1.32 | 28.70 |
| Number of poultry | 475 | 0 | 600 | 13.87 | 1.51 | 32.84 |
| Area (ha) under pigeon peas | 475 | 0 | 8 | 0.04 | 0.02 | 0.40 |
| Area (ha) under star grass | 475 | 0 | 8 | 0.03 | 0.02 | 0.39 |
| Area (ha) under cowpea | 475 | 0 | 5 | 0.30 | 0.03 | 0.67 |
| Area (ha) under Rhodes grass | 475 | 0 | 1 | 0.00 | 0.00 | 0.07 |
| Area (ha) under leucaena | 475 | 0 | 3 | 3 | 0.01 | 0.01 |
| Area (ha) under sesbania | 475 | 0 | 1 | 0.01 | 0.01 | 0.09 |
| Area (ha) under velvet bean | 475 | 0 | 3 | 0.02 | 0.01 | 0.20 |
| Area (ha) under glicidia sepium | 475 | 0 | 2 | 0.01 | 0.01 | 0.10 |
| Area (ha) under oil seed crops | 475 | 0 | 25 | 0.79 | 0.08 | 1.82 |
| Area (ha) under vegetables_ | 475 | 0 | 25 | 1.34 | 0.167 | 3.70 |
| Area (ha) under root and tubers | 475 | 0 | 75 | 1.09 | 0.191 | 4.16 |
| Area (ha) under legumes_ | 475 | 0 | 55 | 0.95 | 0.13 | 2.89 |
| Area (ha) under cereals | 475 | 0 | 8 | 1.80 | 0.06 | 1.32 |
| Variables with Equal Variances Are Assumed | Levene’s Test for Equality of Variances | t-Test for Equality of Means | |||||||
|---|---|---|---|---|---|---|---|---|---|
| F | Sig. | t | df | Sig. | Mean Difference | Std. Error Difference | 95% Confidence Interval of the Difference | ||
| Lower | Upper | ||||||||
| Age | 10.136 | 0.002 | −0.178 | 496 | 0.859 | −0.230 | 1.295 | −2.774 | 2.314 |
| Household size | 6.699 | 0.010 | 3.877 | 287 | 0.000 | 3.122 | 0.805 | 1.537 | 4.708 |
| Farmland size | 5.399 | 0.021 | 2.937 | 496 | 0.003 | 3.897 | 1.327 | 1.290 | 6.504 |
| Annual income ($) | 98.699 | 0.000 | 9.778 | 496 | 0.000 | 572.697 | 58.570 | 457.621 | 687.773 |
| Number of radios | 6.075 | 0.014 | 4.062 | 473 | 0.000 | 0.258 | 0.064 | 0.133 | 0.383 |
| Number of tractors | 5.236 | 0.023 | 1.136 | 473 | 0.256 | 0.007 | 0.006 | −0.005 | 0.019 |
| Number of ridgers | 52.988 | 0.000 | 3.423 | 473 | 0.001 | 0.066 | 0.019 | 0.028 | 0.103 |
| Number of cultivators | 326.151 | 0.000 | 7.260 | 473 | 0.000 | 0.280 | 0.039 | 0.204 | 0.356 |
| Number of chaff cutters | 75.519 | 0.000 | 4.040 | 473 | 0.000 | 0.135 | 0.033 | 0.069 | 0.201 |
| Number of oxcarts | 44.331 | 0.000 | 4.621 | 473 | 0.000 | 0.516 | 0.112 | 0.296 | 0.735 |
| Number of bicycles | 29.348 | 0.000 | 10.479 | 473 | 0.000 | 0.571 | 0.055 | 0.464 | 0.678 |
| Number of harrows | 138.843 | 0.000 | 5.878 | 473 | 0.000 | 0.284 | 0.048 | 0.189 | 0.379 |
| Number of vehicles | 4.635 | 0.032 | −1.071 | 473 | 0.285 | −0.019 | 0.018 | −0.053 | 0.016 |
| Number of televisions | 6.179 | 0.013 | −1.260 | 473 | 0.208 | −13.575 | 10.775 | −34.748 | 7.599 |
| Number of goats_ | 4.707 | 0.031 | 2.687 | 473 | 0.007 | 7.202 | 2.680 | 1.935 | 12.468 |
| Number of poultry | 1.074 | 0.300 | 0.944 | 473 | 0.346 | 2.914 | 3.088 | −3.154 | 8.981 |
| Variable | Chi-Square and Fisher’s Exact Tests | Value | df | Asymp. Sig. (2-Sided) | Exact Sig. (2-Sided) | Exact Sig. (1-Sided) |
|---|---|---|---|---|---|---|
| Gender HH | Pearson Chi-Square | 34.991 | 1 | 0.000 | 0.000 | 0.000 |
| Marital Status | Fisher’s Exact Test | 40.131 | 0.000 | |||
| Education | Fisher’s Exact Test | 118.610 | 0.000 |
| Variables with Equal Variances Are Assumed | Levene’s Test for Equality of Variances | t-Test for Equality of Means | |||||||
|---|---|---|---|---|---|---|---|---|---|
| F | Sig. | t | df | Sig. | Mean Difference | Std. Error Difference | 95% Confidence Interval of the Difference | ||
| Lower | Upper | ||||||||
| Area (ha) under pigeon peas | 1.134 | 0.288 | −0.512 | 473 | 0.609 | −0.019 | 0.037 | −0.093 | 0.054 |
| Area (ha) under star grass | 1.430 | 0.232 | 0.600 | 473 | 0.549 | 0.022 | 0.037 | −0.050 | 0.094 |
| Area (ha) under cowpea | 219.938 | 0.000 | 8.375 | 473 | 0.000 | 0.491 | 0.059 | 0.376 | 0.607 |
| Area (ha) under Rhodes grass | 5.236 | 0.023 | 1.136 | 473 | 0.256 | 0.007 | 0.006 | −0.005 | 0.019 |
| Area (ha) under leucaena | 1.684 | 0.195 | −0.644 | 473 | 0.520 | −0.009 | 0.014 | −0.037 | 0.019 |
| Area (ha) under sesbania | 10.696 | 0.001 | 1.612 | 473 | 0.108 | 0.014 | 0.009 | −0.003 | 0.031 |
| Area (ha) under velvet bean | 4.732 | 0.030 | 1.091 | 473 | 0.276 | 0.020 | 0.019 | −0.016 | 0.057 |
| Area (ha) under glicidia sepium | 2.306 | 0.130 | −0.756 | 473 | 0.450 | −0.007 | 0.010 | −0.026 | 0.012 |
| Area (ha) under oil seed crops | 2.980 | 0.085 | 4.138 | 473 | 0.000 | 0.695 | 0.168 | 0.365 | 1.025 |
| Area (ha) under vegetables_ | 26.278 | 0.000 | 3.104 | 473 | 0.002 | 1.055 | 0.340 | 0.387 | 1.724 |
| Area (ha) under root and tubers | 4.632 | 0.032 | 0.471 | 473 | 0.638 | 0.184 | 0.391 | −0.585 | 0.953 |
| Area (ha) under legumes_ | 3.445 | 0.064 | 3.276 | 473 | 0.001 | 0.880 | 0.269 | 0.352 | 1.408 |
| Area (ha) under cereals | 0.002 | 0.964 | 3.921 | 473 | 0.000 | 0.477 | 0.122 | 0.238 | 0.717 |
| Variable | Chi-Square and Fisher’s Exact Tests | Value | df | Asymp. Sig. (2-Sided) | Exact Sig. (2-Sided) |
|---|---|---|---|---|---|
| Training in soil fertility management | Pearson Chi-Square | 95.324 | 1 | 0.000 | 0.000 |
| Training in crop and livestock production | Pearson Chi-Square | 160.614 | 2 | 0.000 | 0.000 |
| Locally formulated feed | Pearson Chi-Square | 38.321 | 2 | 0.000 | 0.000 |
| Variable | Chi-Square and Fisher’s Exact Tests | Value | df | Asymp. Sig. (2-Sided) | Exact Sig. (2-Sided) |
|---|---|---|---|---|---|
| Access to weather information | Pearson Chi-Square | 67.893 | 2 | 0.000 | 0.000 |
| Use of weather information for crop and livestock management | Pearson Chi-Square | 102.401 | 2 | 0.000 | 0.000 |
| Weather information provided is adequate. | Pearson Chi-Square | 73.165 | 4 | 0.000 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Somanje, A.N.; Malunga, M.; Chisanga, Y.; Kafwamfwa, N.; Vidane, A.; Dos Anjos, F.; Augusto, L.; Tchamo, C.; Taruvinga, A.; Chisanga, K. Difference in Soil Fertility Agricultural Training, Local Livestock Feed Use and Weather Information Access: A Comparative Study of Small-Scale Farmers in Mozambique and Zambia. Sustainability 2026, 18, 392. https://doi.org/10.3390/su18010392
Somanje AN, Malunga M, Chisanga Y, Kafwamfwa N, Vidane A, Dos Anjos F, Augusto L, Tchamo C, Taruvinga A, Chisanga K. Difference in Soil Fertility Agricultural Training, Local Livestock Feed Use and Weather Information Access: A Comparative Study of Small-Scale Farmers in Mozambique and Zambia. Sustainability. 2026; 18(1):392. https://doi.org/10.3390/su18010392
Chicago/Turabian StyleSomanje, Albert Novas, Maria Malunga, Yasa Chisanga, Nswana Kafwamfwa, Atanasio Vidane, Filomena Dos Anjos, Laurinda Augusto, Cesaltina Tchamo, Amon Taruvinga, and Kafula Chisanga. 2026. "Difference in Soil Fertility Agricultural Training, Local Livestock Feed Use and Weather Information Access: A Comparative Study of Small-Scale Farmers in Mozambique and Zambia" Sustainability 18, no. 1: 392. https://doi.org/10.3390/su18010392
APA StyleSomanje, A. N., Malunga, M., Chisanga, Y., Kafwamfwa, N., Vidane, A., Dos Anjos, F., Augusto, L., Tchamo, C., Taruvinga, A., & Chisanga, K. (2026). Difference in Soil Fertility Agricultural Training, Local Livestock Feed Use and Weather Information Access: A Comparative Study of Small-Scale Farmers in Mozambique and Zambia. Sustainability, 18(1), 392. https://doi.org/10.3390/su18010392

