Industry Concentration and Digital Process Innovation: Evidence from Chinese Rail Transit Firms
Abstract
1. Introduction
2. Theoretical Background and Hypothesis Development
2.1. Digital Process Innovation
2.2. Industry Concentration and Digital Process Innovation
2.3. Moderating Role of Firm Size
2.4. Moderating Role of Environmental Support
3. Methodology
3.1. Data and Sample
3.2. Measurements
4. Analysis and Results
4.1. Descriptive Statistics
4.2. Panel Data Analysis
4.3. Robustness Test
5. Conclusions and Discussion
5.1. Conclusions
5.2. Theoretical Implications
5.3. Managerial Implications
5.4. Limitation and Future Study
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, Y.; Lou, G.; Ren, Y. Can Industrial spatial configuration catalyze the transition and advancement of resource-dependent regions? An empirical analysis from Heilongjiang province, China. Sustainability 2024, 16, 8342. [Google Scholar] [CrossRef]
- Qin, Y.; Shen, Y. Can process digitization improve firm innovation performance? Process digitization as job resources and demands. Sustainability 2024, 16, 5295. [Google Scholar] [CrossRef]
- Pan, X.; Li, S. Dynamic optimal control of process–product innovation with learning by doing. Eur. J. Oper. Res. 2016, 248, 136–145. [Google Scholar] [CrossRef]
- Utterback, J.M.; Abernathy, W.J. A dynamic model of process and product innovation. Omega 1975, 3, 639–656. [Google Scholar] [CrossRef]
- Nwankpa, J.K.; Roumani, Y.; Datta, P. Process innovation in the digital age of business: The role of digital business intensity and knowledge management. J. Knowl. Manag. 2022, 26, 1319–1341. [Google Scholar] [CrossRef]
- Nambisan, S.; Lyytinen, K.; Majchrzak, A.; Song, M. Digital innovation management: Reinventing innovation management research in a digital world. MIS Q. 2017, 41, 223–238. [Google Scholar] [CrossRef]
- Duan, Z.; Zhang, Y.F. Can Enterprise Digital Transformation Improve Resource Allocation Efficiency? Evidence from China. Manag. Decis. Econ. 2025. Available online: https://onlinelibrary.wiley.com/doi/10.1002/mde.4493 (accessed on 28 April 2025).
- Trantopoulos, K.; von Krogh, G.; Wallin, M.W.; Woerter, M. External knowledge and information technology implications for process innovation performance. MIS Q. 2017, 41, 287–300. [Google Scholar] [CrossRef]
- Verhoef, P.C.; Broekhuizen, T.; Bart, Y.; Bhattacharya, A.; Dong, J.Q.; Fabian, N.; Haenlein, M. Digital transformation: A multidisciplinary reflection and research agenda. J. Bus. Res. 2021, 122, 889–901. [Google Scholar] [CrossRef]
- Ganapati, S. Growing oligopolies, prices, output, and productivity. Am. Econ. J.-Microecon. 2021, 13, 309–327. [Google Scholar] [CrossRef]
- Cornett, M.M.; Erhemjamts, O.; Tehranian, H. Competitive environment and innovation intensity. Glob. Financ. J. 2019, 41, 44–59. [Google Scholar] [CrossRef]
- Davis, C.; Hashimoto, K.I.; Tabata, K. Unionization, industry concentration, and economic growth. Macroecon. Dyn. 2024, 29, e3. [Google Scholar] [CrossRef]
- Terranova, R.; Turco, E.M. Concentration, stagnation and inequality: An agent-based approach. J. Econ. Behav. Organ. 2022, 193, 569–595. [Google Scholar] [CrossRef]
- Huang, J.A.; Chen, X.Y.; Zhao, X. How digital technology reduces carbon emissions: From the perspective of green innovation, industry upgrading, and energy transition. J. Knowl. Econ. 2024, 15, 19294–19326. [Google Scholar] [CrossRef]
- Kumar, U.; Kumar, V. Technological innovation diffusion: The proliferation of substitution models and easing the user’s dilemma. IEEE Trans. Eng. Manag. 1992, 39, 158–168. [Google Scholar] [CrossRef]
- Liu, Z.; Ju, B. Network infrastructure construction and heterogeneous enterprise innovation quasi-natural experiment based on “Broadband China”. Inf. Econ. Policy 2023, 65, 101066. [Google Scholar] [CrossRef]
- Nuccio, M.; Guerzoni, M. Big data: Hell or heaven? Digital platforms and market power in the data-driven economy. Compet. Change 2019, 23, 312–328. [Google Scholar] [CrossRef]
- Pegoretti, G.; Rentocchini, F.; Vittucci Marzetti, G. An agent-based model of innovation diffusion: Network structure and coexistence under different information regimes. J. Econ. Interact. Coord. 2012, 7, 145–165. [Google Scholar] [CrossRef]
- Capestro, M.; Rizzo, C.; Kliestik, T.; Peluso, A.M.; Pino, G. Enabling digital technologies adoption in industrial districts: The key role of trust and knowledge sharing. Technol. Forecast. Soc. Change 2024, 198, 123003. [Google Scholar] [CrossRef]
- Saiyed, A.A.; Fernhaber, S.A.; Basant, R.; Dhandapani, K. The internationalization of new ventures in an emerging economy: The shifting role of industry concentration. Asia Pac. J. Manag. 2021, 38, 1467–1497. [Google Scholar] [CrossRef]
- Raguseo, E.; Vitari, C.; Pigni, F. Profiting from big data analytics: The moderating roles of industry concentration and firm size. Int. J. Prod. Econ. 2020, 229, 107758. [Google Scholar] [CrossRef]
- Weinzimmer, L.; Esken, C.A.; Michel, E.J.; McDowell, W.C.; Mahto, R.V. The differential impact of strategic aggressiveness on firm performance: The role of firm size. J. Bus. Res. 2023, 158, 113623. [Google Scholar] [CrossRef]
- Audretsch, D.B.; Aronica, M.; Belitski, M.; Piacentino, D. Natural selection or strategic adaptation? Entrepreneurial digital technologies and survival of the species. J. Technol. Transf. 2024, 49, 1631–1659. [Google Scholar] [CrossRef]
- Ozturk, E.; Ozen, O. How management innovation affects product and process innovation in Turkey: The moderating role of industry and firm size. Eur. Manag. Rev. 2021, 18, 293–310. [Google Scholar] [CrossRef]
- Battisti, G.; Iona, A. The intra-firm diffusion of complementary innovations: Evidence from the adoption of management practices by British establishments. Res. Policy 2009, 38, 1326–1339. [Google Scholar] [CrossRef]
- Bossle, M.B.; de Barcellos, M.D.; Vieira, L.M.; Sauvée, L. The drivers for adoption of eco-innovation. J. Clean. Prod. 2016, 113, 861–872. [Google Scholar] [CrossRef]
- Alvarado-Vargas, M.J.; Inamanamelluri, T.; Zou, Q. Product attributes and digital innovation performance: The importance of country and firm level supporting environment. Int. J. Technol. Manag. 2020, 82, 206–226. [Google Scholar] [CrossRef]
- Hussain, H.; Jun, W.; Radulescu, M. Innovation performance in the digital divide context: Nexus of digital infrastructure, digital innovation, and e-knowledge. J. Knowl. Econ. 2024. [Google Scholar] [CrossRef]
- Matarazzo, M.; Penco, L.; Profumo, G.; Quaglia, R. Digital transformation and customer value creation in made in Italy SMEs: A dynamic capabilities perspective. J. Bus. Res. 2021, 123, 642–656. [Google Scholar] [CrossRef]
- Jiang, Z.H.; Shi, J.R. Can firm R&D benefit from digital technologies? Evidence from Chinese high-speed rail industry. Kybernetes 2023, 53, 4654–4677. [Google Scholar]
- Shi, J.R.; Jiang, Z.H.; Liu, Z.Y. Digital technology adoption and collaborative innovation in chinese high-speed rail industry: Does organizational agility matter? IEEE Trans. Eng. Manag. 2023, 71, 4322–4335. [Google Scholar] [CrossRef]
- Hassan, S.S.; Meisner, K.; Krause, K.; Bzhalava, L.; Moog, P. Is digitalization a source of innovation? Exploring the role of digital diffusion in SME innovation performance. Small Bus. Econ. 2024, 62, 1469–1491. [Google Scholar] [CrossRef]
- Steiber, A.; Alänge, S.; Ghosh, S.; Goncalves, D. Digital transformation of industrial firms: An innovation diffusion perspective. Eur. J. Innov. Manag. 2021, 24, 799–819. [Google Scholar] [CrossRef]
- Damanpour, F.; Walker, R.M.; Avellaneda, C.N. Combinative effects of innovation types and organizational performance: A longitudinal study of service organizations. J. Manag. Stud. 2009, 46, 650–675. [Google Scholar] [CrossRef]
- Eom, T.; Woo, C.; Chun, D. Predicting an ICT business process innovation as a digital transformation with machine learning techniques. Technol. Anal. Strateg. Manag. 2022, 36, 2271–2283. [Google Scholar] [CrossRef]
- BarNir, A.; Gallaugher, J.M.; Auger, P. Business process digitization, strategy, and the impact of firm age and size: The case of the magazine publishing industry. J. Bus. Ventur. 2003, 18, 789–814. [Google Scholar] [CrossRef]
- Alblas, A.; Notten, M. Speed is significant in short-loop experimental learning: Iterating and debugging in high-tech product innovation. Decis. Sci. 2021, 52, 1364–1402. [Google Scholar] [CrossRef]
- Sarwar, Z.; Gao, J.M.; Khan, A. Nexus of digital platforms, innovation capability, and strategic alignment to enhance innovation performance in the Asia Pacific region: A dynamic capability perspective. Asia Pac. J. Manag. 2024, 41, 867–901. [Google Scholar] [CrossRef]
- Yoo, Y.; Henfridsson, O.; Lyytinen, K. Research commentary—The new organizing logic of digital innovation: An agenda for information systems research. Inf. Syst. Res. 2010, 21, 724–735. [Google Scholar] [CrossRef]
- Adomako, S.; Amankwah-Amoah, J.; Tarba, S.Y.; Khan, Z. Perceived corruption, business process digitization, and SMEs’ degree of internationalization in sub-Saharan Africa. J. Bus. Res. 2021, 123, 196–207. [Google Scholar] [CrossRef]
- Saad, E.A.; Tremblay, N.; Agogué, M. A multi-level perspective on innovation intermediaries: The case of the diffusion of digital technologies in healthcare. Technovation 2024, 129, 102899. [Google Scholar] [CrossRef]
- Liang, L.; Li, Y. The double-edged sword effect of organizational resilience on ESG performance. Corp. Soc. Responsib. Environ. Manag. 2023, 30, 2852–2872. [Google Scholar] [CrossRef]
- Das, P.; Verburg, R.; Verbraeck, A.; Bonebakker, L. Barriers to innovation within large financial services firms An in-depth study into disruptive and radical innovation projects at a bank. Eur. J. Innov. Manag. 2018, 21, 96–112. [Google Scholar] [CrossRef]
- Vinokurova, N.; Kapoor, R. Converting inventions into innovations in large firms: How inventors at Xerox navigated the innovation process to commercialize their ideas. Strateg. Manag. J. 2020, 41, 2372–2399. [Google Scholar] [CrossRef]
- Giachetti, C.; Torrisi, S. Following or running away from the market leader? The Influences of environmental uncertainty and market leadership. Eur. Manag. Rev. 2018, 15, 445–463. [Google Scholar] [CrossRef]
- Fores, B.; Camison, C. Does incremental and radical innovation performance depend on different types of knowledge accumulation capabilities and organizational size? J. Bus. Res. 2016, 69, 831–848. [Google Scholar] [CrossRef]
- Cannavacciuolo, L.; Capaldo, G.; Ponsiglione, C. Digital innovation and organizational changes in the healthcare sector: Multiple case studies of telemedicine project implementation. Technovation 2023, 120, 102550. [Google Scholar] [CrossRef]
- Petruzzelli, A.M.; Ardito, L.; Savino, T. Maturity of knowledge inputs and innovation value: The moderating effect of firm age and size. J. Bus. Res. 2018, 86, 190–201. [Google Scholar] [CrossRef]
- Leiblein, M.J.; Madsen, T.L. Unbundling competitive heterogeneity: Incentive structures and capability influences on technological innovation. Strateg. Manag. J. 2009, 30, 711–735. [Google Scholar] [CrossRef]
- Knight, G.A. Entrepreneurship and strategy in the international SME. J. Int. Manag. 2001, 7, 155–171. [Google Scholar] [CrossRef]
- Laforet, S. Organizational innovation outcomes in SMEs: Effects of age, size, and sector. J. World Bus. 2013, 48, 490–502. [Google Scholar] [CrossRef]
- Shuliang, Z.; Linjiao, T.; Arkorful, V.E.; Hui, H. Impacts of digital government on regional eco-innovation: Moderating role of dual environmental regulations. Technol. Forecast. Soc. Change 2023, 196, 122842. [Google Scholar]
- Capponi, G.; Martinelli, A.; Nuvolari, A. Breakthrough innovations and where to find them. Res. Policy 2022, 51, 104376. [Google Scholar] [CrossRef]
- Wang, Y.D.; Ning, L.T.; Prevezer, M. Technological diversification in China from 1986 to 2011: Evidence from patent data. Technol. Forecast. Soc. Change 2015, 99, 54–66. [Google Scholar] [CrossRef]
- Zhang, M.Y.; Zhu, X.Z.; Liu, R. Patent length and innovation: Novel evidence from China. Technol. Forecast. Soc. Change 2024, 198, 123010. [Google Scholar] [CrossRef]
- Chen, P.C.; Hung, S.W. An actor-network perspective on evaluating the R&D linking efficiency of innovation ecosystems. Technol. Forecast. Soc. Change 2016, 112, 303–312. [Google Scholar]
- de Waal, G.A.; Knott, P. Patterns and drivers of npd tool adoption in small high-technology firms. IEEE Trans. Eng. Manag. 2016, 63, 350–361. [Google Scholar] [CrossRef]
- Agostini, L.; Nosella, A. The adoption of Industry 4.0 technologies in SMEs: Results of an international study. Manag. Decis. 2019, 58, 625–643. [Google Scholar] [CrossRef]
- Kinkel, S.; Baumgartner, M.; Cherubini, E. Prerequisites for the adoption of AI technologies in manufacturing—Evidence from a worldwide sample of manufacturing companies. Technovation 2022, 110, 102375. [Google Scholar] [CrossRef]
- Un, C.A.; Asakawa, K. Types of R&D collaborations and process innovation: The benefit of collaborating upstream in the knowledge chain. J. Prod. Innov. Manag. 2015, 32, 138–153. [Google Scholar]
- Usai, A.; Fiano, F.; Petruzzelli, A.M.; Paoloni, P.; Briamonte, M.F.; Orlando, B. Unveiling the impact of the adoption of digital technologies on firms’ innovation performance. J. Bus. Res. 2021, 133, 327–336. [Google Scholar] [CrossRef]
- Grimpe, C.; Sofka, W.; Kaiser, U. Competing for digital human capital: The retention effect of digital expertise in MNC subsidiaries. J. Int. Bus. Stud. 2023, 54, 657–685. [Google Scholar] [CrossRef]
- Li, X.D.; Lin, H.C. How to leverage flexibility-oriented HRM systems to build organizational resilience in the digital era: The mediating role of intellectual capital. J. Intellect. Cap. 2024, 25, 1–22. [Google Scholar] [CrossRef]
- Bygstad, B.; Øvrelid, E. Architectural alignment of process innovation and digital infrastructure in a high-tech hospital. Eur. J. Inf. Syst. 2020, 29, 220–237. [Google Scholar] [CrossRef]
- Huang, Y.; Hu, M.; Xu, J.; Jin, Z. Digital transformation and carbon intensity reduction in transportation industry: Empirical evidence from a global perspective. J. Environ. Manag. 2023, 344, 118541. [Google Scholar] [CrossRef] [PubMed]
- Buck, C.; Clarke, J.; de Oliveira, R.T.; Desouza, K.C.; Maroufkhani, P. Digital transformation in asset-intensive organisations: The light and the dark side. J. Innov. Knowl. 2023, 8, 100335. [Google Scholar] [CrossRef]
- Malodia, S.; Mishra, M.; Fait, M.; Papa, A.; Dezi, L. To digit or to head? Designing digital transformation journey of SMEs among digital self-efficacy and professional leadership. J. Bus. Res. 2023, 157, 113547. [Google Scholar] [CrossRef]
- Li, G.; Shao, Y. How do top management team characteristics affect digital orientation? Exploring the internal driving forces of firm digitalization. Technol. Soc. 2023, 74, 102293. [Google Scholar] [CrossRef]
- Zhu, C.C.; Li, N.; Ma, J. Impact of CEO overconfidence on enterprise digital transformation: Moderating effect based on digital finance. Financ. Res. Lett. 2024, 59, 104688. [Google Scholar] [CrossRef]
- Fei, W.; Wei, F.; Zhao, C.X.; Zhen, W. The impact of environmental, social, and governance, board diversity and firm size on the sustainable development goals of registered firm in China. Econ. Res.-Ekon. Istraz. 2022, 36, 668–686. [Google Scholar] [CrossRef]
- Duygan, M.; Fischer, M.; Ingold, K. Assessing the readiness of municipalities for digital process innovation. Technol. Soc. 2023, 72, 102179. [Google Scholar] [CrossRef]
Variables | Symbol | Measurement |
---|---|---|
Digital process innovation | DPI | Ln (the total frequency of relevant keywords + 1) |
Industry concentration | IC | Proportion of the core business revenue of the top 20 companies/the total core business revenue of the entire industry |
Firm size | Size | Ln (total assets) |
Environmental support | ES | 0.1157 × Digital technology intensity of the industry + 0.114 × Digital capital investment intensity of the industry + 0.0789 × Human capital investment intensity of the industry × 0.1923 × Number of invention patents of the national economic industry + 0.1779 × R&D activities of the national economic industry + 0.1498 × Development and sales of new products of the national economic industry + 0.0477 × Fiber optic cable density of the city that the firm locates + 0.0403 × Mobile switch capacity of the city + 0.04 × Number of internet broadband access users of the city + 0.0434 × Number of mobile internet users of the city |
Firm ownership | Ownership | Mark 1 if the firm is state-owned; otherwise, 0 |
Financial leverage | Leverage | Total liabilities/total assets |
Current assets | LI | Total current assets/total assets |
Intangible assets | IA | Intangible assets /total assets |
Variable | Mean | S.D. | Min. | Max. | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|---|---|---|---|
DPI | 0.519 | 0.803 | 0 | 3.638 | - | ||||||
IC | 0.816 | 0.125 | 0.585 | 1 | −0.177 *** | - | |||||
Size | 22.954 | 1.754 | 19.894 | 27.961 | 0.097 ** | 0.370 *** | - | ||||
EA | 0.469 | 0.196 | 0.183 | 0.899 | 0.169 *** | −0.773 *** | −0.367 *** | - | |||
Ownership | 0.390 | 0.488 | 0 | 1 | 0.025 | 0.381 *** | 0.561 *** | −0.327 *** | - | ||
Leverage | 0.467 | 0.203 | 0.060 | 1.117 | 0.072 * | 0.253 *** | 0.595 *** | −0.252 *** | 0.387 *** | - | |
LI | 0.642 | 0.171 | 0.019 | 0.980 | 0.059 | −0.298 *** | −0.204 *** | 0.366 *** | −0.106 *** | −0.074 * | - |
IA | 0.050 | 0.051 | 0 | 0.364 | −0.009 | 0.096 ** | 0.238 *** | −0.117 *** | 0.072 * | 0.199 *** | −0.342 *** |
Variable | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 |
---|---|---|---|---|---|---|
IC (t − 0) | −1.284 *** (0.395) | −1.622 *** (0.378) | −0.024 (0.497) | |||
IC (t − 1) | −1.177 ** (0.454) | −1.508 *** (0.435) | −0.139 (0.545) | |||
Size (t − 0) | 0.170 *** (0.040) | |||||
Size ( t− 1) | 0.143 *** (0.044) | |||||
IC × Size (t − 0) | −1.194 *** (0.203) | |||||
IC × Size (t − 1) | −1.168 *** (0.230) | |||||
EA(t − 0) | 1.190 *** (0.345) | |||||
EA(t − 1) | 0.010 ** (0.004) | |||||
IC × EA (t − 0) | 0.088 *** (0.026) | |||||
IC × EA (t − 1) | 0.098 *** (0.028) | |||||
Ownership | 0.144 (0.109) | 0.137 (0.119) | 0.061 (0.107) | 0.083 (0.118) | 0.201 * (0.107) | 0.197 * (0.117) |
Leverage | −0.067 (0.215) | −0.181 (0.242) | −0.315 (0.228) | −0.370 (0.256) | −0.111 (0.212) | −0.228 (0.239) |
LI | −0.483 * (0.270) | −0.541 * (0.301) | −0.109 (0.264) | −0.176 (0.295) | −0.528 ** (0.267) | −0.487 (0.0.298) |
IA | 1.119 (0.823) | 2.038 ** (0.919) | 1.432 * (0.803) | 2.209 ** (0.897) | 1.280 (0.810) | 1.987 ** (0.903) |
Years | included | included | included | included | included | included |
Constant | 2.217 *** (0.390) | 2.238 *** (0.451) | −1.469 (0.919) | −0.855 (1.009) | 0.886 * (0.532) | 1.079 * (0.601) |
R-squared | 0.242 | 0.213 | 0.270 | 0.225 | 0.258 | 0.223 |
N | 666 | 576 | 666 | 576 | 666 | 576 |
Variable | Model 7 | Model 8 | Model 9 | Model 10 | Model 11 |
---|---|---|---|---|---|
DPI | DPI | DPI | IC | HHI | |
DPI (t − 1) | −0.005 (0.003) | −0.002 (0.002) | |||
HHI (t − 1) | −2.455 *** (0.697) | −2.094 *** (0.773) | 1.029 (1.603) | ||
Size (t − 1) | 0.081 * (0.044) | ||||
HHI × Size (t − 1) | −0.524 * (0.283) | ||||
EA (t − 1) | 0.013 *** (0.004) | ||||
HHI × EA (t − 1) | 0.147 ** (0.073) | ||||
Ownership | 0.125 (0.113) | 0.089 (0.120) | 0.176 (0.113) | 0.005 (0.011) | −0.007 (0.006) |
Leverage | −0.227 (0.234) | −0.433 * (0.257) | −0.205 (0.236) | 0.072 *** (0.020) | 0.002 (0.010) |
LI | −0.571 ** (0.299) | −0.480 (0.292) | −0.584 ** (0.288) | 0.019 (0.025) | −0.040 *** (0.013) |
IA | 1.618 * (0.879) | 1.543 * (0.888) | 1.722 ** (0.873) | 0.092 (0.072) | −0.056 (0.037) |
Years | Included | Included | Included | Included | Included |
Constant | 1.474 *** (0.257) | −0.335 (1.008) | 0.715 ** (0.357) | 0.750 *** (0.023) | 0.097 *** (0.012) |
R-squared | 0.211 | 0.214 | 0.216 | 0.178 | 0.102 |
N | 594 | 594 | 594 | 578 | 594 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, Y.; Liu, B. Industry Concentration and Digital Process Innovation: Evidence from Chinese Rail Transit Firms. Sustainability 2025, 17, 4116. https://doi.org/10.3390/su17094116
Jin Y, Liu B. Industry Concentration and Digital Process Innovation: Evidence from Chinese Rail Transit Firms. Sustainability. 2025; 17(9):4116. https://doi.org/10.3390/su17094116
Chicago/Turabian StyleJin, Yi, and Bo Liu. 2025. "Industry Concentration and Digital Process Innovation: Evidence from Chinese Rail Transit Firms" Sustainability 17, no. 9: 4116. https://doi.org/10.3390/su17094116
APA StyleJin, Y., & Liu, B. (2025). Industry Concentration and Digital Process Innovation: Evidence from Chinese Rail Transit Firms. Sustainability, 17(9), 4116. https://doi.org/10.3390/su17094116