Unleashing the Power of Digital Transformation: Boosting Green Total Factor Productivity in China’s Energy Enterprises
Abstract
:1. Introduction
2. Literature Review
2.1. The Application of Digital Transformation in Energy Enterprises
2.2. Digital Transformation and Green Development
2.3. Digital Transformation and Green Total Factor Productivity
3. Research Hypotheses
4. Methodology and Data
4.1. Basic Model
4.2. Measurement for GTFP
4.3. Mechanism Testing
4.4. Data Selection
4.4.1. Explanatory Variables
4.4.2. Explained Variable
4.4.3. Mechanism Variable
4.4.4. Control Variables
4.5. Descriptive Statistics
5. Results and Discussion
5.1. Benchmark Regression
5.2. Robustness Tests
5.3. Mechanism Test
5.4. Heterogeneity Analyses
5.4.1. Nature of Property Rights
5.4.2. Enterprise Scale
5.4.3. Energy Type
6. Conclusions and Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, P.; Wu, J. Can digital transformation enable the energy enterprises to achieve high-quality development? An empirical analysis from China. Energy Rep. 2023, 10, 1182–1197. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, N.; Li, C.; Cui, X.; Zhang, H.; Chen, W. Impact of digital input on enterprise green productivity: Micro evidence from the Chinese manufacturing industry. J. Clean Prod. 2023, 414, 137272. [Google Scholar] [CrossRef]
- Zhang, W.; Shu, C.; Chen, B.; Liu, H. Research on digital transformation strategy of the energy industry based on differential game under the dual-carbon background in China. Sci. Total Environ. 2023, 906, 167297. [Google Scholar] [CrossRef]
- Li, Y.; Liu, H.; Kim, Y.; Lee, H.Y. Focus on the impact and predictive analysis of digitalization and green finance on the transformation of mineral and energy companies. Financ. Res. Lett. 2024, 59, 104777. [Google Scholar] [CrossRef]
- Chwiłkowska-Kubala, A.; Cyfert, S.; Malewska, K.; Mierzejewska, K.; Szumowski, W. The impact of resources on digital transformation in energy sector companies, the role of readiness for digital transformation. Technol. Soc. 2023, 74, 102315. [Google Scholar] [CrossRef]
- Du, J.; Shen, Z.; Song, M.; Zhang, L. Nexus between digital transformation and energy technology innovation: An empirical test of A-share listed enterprises. Energy Econ. 2023, 120, 106572. [Google Scholar] [CrossRef]
- Statistical Review of World Energy. The 2023 BP World Energy Statistical Yearbook. Stat. Rev. World Energy 2023. Available online: https://www.energyinst.org/statistical-review/resources-and-data-downloads (accessed on 1 July 2024).
- Hao, Y.; Guo, Y.; Wu, H. The role of information and communication technology on green total factor energy efficiency: Does environmental regulation work? Bus. Strateg. Environ. 2023, 31, 403–424. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, M.; Wang, K.; Wen, F.; Liu, F. The Carbon Emissions Reduction Effect of Green Agricultural Subsidy Policy: A Quasi-Natural Experiment. Sustainability 2024, 16, 5210. [Google Scholar] [CrossRef]
- Li, Y.; Jia, Z.; Qin, C.; Li, Z.; Ying, J. Analysis of recycling and emission reduction models under carbon taxes and government subsidies. Int. Rev. Econ. Financ. 2025, 99, 104052. [Google Scholar] [CrossRef]
- Światowiec-Szczepańska, J.; Stępień, B. Drivers of digitalization in the energy sector—The managerial perspective from the catching up economy. Energy 2022, 15, 1437. [Google Scholar] [CrossRef]
- Nurdiawati, A.; Urban, F. Towards deep decarbonisation of energy-intensive industries: A review of current status, technologies and policies. Energy 2021, 14, 2408. [Google Scholar] [CrossRef]
- Ning, J.; Xiong, L. Analysis of the dynamic evolution process of the digital transformation of renewable energy enterprises based on the cooperative and evolutionary game model. Energy 2024, 288, 129758. [Google Scholar] [CrossRef]
- Duan, K.; Qin, C.; Ma, S.; Lei, X.; Hu, Q.; Ying, J. Impact of ESG disclosure on corporate sustainability. Financ. Res. Lett. 2025, 78, 107134. [Google Scholar] [CrossRef]
- Bian, Y.; Song, K.; Bai, J. Market segmentation, resource misallocation and environmental pollution. J. Clean Prod. 2019, 228, 376–387. [Google Scholar] [CrossRef]
- Lyu, Y.; Wang, W.; Wu, Y.; Zhang, J. How does digital economy affect green total factor productivity? Evidence from China. Sci. Total Environ. 2023, 857, 159428. [Google Scholar] [CrossRef] [PubMed]
- Mohammadpoor, M.; Torabi, F. Big Data analytics in oil and gas industry: An emerging trend. Petroleum 2020, 6, 321–328. [Google Scholar] [CrossRef]
- Qin, M.; Hu, W.; Qi, X.; Chang, T. Do the benefits outweigh the disadvantages? Exploring the role of artificial intelligence in renewable energy. Energy Econ. 2024, 131, 107403. [Google Scholar] [CrossRef]
- Li, J.; Ma, S.; Qu, Y.; Wang, J. The impact of artificial intelligence on firms’ energy and resource efficiency: Empirical evidence from China. Resour. Policy 2023, 82, 103507. [Google Scholar] [CrossRef]
- Lin, B.; Xie, Y. Does digital transformation improve the operational efficiency of Chinese power enterprises? Util. Policy 2023, 82, 101542. [Google Scholar] [CrossRef]
- Wang, D.; Cao, J. The impact of Internet development on China’s total factor energy efficiency and its network effects. China Population. Resour. Environ. Sustain. 2019, 29, 86–95. [Google Scholar]
- Lin, R.; Xie, Z.; Hao, Y.; Wang, J. Improving high-tech enterprise innovation in big data environment: A combinative view of internal and external governance. Int. J. Inf. Manage. 2020, 50, 575–585. [Google Scholar] [CrossRef]
- Shen, Z.; Wang, S.; Boussemart, J.P.; Hao, Y. Digital transition and green growth in Chinese agriculture. Technol. Forecast. Soc. Chang. 2022, 181, 121742. [Google Scholar] [CrossRef]
- Li, G.; Jin, Y.; Gao, X. Digital transformation and pollution emission of enterprises: Evidence from China’s micro-enterprises. Energy Rep. 2023, 9, 552–567. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Y.; Wang, W.; Wu, H. How does digital transformation drive green total factor productivity? Evidence from Chinese listed enterprises. J. Clean Prod. 2023, 406, 136954. [Google Scholar] [CrossRef]
- Xu, Y.; Yang, C.; Ge, W.; Liu, G.; Yang, X.; Yang, X.; Ran, Q. Can industrial intelligence promote green transformation? New insights from heavily polluting listed enterprises in China. J. Clean Prod. 2023, 421, 138550. [Google Scholar] [CrossRef]
- Truby, J. Decarbonizing Bitcoin: Law and policy choices for reducing the energy consumption of Blockchain technologies and digital currencies. Energy Res. Soc. Sci. 2018, 44, 399–410. [Google Scholar] [CrossRef]
- Lange, S.; Santarius, T.; Pohl, J. Digitalization and energy consumption. Does ICT reduce energy demand? Ecol. Econ. 2020, 176, 106760. [Google Scholar] [CrossRef]
- Li, X.; Lepour, D.; Heymann, F.; Maréchal, F. Electrification and digitalization effects on sectoral energy demand and consumption: A prospective study towards 2050. Energy 2023, 279, 127992. [Google Scholar] [CrossRef]
- Ren, S.; Hao, Y.; Xu, L.; Ba, N. Digitalization and energy: How does internet development affect China’s energy consumption? Energy Econ. 2021, 98, 105220. [Google Scholar] [CrossRef]
- Li, X.; Liu, J.; Ni, P. The Impact of the Digital Economy on CO2 Emissions: A Theoretical and Empirical Analysis. Sustainability 2021, 13, 7267. [Google Scholar] [CrossRef]
- Dou, Q.; Gao, X. How does the digital transformation of corporates affect green technology innovation? An empirical study from the perspective of asymmetric effects and structural breakpoints. J. Clean Prod. 2023, 428, 139245. [Google Scholar] [CrossRef]
- Ma, R.; Lin, Y.; Lin, B. Does digitalization support green transition in Chinese cities? Perspective from Metcalfe’s Law. J. Clean Prod. 2023, 425, 138769. [Google Scholar] [CrossRef]
- Zheng, R.; Wu, G.; Cheng, Y.; Liu, H.; Wang, Y.; Wang, X. How does digitalization drive carbon emissions? The inverted U-shaped effect in China. Environ. Impact Assess. Rev. 2023, 102, 107203. [Google Scholar] [CrossRef]
- Gao, D.; Li, G.; Yu, J. Does digitization improve green total factor energy efficiency? Evidence from Chinese 213 cities. Energy 2022, 247, 123395. [Google Scholar] [CrossRef]
- Lee, C.C.; He, Z.W.; Yuan, Z. A pathway to sustainable development: Digitization and green productivity. Energy Econ. 2023, 124, 106772. [Google Scholar] [CrossRef]
- Wang, M.; Zhu, C.; Wang, X.; Ntim, V.S.; Liu, X. Effect of information and communication technology and electricity consumption on green total factor productivity. Appl. Energy 2023, 347, 121366. [Google Scholar] [CrossRef]
- Li, G.; Liao, F. Input digitalization and green total factor productivity under the constraint of carbon emissions. J. Clean Prod. 2023, 377, 134403. [Google Scholar] [CrossRef]
- Zhao, C.; Jia, R.; Dong, K. How does smart transportation technology promote green total factor productivity? The case of China. Res. Transp. Econ. 2023, 101, 101353. [Google Scholar] [CrossRef]
- Chang, L.; Taghizadeh-Hesary, F.; Mohsin, M. Role of artificial intelligence on green economic development: Joint determinates of natural resources and green total factor productivity. Resour. Policy 2023, 82, 103508. [Google Scholar] [CrossRef]
- Xie, X.; Han, Y. How can local manufacturing enterprises achieve luxuriant transformation in green innovation? A multi-case study based on attention-based view. Manag. World 2022, 38, 76–106. [Google Scholar]
- Jin, C.; Xu, A.; Zhu, Y.; Li, J. Technology growth in the digital age: Evidence from China. Technol. Forecast. Soc. Chang. 2023, 187, 122221. [Google Scholar] [CrossRef]
- Wang, K.H.; Wen, C.P.; Xu, B.C.; Li, X. Receiver or transmitter? Unlocking the role of green technology innovation in sustainable development, energy, and carbon markets. Technol. Soc. 2024, 79, 102703. [Google Scholar] [CrossRef]
- Qin, M.; Wan, Y.; Dou, J.; Su, S.W. Artificial Intelligence: Intensifying or mitigating unemployment? Technol. Soc. 2024, 79, 102755. [Google Scholar] [CrossRef]
- Lin, B.; Ma, R. How does digital finance influence green technology innovation in China? Evidence from the financing constraints perspective. J. Environ. Manage. 2022, 320, 115833. [Google Scholar] [CrossRef] [PubMed]
- Oh, D. A Global Malmquist-Luenberger Productivity Index. J. Prod. Anal. 2010, 34, 183–197. [Google Scholar] [CrossRef]
- Baron, R.M.; Kenny, D.A. The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. J. Pers. Soc. Psychol. 1986, 51, 1173. [Google Scholar] [CrossRef]
- Wu, J.; Xia, Q.; Li, Z. Green innovation and enterprise green total factor productivity at a micro level: A perspective of technical distance. J. Clean Prod. 2022, 344, 131070. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhou, X.; Li, Y. The effect of digital transformation on real economy enterprises’ total factor productivity. Int. Rev. Econ. Financ. 2023, 85, 488–501. [Google Scholar] [CrossRef]
- Leng, A.; Zhang, Y. The effect of enterprise digital transformation on audit efficiency—Evidence from China. Technol. Forecast. Soc. Chang. 2023, 201, 123215. [Google Scholar] [CrossRef]
- Tone, K.; Tsutsui, M. An epsilon-based measure of efficiency in DEA–a third pole of technical efficiency. Eur. J. Oper. Res. 2010, 207, 1554–1563. [Google Scholar] [CrossRef]
- Hadlock, C.J.; Pierce, J.R. New evidence on measuring financial constraints: Moving beyond the KZ index. Rev. Financ. Stud. 2010, 23, 1909–1940. [Google Scholar] [CrossRef]
- Chen, P.; Hao, Y. Digital transformation and corporate environmental performance: The moderating role of board characteristics. Corp. Soc. Responsib. Environ. Manag. 2022, 29, 1757–1767. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Q. How does digital transformation facilitate enterprise total factor productivity? The multiple mediators of supplier concentration and customer concentration. Sustainability 2023, 15, 1896. [Google Scholar] [CrossRef]
- Zhao, C.; Cao, W.; Yao, Z.; Wang, Z. Will “internet plus” help to reduce the cost stickiness of enterprises. J. Financ. Econ. 2020, 46, 33–47. [Google Scholar]
- Sobel, M.E. Asymptotic confidence intervals for indirect effects in structural equation models. Sociol. Methodol. 1982, 13, 290–312. [Google Scholar] [CrossRef]
- Tang, M.; Liu, Y.; Hu, F.; Wu, B. Effect of digital transformation on enterprises’ green innovation: Empirical evidence from listed companies in China. Energy Econ. 2023, 128, 107135. [Google Scholar] [CrossRef]
- Chen, J.; Abbas, J.; Najam, H.; Liu, J.; Abbas, J. Green technological innovation, green finance, and financial development and their role in green total factor productivity: Empirical insights from China. J. Clean Prod. 2023, 382, 135131. [Google Scholar]
- Wang, K.H.; Wen, C.P.; Long, H.; Moldovan, N.C. Towards sustainable development: Exploring the spillover effects of green technology innovation on energy markets and economic cycles. Technol. Forecast. Soc. Chang. 2024, 203, 123368. [Google Scholar] [CrossRef]
- Qin, M.; Zhu, Y.; Xie, X.; Shao, X.; Lobonţ, O.R. The impact of climate risk on technological progress under the fourth industrial era. Technol. Forecast. Soc. Chang. 2024, 202, 123325. [Google Scholar] [CrossRef]
- Guo, Y.; Yu, M.; Xu, M.; Tang, Y.; Huang, J.; Liu, J.; Hao, Y. Productivity gains from green finance: A holistic and regional examination from China. Energy Econ. 2023, 127, 107105. [Google Scholar] [CrossRef]
- Liao, K.; Liu, H.; Liu, F. Digital transformation and enterprise inefficient investment: Under the view of financing constraints and earnings management. J. Digit. Econ. 2023, 2, 289–302. [Google Scholar] [CrossRef]
- Wang, L. Digital transformation and total factor productivity. Financ. Res. Lett. 2023, 58, 104338. [Google Scholar] [CrossRef]
- Wen, H.; Zhong, Q.; Lee, C.C. Digitalization, competition strategy and corporate innovation: Evidence from Chinese manufacturing listed companies. Int. Rev. Financ. Anal. 2022, 82, 102166. [Google Scholar] [CrossRef]
- Zhou, M.; Jiang, K.; Zhang, J. Environmental benefits of enterprise digitalization in China. Resour. Conserv. Recy. 2023, 197, 107082. [Google Scholar] [CrossRef]
- Wang, X.Q.; Wang, K.H.; Safi, A.; Umar, M. How is artificial intelligence technology transforming energy security? New evidence from global supply chains. Oeconomia Copernicana. 2025, 16, 15–38. [Google Scholar] [CrossRef]
- Wang, X.Q.; Wang, K.H.; Xu, B.; Jin, W. Digitalisation and technological innovation: Panaceas for sustainability? Int. J. Prod. Res. 2025, 1–18. [Google Scholar] [CrossRef]
- Wang, H.; Cui, H.; Zhao, Q. Effect of green technology innovation on green total factor productivity in China: Evidence from spatial durbin model analysis. J. Clean Prod. 2021, 288, 125624. [Google Scholar] [CrossRef]
- Hou, S.; Song, L.; He, J. Greening the digital revolution: Assessing the impact of digital transformation on green total factor productivity in Chinese enterprises. Environ. Sci. Pollut. Res. 2023, 30, 101585–101598. [Google Scholar] [CrossRef]
- Cobbinah, J.A.; Joseph Owusu Amoah, A.O. Innovating for a Greener Future: Do Digital Transformation and Innovation Capacity Drive Enterprise Green Total Factor Productivity in the Knowledge Economy? J. Knowl. Econ. 2025. [Google Scholar] [CrossRef]
Indicators | Index | Measure Method | Data Source |
---|---|---|---|
Input | Labor | Number of employees in the enterprise | CSMAR |
Capital | Total fixed assets of the enterprise | CSMAR | |
Energy | Referring to Wang et al. [25] | SSCY | |
Desired output | Industrial value added | Total business income of the enterprise in the current year | CSMAR |
Non-desired output | SO2, Smoke and dust, Wastewater | Referring to Wang et al. [37] | SSCY |
Variables | Symbol | Definition | |
---|---|---|---|
Explained variable | Green total factor productivity | GTFP | Log (measured using super-efficiency SBM-GML + 1) |
Technical efficiency changes | GEC | Measured using super-efficiency SBM-GML | |
Technological progress changes | GTC | Measured using super-efficiency SBM-GML | |
Explanatory variables | Digital transformation | DT | Log (the total number of keywords related to digitalization + 1) |
Mechanism variable | Green technology innovation | GTI | Log (the number of green patent applications + 1) |
Financing constraints | FC | SA = −0.737Size + 0.043(Size)2 − 0.040Age | |
Control variable | The scale of the enterprise | Size | Log (Total assets for the year) |
Debt-to-asset ratio | Debt | Year-end total liabilities divided by year-end total assets | |
Tobin Q | Tobin Q | Market value divided by replacement cost | |
Board size | Board | The number of board of directors |
Variables | Mean | Std. Dev | Min | Median | Max |
---|---|---|---|---|---|
GTFP | 1.026 | 0.079 | 0.880 | 1.023 | 1.176 |
DT | 0.158 | 0.414 | 0.000 | 0.030 | 4.340 |
GTI | 1.370 | 1.409 | 0.000 | 1.099 | 6.879 |
FC | 5.339 | 1.887 | 0.615 | 5.167 | 13.637 |
Size | 4.684 | 21.127 | 0.017 | 0.969 | 273.319 |
Debt | 0.509 | 0.209 | 0.021 | 0.510 | 3.262 |
Tobin Q | 1.691 | 1.199 | 0.227 | 1.337 | 17.653 |
Board | 8.881 | 1.840 | 3.000 | 9.000 | 18.000 |
Variables | GTFP | DT | GTI | FC | Size | Debt | Tobin Q | Board |
---|---|---|---|---|---|---|---|---|
GTFP | 1.000 | |||||||
DT | 0.277 *** | 1.000 | ||||||
GTI | 0.244 *** | 0.163 *** | 1.000 | |||||
FC | 0.149 | −0.012 | 0.469 *** | 1.000 | ||||
Size | 0.018 | 0.142 *** | 0.042 | −0.355 *** | 1.000 | |||
Debt | 0.025 | −0.037 * | 0.134 *** | 0.257 *** | −0.128 *** | 1.000 | ||
Tobin Q | 0.087 *** | −0.018 | −0.173 *** | −0.498 *** | 0.267 *** | −0.114 *** | 1.000 | |
Board | 0.043 *** | −0.026 | 0.403 *** | 0.523 *** | −0.158 *** | 0.017 | −0.114 *** | 1.000 |
(1) GTFP | (2) GTFP | (3) GTC | (4) GEC | |
---|---|---|---|---|
DT | 0.0063 ** (0.0021) | 0.0060 ** (0.0021) | 0.0093 ** (0.0030) | 0.0041 * (0.0022) |
Size | 0.0006 * (0.0003) | 0.0008 * (0.0004) | 0.0003 (0.003) | |
Debt | 0.0011 (0.0025) | 0.0021 (0.0035) | 0.0011 (0.0026) | |
Tobin Q | 0.0016 * (0.0008) | 0.0026 * (0.0011) | 0.0012 (0.0008) | |
Board | 0.0009 * (0.0004) | 0.0012 * (0.0006) | 0.0004 (0.0004) | |
year | yes | yes | yes | yes |
firm | yes | yes | yes | yes |
N | 2070 | 2070 | 2070 | 2070 |
R2 | 0.9692 | 0.9693 | 0.515 | 0.9670 |
(1) GTFP | (2) GTFP | (3) GTFP | |
---|---|---|---|
DT | 0.006 ** (0.002) | 0.005 ** (0.003) | 0.004 ** (0.002) |
Controls | yes | yes | yes |
year | yes | yes | yes |
firm | yes | yes | yes |
N | 2070 | 1863 | 2040 |
Adj. R2 | 0.71 | 0.968 | 0.968 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
DT→GTI | GTI→GTFP | DT→FC | FC→GTFP | |
DT | 0.144 ** (0.069) | −0.210 ** (0.106) | ||
GTI | 0.007 *** (0.001) | |||
FC | −0.038 *** (0.003) | |||
Year | yes | yes | yes | yes |
Firm | yes | yes | yes | yes |
N | 2070 | 2070 | 2070 | 2070 |
Adj. R2 | 0.760 | 0.968 | 0.760 | 0.968 |
(1) State-Owned | (2) Non-State-Owned | (3) Large-Scale | (4) Small-Scale | (5) New Energy | (6) Traditional Energy | |
---|---|---|---|---|---|---|
DT | 0.005 ** (0.002) | 0.000 (0.002) | 0.010 ** (0.005) | 0.000 (0.002) | 0.005 ** (0.002) | 0.001 (0.004) |
Controls | yes | yes | yes | yes | yes | yes |
year | yes | yes | yes | yes | yes | yes |
firm | yes | yes | yes | yes | yes | yes |
N | 1090 | 980 | 810 | 1260 | 1290 | 980 |
Adj. R2 | 0.968 | 0.968 | 0.966 | 0.968 | 0.967 | 0.970 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ning, T.; Wang, K.-H.; Liu, H.-W. Unleashing the Power of Digital Transformation: Boosting Green Total Factor Productivity in China’s Energy Enterprises. Sustainability 2025, 17, 4113. https://doi.org/10.3390/su17094113
Ning T, Wang K-H, Liu H-W. Unleashing the Power of Digital Transformation: Boosting Green Total Factor Productivity in China’s Energy Enterprises. Sustainability. 2025; 17(9):4113. https://doi.org/10.3390/su17094113
Chicago/Turabian StyleNing, Tiantian, Kai-Hua Wang, and Hong-Wen Liu. 2025. "Unleashing the Power of Digital Transformation: Boosting Green Total Factor Productivity in China’s Energy Enterprises" Sustainability 17, no. 9: 4113. https://doi.org/10.3390/su17094113
APA StyleNing, T., Wang, K.-H., & Liu, H.-W. (2025). Unleashing the Power of Digital Transformation: Boosting Green Total Factor Productivity in China’s Energy Enterprises. Sustainability, 17(9), 4113. https://doi.org/10.3390/su17094113