Do Regional Differences Matter? Spatiotemporal Evolution and Convergence of Household Carbon Emissions in China
Abstract
:1. Introduction
2. Methodology
2.1. Measurement of Carbon Emission Levels from Household Consumption
2.2. Theil Index
2.3. Moran’s Index
2.4. Nuclear Density Map
2.5. Space Exploration and Convergence Analysis
3. Data Sources
4. Dynamic Evolution of Carbon Emissions from Chinese Household Consumption
4.1. Analysis of Regional Differences
4.2. Spatial Autocorrelation Analysis
4.3. Time Series Characteristics
4.4. Dynamic Evolution Characteristics
5. Convergence Analysis of Carbon Emissions from Chinese Household Consumption
5.1. σ Convergence
5.2. Absolute β Convergence
5.3. Conditional β Convergence
6. Discussion
7. Conclusions and Policy Implications
7.1. Conclusions
7.2. Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, H. Statistical calculation of carbon emission consumed by Chinese residents. Enterp. Econ. 2022, 41, 72–81. [Google Scholar]
- Fu, W.; Li, L.; Wu, L.; Luo, M. Research progress and future prospects on carbon emissions from household consumption: Knowledge map analysis based on CiteSpace. Ecol. Econ. 2024, 40, 208–217. [Google Scholar]
- Gao, P.; Yue, S.; Chen, H. Carbon emission efficiency of China’s industry sectors: From the perspective of embodied carbon emissions. J. Clean. Prod. 2021, 283, 124655. [Google Scholar] [CrossRef]
- Feng, X.; Zhao, Y.; Yan, R. Does carbon emission trading policy has emission reduction effect?—An empirical study based on quasi-natural experiment method. J. Environ. Manag. 2024, 351, 119791. [Google Scholar] [CrossRef] [PubMed]
- Borozan, D. European institutional quality and carbon emissions: Convergence club analysis. Struct. Change Econ. Dyn. 2024, 71, 646–657. [Google Scholar] [CrossRef]
- Shi, P.; Huang, Q. Assessing the evolution and convergence of energy-related carbon emission efficiency in the Yangtze River Economic Belt. Process Saf. Environ. Prot. 2024, 191, 1684–1695. [Google Scholar] [CrossRef]
- Ren, X.; Xiao, Y.; Xiao, S.; Jin, Y.; Taghizadeh-Hesary, F. The effect of climate vulnerability on global carbon emissions: Evidence from a spatial convergence perspective. Resour. Policy 2024, 90, 104817. [Google Scholar] [CrossRef]
- Akram, V.; Rath, B.N.; Sahoo, P.K. Club convergence in per capita carbon dioxide emissions across Indian states. Environ. Dev. Sustain. 2024, 26, 19907–19934. [Google Scholar] [CrossRef]
- Basso, H.S.; Dimakou, O.; Pidkuyko, M. How consumption carbon emission intensity varies across Spanish households. Ser.-J. Span. Econ. Assoc. 2024, 15, 95–125. [Google Scholar] [CrossRef]
- Lian, Y.; Lin, X.; Luo, H.; Zhang, J.; Sun, X. Distribution characteristics and influencing factors of household consumption carbon emissions in China from a spatial perspective. J. Environ. Manag. 2024, 351, 119564. [Google Scholar] [CrossRef]
- Pang, Q.; Xiang, M.; Zhang, L.; Chiu, Y.-H. Indirect carbon emissions from household consumption of middle-income groups: Evidence from Yangtze River Economic Belt in China. Energy Sustain. Dev. 2023, 76, 101280. [Google Scholar] [CrossRef]
- Su, S.; Ding, Y.; Li, G.; Li, X.; Li, H.; Skitmore, M.; Menadue, V. Temporal dynamic assessment of household energy consumption and carbon emissions in China: From the perspective of occupants. Sustain. Prod. Consum. 2023, 37, 142–155. [Google Scholar] [CrossRef]
- Cao, Q.; Kang, W.; Xu, S.; Sajid, M.; Cao, M. Estimation and decomposition analysis of carbon emissions from the entire production cycle for Chinese household consumption. J. Environ. Manag. 2019, 247, 525–537. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Lin, Y.; Wang, X.; Mao, B.; Peng, L. Direct and indirect carbon emission from household consumption based on LMDI and SDA model: A decomposition and comparison analysis. Energies 2022, 15, 5002. [Google Scholar] [CrossRef]
- Jiang, L.; Ding, B.; Shi, X.; Li, C.; Chen, Y. Household energy consumption patterns and carbon emissions for the megacities-evidence from Guangzhou, China. Energies 2022, 15, 2731. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, L. Indirect carbon emissions in household consumption: Evidence from the urban and rural area in China. J. Clean. Prod. 2014, 78, 94–103. [Google Scholar] [CrossRef]
- Liu, J.; Murshed, M.; Chen, F.; Shahbaz, M.; Kirikkaleli, D.; Khan, Z. An empirical analysis of the household consumption-induced carbon emissions in China. Sustain. Prod. Consum. 2021, 26, 943–957. [Google Scholar] [CrossRef]
- Lian, Y.; Lin, X.; Luo, H.; Niu, Y.; Zhang, J. Empirical research on household consumption carbon emissions and key impact factors in urban and rural China. Environ. Sci. Pollut. Res. 2023, 30, 62423–62439. [Google Scholar] [CrossRef]
- Peng, S.; Wang, X.; Du, Q.; Wu, K.; Lv, T.; Tang, Z.; Wei, L.; Xue, J.; Wang, Z. Evolution of household carbon emissions and their drivers from both income and consumption perspectives in China during 2010–2017. J. Environ. Manag. 2023, 326, 116624. [Google Scholar] [CrossRef]
- Wang, J.; Hui, W.; Liu, L.; Bai, Y.; Du, Y.; Li, J. Estimation and influencing factor analysis of carbon emissions from the entire production cycle for household consumption: Evidence from the urban communities in Beijing, China. Front. Environ. Sci. 2022, 10, 843920. [Google Scholar] [CrossRef]
- Ma, X.W.; Wang, M.; Lan, J.K.; Li, C.-D.; Zou, L.-L. Influencing factors and paths of direct carbon emissions from the energy consumption of rural residents in central China determined using a questionnaire survey. Adv. Clim. Change Res. 2022, 13, 759–767. [Google Scholar] [CrossRef]
- IPCC. IPCC Guidelines for National Greenhouse Gas Inventories; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Liu, X.; Wang, X.; Song, J.; Wang, H.; Wang, S. Indirect carbon emissions of urban households in China: Patterns, determinants and inequality. J. Clean. Prod. 2019, 241, 118335. [Google Scholar] [CrossRef]
- Li, S.; Ji, L.; Wang, Y.; Zhou, X.; Wang, X.; Jiang, S.; Sun, Q. Can China’s carbon generalized system of preferences reduce urban residents’ carbon emissions? Evidence from a quasi-natural experiment. J. Environ. Manag. 2024, 362, 121222. [Google Scholar] [CrossRef]
- Wei, Y.; Liu, L.; Fan, Y.; Wu, G.; Fang, B.; Guo, J.; Han, Z.; Jiao, J.; Liang, Q.; Liao, H. China Energy Report (2008): CO2 Emissions Research; Science Press: Beijing, China, 2008. [Google Scholar]
- Fu, Y.; Ma, S.; Song, B. Differences in consumption carbon emissions between urban and rural residents in China and influencing factors: An empirical analysis based on panel data. Inq. Into Econ. Issues 2016, 10, 43–50. [Google Scholar]
- Chen, Y.; Gai, Q. The lmpact of the “Comprehensive Two-Child” Comprehensive Two-Child” Policy on Household Consumption Carbon Emissions. Consum. Econ. 2025, 41, 33–47. [Google Scholar]
- Sun, L.; Wang, Q.; Zhou, P.; Cheng, F. Effects of carbon emission transfer on economic spillover and carbon emission reduction in China. J. Clean. Prod. 2016, 112, 1432–1442. [Google Scholar] [CrossRef]
- Wang, S.; Huang, Y.; Zhou, Y. Spatial spillover effect and driving forces of carbon emission intensity at the city level in China. J. Geogr. Sci. 2019, 29, 231–252. [Google Scholar] [CrossRef]
- Fu, Y.; Zhu, Y. The dynamic evolution, regional differences and convergence of agricultural product market segmentation in China. Stat. Res. 2024, 41, 18–32. [Google Scholar]
- Guan, X.; Lu, X.; Wen, Y. Is China’s natural gas consumption converging? Empirical research based on spatial econometrics. Energies 2022, 15, 9448. [Google Scholar] [CrossRef]
- Lian, Y.; Wang, W.; Ye, R. The efficiency of Hausman test statistics: A Monte-Carlo investigation. J. Appl. Stat. Manag. 2014, 33, 830–841. [Google Scholar]
Carbon Emission Categories | Major Categories | Subcategories | |||
---|---|---|---|---|---|
Direct carbon emissions | Coals | Raw coal | Refined coal | Coke (processed coal used in blast furnace) | |
Petroleum | Petroleum | ||||
Diesel | Gasoline | Kerosene | Fuel oil | Diesel oil | |
Crude oil | |||||
Liquefied petroleum gas | Liquefied petroleum gas | ||||
Gas (fuel) | Coke oven gas | Blast furnace gas | Converter gas | Other gases | |
Thermodynamic | Thermal energy | ||||
Electrical power | Electrical power | ||||
Indirect carbon emissions | Food, tobacco, and alcohol | ||||
Clothing | |||||
Living | |||||
Daily necessities and services | |||||
Medical care | |||||
Transportation and communication | |||||
Education, culture, and entertainment | |||||
Other |
Primary Indicators | Measures of Primary Indicators | Average Value | Standard Deviation | Min | Max |
---|---|---|---|---|---|
Ease of traveling | Public transport vehicles per 10,000 people in cities | 10.9626 | 3.9646 | 0.4998 | 26.55 |
Urbanization level | Urbanization rate | 53.1305 | 15.7293 | 23.2 | 89.6 |
Pollution control capacity | Investment in industrial pollution control | 20.7521 | 1.0623 | 16.9948 | 23.374 |
Level of economic development | GDP | 9.2396 | 1.1572 | 5.5748 | 11.7685 |
Labor force levels | Permanent employed population | 7.5979 | 0.7662 | 5.5452 | 8.8639 |
Industrial structure | Value added of tertiary industry/value added of secondary industry | 1.1629 | 0.6175 | 0.5182 | 5.2829 |
Industrialization level | Rate of increase in gross industrial product | 0.3604 | 0.0784 | 0.1184 | 0.5738 |
Year | Comparison of Eastern, Central, Western and Northeastern Regions | Comparison Between Southern and Northern Regions | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Overall Gap | Intra-Regional Gap | Overall Gap | Regional Gap | |||||||
Value | Contribution Rate | Value | Contribution Rate | Value | Contribution Rate | Value | Contribution Rate | |||
2000 | 0.2787 | 0.2135 | 76.61% | 0.0652 | 23.39% | 0.2788 | 0.2043 | 73.28% | 0.0745 | 26.72% |
2001 | 0.2371 | 0.1667 | 70.31% | 0.0704 | 29.69% | 0.2371 | 0.171 | 72.12% | 0.0661 | 27.88% |
2002 | 0.2145 | 0.1444 | 67.32% | 0.0701 | 32.68% | 0.2145 | 0.1558 | 72.63% | 0.0587 | 27.37% |
2003 | 0.2099 | 0.1459 | 69.51% | 0.064 | 30.49% | 0.21 | 0.15 | 71.43% | 0.06 | 28.57% |
2004 | 0.214 | 0.145 | 67.76% | 0.069 | 32.24% | 0.2139 | 0.1528 | 71.44% | 0.0611 | 28.56% |
2005 | 0.1937 | 0.1283 | 66.24% | 0.0654 | 33.76% | 0.1937 | 0.1374 | 70.93% | 0.0563 | 29.07% |
2006 | 0.184 | 0.1272 | 69.13% | 0.0568 | 30.87% | 0.1841 | 0.1273 | 69.15% | 0.0568 | 30.85% |
2007 | 0.1699 | 0.1169 | 68.81% | 0.053 | 31.19% | 0.17 | 0.1169 | 68.76% | 0.0531 | 31.24% |
2008 | 0.1618 | 0.1137 | 70.27% | 0.0481 | 29.73% | 0.1617 | 0.1084 | 67.04% | 0.0533 | 32.96% |
2009 | 0.1509 | 0.1073 | 71.11% | 0.0436 | 28.89% | 0.1509 | 0.0963 | 63.81% | 0.0546 | 36.19% |
2010 | 0.1455 | 0.1099 | 75.53% | 0.0356 | 24.47% | 0.1455 | 0.092 | 63.23% | 0.0535 | 36.77% |
2011 | 0.1405 | 0.11 | 78.29% | 0.0305 | 21.71% | 0.1405 | 0.0867 | 61.71% | 0.0538 | 38.29% |
2012 | 0.1368 | 0.1106 | 80.85% | 0.0262 | 19.15% | 0.1368 | 0.0807 | 58.99% | 0.0561 | 41.01% |
2013 | 0.1271 | 0.1073 | 84.42% | 0.0198 | 15.58% | 0.1271 | 0.078 | 61.37% | 0.0491 | 38.63% |
2014 | 0.1222 | 0.104 | 85.11% | 0.0182 | 14.89% | 0.1222 | 0.0758 | 62.03% | 0.0464 | 37.97% |
2015 | 0.1215 | 0.1039 | 85.51% | 0.0176 | 14.49% | 0.1214 | 0.073 | 60.13% | 0.0484 | 39.87% |
2016 | 0.1201 | 0.1031 | 85.85% | 0.017 | 14.15% | 0.1201 | 0.0702 | 58.45% | 0.0499 | 41.55% |
2017 | 0.1243 | 0.108 | 86.89% | 0.0163 | 13.11% | 0.1244 | 0.0717 | 57.64% | 0.0527 | 42.36% |
2018 | 0.126 | 0.1086 | 86.19% | 0.0174 | 13.81% | 0.1261 | 0.0676 | 53.61% | 0.0585 | 46.39% |
2019 | 0.1273 | 0.1116 | 87.67% | 0.0157 | 12.33% | 0.1273 | 0.0713 | 56.01% | 0.056 | 43.99% |
2020 | 0.14437 | 0.12877 | 89.19% | 0.0156 | 10.81% | 0.1444 | 0.0785 | 54.36% | 0.0659 | 45.64% |
2021 | 0.1405 | 0.1251 | 89.04% | 0.0154 | 10.96% | 0.1406 | 0.0792 | 56.33% | 0.0614 | 43.67% |
2022 | 0.1478 | 0.1354 | 91.61% | 0.0124 | 8.39% | 0.1479 | 0.0895 | 60.51% | 0.0584 | 39.49% |
Average | 0.1625 | 0.125 | 78.40% | 0.0375 | 21.60% | 0.1626 | 10.58% | 63.69% | 0.0567 | 36.31% |
Year | Moran’s Value | Z-Score | p-Value |
---|---|---|---|
2000 | 0.1565 | 3.7184 | 0.0002 |
2001 | 0.1759 | 4.0705 | 0.0000 |
2002 | 0.1907 | 4.3585 | 0.0000 |
2003 | 0.1926 | 4.3911 | 0.0000 |
2004 | 0.201 | 4.5558 | 0.0000 |
2005 | 0.2124 | 4.7630 | 0.0000 |
2006 | 0.2043 | 4.6053 | 0.0000 |
2007 | 0.2018 | 4.5520 | 0.0000 |
2008 | 0.2015 | 4.5465 | 0.0000 |
2009 | 0.1868 | 4.2717 | 0.0000 |
2010 | 0.1958 | 4.4477 | 0.0000 |
2011 | 0.1954 | 4.4476 | 0.0000 |
2012 | 0.1837 | 4.2328 | 0.0000 |
2013 | 0.1758 | 4.0680 | 0.0000 |
2014 | 0.1702 | 3.9632 | 0.0001 |
2015 | 0.1628 | 3.8223 | 0.0001 |
2016 | 0.152 | 3.6159 | 0.0003 |
2017 | 0.1284 | 3.1582 | 0.0016 |
2018 | 0.1547 | 3.6650 | 0.0002 |
2019 | 0.1373 | 3.3400 | 0.0008 |
2020 | 0.1273 | 3.1527 | 0.0016 |
2021 | 0.1231 | 3.0773 | 0.0021 |
2022 | 0.1034 | 2.6933 | 0.0071 |
Nationwide | Eastern | Central | Western | Northeastern | Southern | Northern | |
---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | |
Model | SEM | SEM | SDM | OLS | OLS | SEM | SEM |
β | −0.5443 *** | −0.1292 *** | −0.2336 *** | −0.017 ** | −0.0164 | −0.0441 *** | −0.0585 *** |
ρ/λ | 0.878 *** | 0.3747 *** | 0.6289 *** | - | - | 0.5377 *** | 0.4236 *** |
Cons. | - | - | - | 0.2747 *** | 0.2465 ** | - | - |
σ2_e | 0.0452 *** | 0.0041 *** | 0.0044 *** | - | - | - | - |
Convergence rate | 3.57% | 0.63% | 1.21% | 0.08% | - | 0.21% | 0.27% |
LM-error | 58.102 *** | 17.756 *** | 9.365 *** | 0.024 | 0.674 | 30.062 *** | 4.652 ** |
LM-lag | 51.342 *** | 15.75 *** | 5.711 *** | 0.034 | 0.629 | 27.792 *** | 2.059 |
Robust-LM-error | 7.356 *** | 3.047 * | 12.128 *** | 0.039 | 0.644 | 3.522 * | 5.552 ** |
Robust-LM-lag | 0.596 | 1.041 | 8.474 *** | 0.048 | 0.600 | 1.252 | 2.958 * |
Hausman test | −12.38 | 11.39 *** | 53.93 *** | 49.47 *** | 3.89 ** | 23.96 *** | −23.15 |
Wald-error | 45.90 *** | 7.89 *** | 29.19 *** | 21 *** | 0.22 | 11.67 *** | 26.32 *** |
Wald-lag | 223.60 *** | 11.61 *** | 51.87 *** | 29.42 *** | 0.24 | 18.16 *** | 47.2 *** |
LR test (SEM-SDM) | 52.28 *** | 8.63 *** | 39.06 *** | 27.03 *** | 0.22 | 13.66 *** | 37.63 *** |
LR test (SAR-SDM) | 84.03 *** | 11.19 *** | 42.13 *** | 27.62 *** | 0.24 | 17.47 *** | 43.87 *** |
Individual fixed effects | YES | YES | YES | YES | YES | YES | YES |
Time fixed effects | YES | YES | YES | YES | YES | YES | YES |
R2 | 0.0425 | 0.075 | 0.0529 | 0.0216 | 0.243 | 0.0524 | 0.0604 |
Obs. | 609 | 189 | 126 | 242 | 66 | 273 | 336 |
Nationwide | Eastern | Central | Western | Northeastern | Southern | Northern | |
---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | |
Model | SDM | OLS | SDM | OLS | OLS | SEM | SEM |
β | −0.6478 *** | −0.023 ** | −0.2412 *** | −0.0296 *** | −0.0203 | −0.0337 ** | −0.0624 *** |
Wx | 0.6553 *** | - | 0.4063 *** | - | - | - | - |
ρ/λ | 0.289 *** | - | 0.6519 *** | - | - | 0.4937 *** | 0.3877 *** |
σ2_e | 0.0414 *** | - | 0.0034 *** | - | - | 0.0051 *** | 0.0075 *** |
Convergence rate | 4.74% | 0.11% | 1.25% | 0.14% | - | 0.16% | 0.29% |
LM-error | 53.921 *** | 16.123 *** | 11.966 *** | 0 | 0.579 | 27.869 *** | 5.424 ** |
LM-lag | 42.359 *** | 15.407 *** | 7.61 *** | 0.068 | 1.056 | 25.235 *** | 1.425 |
Robust-LM-error | 16.987 *** | 1.146 | 7.612 *** | 2.072 | 0.874 | 4.218 ** | 16.058 ** |
Robust-LM-lag | 5.425 ** | 0.43 | 3.256 * | 2.14 | 1.201 | 1.583 | 12.059 *** |
Hausman test | 36.8 *** | −31.77 | 7.66 | 30.72 *** | 134.53 *** | 76.64 *** | 53.76 *** |
Wald-error | 48.48 *** | 7.8 | 34.04 *** | 20.52 *** | 21.49 *** | 18.01 ** | 35.06 *** |
Wald-lag | 252.27 *** | 10.1 | 60.91 *** | 27.25 *** | 22.64 *** | 25.05 *** | 60.26 *** |
LR test (SEM-SDM) | 70.14 *** | 8 | 41.74 *** | 25.74 *** | 19.33 ** | 21.39 *** | 50.1 *** |
LR test (SAR-SDM) | 95.92 *** | 9.75 | 48.20 *** | 25.75 *** | 19.36 ** | 23.86 *** | 55.19 *** |
Individual fixed effects | YES | YES | YES | YES | YES | YES | YES |
Time fixed effects | YES | YES | YES | YES | YES | YES | YES |
R2 | 0.0384 | 0.0908 | 0.0381 | 0.0476 | 0.0261 | 0.0183 | 0.0171 |
Obs. | 609 | 198 | 126 | 242 | 66 | 273 | 336 |
Travel convenience | −0.0011 | 0.0015 | 0.0041 | −0.0028 | 0.0033 | −0.0034 | −0.0001 |
Urbanization level | 0.0009 | −0.0001 | 0.001 | 0.0008 | 0.0014 | −0.0007 | 0.0001 |
Pollution control | −0.0127 | −0.0066 | 0.0069 | 0.002 | −0.0091 | 0.0021 | 0.0039 |
Economy | −0.0051 | −0.0016 | .0035 | −0.0087 | −0.0194 | 0.0159* | 0.0064 |
Labor | −0.0973 | 0.0139 | −0.0352 | −0.0289 | 0.0138 | 0.1347 ** | 0.0395 |
Industrial structure | −0.1849 *** | 0.0105 | 0.0641 | 0.0662 | 0.0306 | 0.0386 | 0.0183 |
Industrialization level | 0.3208 | 0.2566 | 0.5628 | 0.492 | −0.1017 | 0.6081 ** | 0.062 |
Cons. | - | 0.2414 | - | 0.3994 | 0.4528 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Z.; Xu, Y.; Shi, J. Do Regional Differences Matter? Spatiotemporal Evolution and Convergence of Household Carbon Emissions in China. Sustainability 2025, 17, 4064. https://doi.org/10.3390/su17094064
Xu Z, Xu Y, Shi J. Do Regional Differences Matter? Spatiotemporal Evolution and Convergence of Household Carbon Emissions in China. Sustainability. 2025; 17(9):4064. https://doi.org/10.3390/su17094064
Chicago/Turabian StyleXu, Zihao, Yue Xu, and Jingning Shi. 2025. "Do Regional Differences Matter? Spatiotemporal Evolution and Convergence of Household Carbon Emissions in China" Sustainability 17, no. 9: 4064. https://doi.org/10.3390/su17094064
APA StyleXu, Z., Xu, Y., & Shi, J. (2025). Do Regional Differences Matter? Spatiotemporal Evolution and Convergence of Household Carbon Emissions in China. Sustainability, 17(9), 4064. https://doi.org/10.3390/su17094064