How Can Plants Used for Ornamental Purposes Contribute to Urban Biodiversity?
Abstract
:1. Introduction
2. Methodology and Literature Research
3. The Link Between the Biodiversity and Functioning of Urban Ecosystems
Ecosystem Services Related to Biodiversity
4. Green Infrastructure in Urban Environments
4.1. GI Characteristics
4.2. Contribution of GI to Biodiversity
5. The Contribution of Ornamental Plants to Biodiversity
5.1. The Definition of Ornamental Plants
5.2. Native and Non-Native Ornamental Plants
5.3. Ornamental Plants and Biodiversity
6. Strategies to Increase the Contribution of Ornamental Plants to Biodiversity
6.1. Biodiverse-Friendly Urban Landscape Design
6.2. Urbanization as a Driver of Biodiversity
6.3. Factors Increasing Biodiversity
6.4. The Contribution of Plant Communities and Associations
6.5. Ornamental Plants and Pollinators
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Elmqvist, T.; Andersson, E.; Frantzeskaki, N.; McPhearson, T.; Olsson, P.; Gaffney, O.; Takeuchi, K.; Folke, C. Sustainability and resilience for transformation in the urban century. Nat. Sustain. 2019, 2, 267–273. [Google Scholar] [CrossRef]
- Francini, A.; Romano, D.; Toscano, S.; Ferrante, A. The contribution of ornamental plants to urban ecosystem services. Earth 2022, 3, 1258–1274. [Google Scholar] [CrossRef]
- Vila-Ruiz, C.P.; Meléndez-Ackerman, E.; Santiago-Bartolomei, R.; Garcia-Montiel, D.; Lastra, L.; Figuerola, C.E.; Fumero-Caban, J. Plant species richness and abundance in residential yards across a tropical watershed: Implications for urban sustainability. Ecol. Soc. 2014, 19, 22. [Google Scholar] [CrossRef]
- Secretariat of the Convention on Biological Diversity. Convention on Biological Diversity: Text and Annexes; Secretariat for the Convention on Biological Diversity: Montreal, QC, Canada, 2011; Available online: https://www.cbd.int/doc/legal/cbd-en.pdf (accessed on 17 March 2025).
- Müller, N.; Kamada, M. URBIO: An introduction to the International Network in Urban Biodiversity and Design. Landsc. Ecol. Eng. 2011, 7, 1–8. [Google Scholar] [CrossRef]
- United Nations Environment Programme. State of Finance for Nature in Cities 2024. From Grey to Green: Better Data to Finance Nature in Cities: Nairobi, Kenya. 2024. Available online: https://wedocs.unep.org/handle/20.500.11822/46453;jsessionid=D52D4680F6BAE5FCE38BA496ACEAB771 (accessed on 17 March 2025).
- Maes, J.; Quaglia, A.; Guimarães Pereira, Â.; Tokarski, M.; Zulian, G.; Marando, F.; Schade, S. BiodiverCities: A Roadmap to Enhance the Biodiversity and Green Infrastructure of European Cities by 2030; Publications Office of the European Union: Luxembourg, 2021. [Google Scholar]
- Frantzeskaki, N.; Buchel, S.; Spork, C.; Ludwig, K.; Kok, M.T.J. The multiple roles of ICLEI: Intermediating to innovate urban biodiversity governance. Ecol. Econ. 2019, 164, 106350. [Google Scholar] [CrossRef]
- Hancock, T. Indicators of environmental health in the urban setting. Can. J. Public. Health. 2002, 93, S45–S51. [Google Scholar] [CrossRef]
- Dade, M.C.; Richmond, I.C.; Rieb, J.T.; Crockett, E.T.; Hutt-Taylor, K.; Sinno, S.; Benessaiah, K.; Destrempes, C.; Hamilton, J.; Izadi, F.; et al. Testing a rapid assessment approach for estimating ecosystem services capacity in urban green alleys. Urban For. Urban Green. 2024, 99, 128472. [Google Scholar] [CrossRef]
- Bendiouis, F.; Aboura, R.; Ainad Tabet, M. Characterization of the biodiversity of ornamental flora in the urban perimeter of the city of Tlemcen (Northwest of Algeria). Biodivers. J. 2022, 13, 25–35. [Google Scholar] [CrossRef]
- Mircea, D.M.; Boscaiu, M.; Sestras, R.E.; Sestras, A.F.; Vicente, O. Abiotic stress tolerance and invasive potential of ornamental plants in the Mediterranean area: Implications for sustainable landscaping. Agronomy 2024, 15, 52. [Google Scholar] [CrossRef]
- Beatley, T. Handbook of Biophilic City Planning & Design; Island Press: Washington, DC, USA, 2016; p. 312. [Google Scholar]
- McKinney, M.L. Urbanization as a major cause of biotic homogenization. Biol. Conserv. 2006, 127, 247–260. [Google Scholar] [CrossRef]
- Kühn, N. Intentions for the unintentional. Spontaneous vegetation as the basis for innovative planting design in urban areas. J. Landsc. Archit. 2006, 1, 46–53. [Google Scholar] [CrossRef]
- Borysiak, J.; Stępniewska, M. Perception of the vegetation cover pattern promoting biodiversity in urban parks by future greenery managers. Land 2022, 11, 341. [Google Scholar] [CrossRef]
- Breuste, J. The Urban Nature Concept—Of What Urban Green Consists of. In Making Green Cities—Concepts, Challenges and Practice; Breuste, J., Ed.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 16–48. [Google Scholar]
- Murkin, K.; Shiode, N.; Shiode, S.; Kidd, D. Biodiversity and the recreational value of green infrastructure in England. Sustainability 2023, 15, 2915. [Google Scholar] [CrossRef]
- European Union. Green Infrastructure (GI)—Enhancing Europe’s Natural Capital. 2013. Available online: https://www.eea.europa.eu/policy-documents/green-infrastructure-gi-2014-enhancing (accessed on 10 February 2025).
- Jerome, G.; Sinnett, D.; Burgess, S.; Calvert, T.; Mortlock, R. A framework for assessing the quality of green infrastructure in the built environment in the UK. Urban For. Urban Green. 2019, 40, 174–182. [Google Scholar] [CrossRef]
- Ochoa, J.; Muñoz, M.; Vicente, M.J.; Martínez-Sánchez, J.J.; Franco, J.A. Native ornamental species for urban landscaping and xero-gardening in semi-arid environments. Acta Hortic. 2010, 881, 425–428. [Google Scholar] [CrossRef]
- Behm, J.E. Is biodiversity needed for sustainability? A spotlight on urban landscapes. Am. J. Bot. 2020, 107, 703–706. [Google Scholar] [CrossRef]
- Hassall, C. The ecology and biodiversity of urban ponds. Wiley Interdiscip. Rev. Water 2014, 1, 187–206. [Google Scholar] [CrossRef]
- Konijnendijk, C.C. Evidence-based guidelines for greener, healthier, more resilient neighbourhoods: Introducing the 3–30–300 rule. J. For. Res. 2023, 34, 821–830. [Google Scholar] [CrossRef]
- Bush, J.; Doyon, A. Building urban resilience with nature-based solutions: How can urban planning contribute? Cities 2019, 95, 102483. [Google Scholar] [CrossRef]
- Zittis, G.; Almazroui, M.; Alpert, P.; Ciais, P.; Cramer, W.; Dahdal, Y.; Fnais, M.; Francis, D.; Hadjinicolaou, P.; Howari, F.; et al. Climate change and weather extremes in the Eastern Mediterranean and Middle East. Rev. Geophys. 2022, 60, e2021RG000762. [Google Scholar] [CrossRef]
- Kowarik, I. 7 Urban Ornamentals Escaped. In Crop Ferality and Volunteerism; Gressel, J., Ed.; CRC Press Taylor & Francis: Boca Raton, FL, USA, 2005; pp. 97–121. [Google Scholar]
- Savé, R. What is stress and how to deal with it in ornamental plants? Acta Hortic. 2009, 813, 241–254. [Google Scholar] [CrossRef]
- Arifin, H.S.; Nakagoshi, N. Landscape ecology and urban biodiversity in tropical Indonesian cities. Landsc. Ecol. Eng. 2011, 7, 33–43. [Google Scholar] [CrossRef]
- Turvey, S.T.; Crees, J.J. Extinction in the Anthropocene. Curr. Biol. 2019, 29, R982–R986. [Google Scholar] [CrossRef] [PubMed]
- Wu, J. 2013. Landscape sustainability science: Ecosystem services and human well-being in changing landscapes. Landsc. Ecol. 2013, 28, 999–1023. [Google Scholar] [CrossRef]
- Hooper, D.U.; Chapin Iii, F.S.; Ewel, J.J.; Hector, A.; Inchausti, P.; Lavorel, S.; Lawton, J.H.; Lodge, D.M.; Loreau, M.; Naeem, S.; et al. Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecol. Monogr. 2005, 75, 3–35. [Google Scholar] [CrossRef]
- van der Plas, F.; Allan, E.; Fischer, M.; Alt, F.; Arndt, H.; Binkenstein, J.; Blaser, S.; Blüthgen, N.; Böhm, S.; Hölzel, N.; et al. Towards the development of general rules describing landscape heterogeneity–multifunctionality relationships. J. Appl. Ecol. 2019, 56, 168–179. [Google Scholar] [CrossRef]
- Schwarz, N.; Moretti, M.; Bugalho, M.N.; Davies, Z.G.; Haase, D.; Hack, J.; Hof, A.; Melero, Y.; Pett, T.J.; Knapp, S. Understanding biodiversity-ecosystem service relationships in urban areas: A comprehensive literature review. Ecosyst. Serv. 2017, 27, 161–171. [Google Scholar] [CrossRef]
- Ziter, C. The biodiversity–ecosystem service relationship in urban areas: A quantitative review. Oikos 2016, 125, 761–768. [Google Scholar] [CrossRef]
- Flombaum, P.; Aragón, R.; Chaneton, E.J. A role for the sampling effect in invaded ecosystems. Oikos 2017, 126, 1229–1232. [Google Scholar] [CrossRef]
- Gelmi-Candusso, T.A.; Hämäläinen, A.M. Seeds and the city: The interdependence of zoochory and ecosystem dynamics in urban environments. Front. Ecol. Evol. 2019, 7, 41. [Google Scholar] [CrossRef]
- Thuring, C.E.; Dunnett, N.P. Persistence, loss and gain: Characterizing mature green roof vegetation by functional composition. Landsc. Urban Plan. 2019, 185, 228–236. [Google Scholar] [CrossRef]
- Martín-López, B.; Iniesta-Arandia, I.; García-Llorente, M.; Palomo, I.; Casado-Arzuaga, I.; García-del Amo, D.; Gómez-Baggethun, E.; Oteros-Rozas, E.; Palacios-Agundez, I.; Willaarts, B.; et al. Uncovering ecosystem service bundles through social preferences. PLoS ONE 2012, 7, e38970. [Google Scholar] [CrossRef] [PubMed]
- Kondo, M.C.; South, E.C.; Branas, C.C.; Richmond, T.S.; Wiebe, D.J. The association between urban tree cover and gun assault: A case-control and case-crossover study. Am. J. Epidemiol. 2017, 186, 289–296. [Google Scholar] [CrossRef] [PubMed]
- South, E.C.; Hohl, B.C.; Kondo, M.C.; MacDonald, J.M.; Branas, C.C. Effect of greening vacant land on mental health of community-dwelling adults: A cluster randomized trial. JAMA Netw. Open 2018, 1, e180298. [Google Scholar] [CrossRef]
- Carlos, C.; Simon, H.; Mc Michael, A. Millennium Ecosystem Assessment (MA), Ecosystems and Human Well-Being; World Resources Institute: Washington, DC, USA; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Gonzalez, A.; Germain, R.M.; Srivastava, D.S.; Filotas, E.; Dee, L.E.; Gravel, D.; Thompson, P.L.; Isbell, F.; Wang, S.; Kefi, S.; et al. Scaling-up biodiversity-ecosystem functioning research. Ecol. Lett. 2020, 23, 757–776. [Google Scholar] [CrossRef]
- Schittko, C.; Onandia, G.; Bernard-Verdier, M.; Heger, T.; Jeschke, J.M.; Kowarik, I.; Maass, S.; Joshi, J. Biodiversity maintains soil multifunctionality and soil organic carbon in novel urban ecosystems. J. Ecol. 2022, 110, 916–934. [Google Scholar] [CrossRef]
- Dearborn, D.C.; Kark, S. Motivations for conserving urban biodiversity. Conserv. Biol. 2010, 24, 432–440. [Google Scholar] [CrossRef]
- Molina, J.A.; Martín-Sanz, J.P.; Casermeiro, M.Á.; Quintana, J.R. Spontaneous urban vegetation as an indicator of soil functionality and ecosystem services. Appl. Veg. Sci. 2023, 26, e12827. [Google Scholar] [CrossRef]
- Freschet, G.T.; Violle, C.; Roumet, C.; Garnier, É. Interactions between soil and vegetation: Structure of plant communities and soil functioning. In Soils as a Key Component of the Critical Zone: Ecology; Lemanceau, P., Blouin, M., Eds.; ISTE Editions: London, UK, 2018; pp. 83–104. [Google Scholar]
- Blanchart, A.; Séré, G.; Cherel, J.; Warot, G.; Stas, M.; Consalès, J.N.; Morel, J.L.; Schwartz, C. Towards an operational methodology to optimize ecosystem services provided by urban soils. Landsc. Urban Plan. 2018, 176, 1–9. [Google Scholar] [CrossRef]
- Tresch, S.; Moretti, M.; Le Bayon, R.-C.; Mäder, P.; Zanetta, A.; Frey, D.; Fliessbach, A. A gardener’s influence on urban soil quality. Front. Environ. Sci. 2018, 6, 25. [Google Scholar] [CrossRef]
- Ahern, J. Green infrastructure for cities: The spatial dimension. In Cities of the Future: Towards Integrated Sustainable Water and Landscape Management; Novotny, V., Brown, P., Eds.; IWA Publishing: London, UK, 2007; pp. 267–283. [Google Scholar]
- Meng, L.; Li, S.; Zhang, X. Assessing biodiversity’s impact on stress and affect from urban to conservation areas: A virtual reality study. Ecol. Indic. 2024, 158, 111532. [Google Scholar] [CrossRef]
- Southon, G.E.; Jorgensen, A.; Dunnett, N.; Hoyle, H.; Evans, K.L. Perceived species-richness in urban green spaces: Cues, accuracy and well-being impacts. Landsc. Urban Plan. 2018, 172, 1–10. [Google Scholar] [CrossRef]
- Ren, Y.; Ge, Y.; Ma, D.; Song, X.; Shi, Y.; Pan, K.; Qu, Z.; Guo, P.; Han, W.; Chang, J. Enhancing plant diversity and mitigating BVOC emissions of urban green spaces through the introduction of ornamental tree species. Urban For. Urban Green. 2017, 27, 305–313. [Google Scholar] [CrossRef]
- Przybysz, A.; Popek, R.; Stankiewicz-Kosyl, M.; Zhu, C.Y.; Małecka-Przybysz, M.; Maulidyawati, T.; Mikowska, K.; Deluga, D.; Griżuk, K.; Sokalski-Wieczorek, J.; et al. Where trees cannot grow–Particulate matter accumulation by urban meadows. Sci. Total Environ. 2021, 785, 147310. [Google Scholar] [CrossRef]
- Weiskopf, S.R.; Lerman, S.B.; Isbell, F.; Lyn Morelli, T. Biodiversity promotes urban ecosystem functioning. Ecography 2024, 2024, e07366. [Google Scholar] [CrossRef]
- United Nations. The World Population Prospects 2019: Highlights. New York: United Nations. Available online: https://population.un.org/wpp/assets/Files/WPP2019_10KeyFindings.pdf (accessed on 10 February 2025).
- Petersen, J.E.; Mancosu, E.; King, S. Ecosystem extent accounts for Europe. Ecosyst. Serv. 2022, 57, 101457. [Google Scholar] [CrossRef]
- Todd, P.A.; Heery, E.C.; Loke, L.H.; Thurstan, R.H.; Kotze, D.J.; Swan, C. Towards an urban marine ecology: Characterizing the drivers, patterns and processes of marine ecosystems in coastal cities. Oikos 2019, 128, 1215–1242. [Google Scholar] [CrossRef]
- Zara, L.; Tordoni, E.; Castro-Delgado, S.; Colla, A.; Maccherini, S.; Marignani, M.; Panepinto, F.; Trittoni, M.; Bacaro, G. Cross-taxon relationships in Mediterranean urban ecosystem: A case study from the city of Trieste. Ecol. Indic. 2021, 125, 107538. [Google Scholar] [CrossRef]
- Wilcox, M.D. Auckland’s Remarkable Urban Forest; Auckland Botanical Society: Auckland, New Zeland, 2012; p. 347. [Google Scholar]
- European Environment Agency. Who Benefits from Nature in Cities? Social Inequalities in Access to Urban Green and Blue Spaces Across Europe. 2023. Available online: https://www.eea.europa.eu/publications/who-benefits-from-nature-in (accessed on 10 February 2025).
- Roberts, M.; Glenk, K.; McVittie, A. Urban residents value multi-functional urban greenspaces. Urban For. Urban Green. 2022, 74, 127681. [Google Scholar] [CrossRef]
- Soanes, K.; Lentini, P.E. When cities are the last chance for saving species. Front. Ecol. Environ. 2019, 17, 225–231. [Google Scholar] [CrossRef]
- Soga, M.; Gaston, K.J. Extinction of experience: The loss of human–nature interactions. Front. Ecol. Environ. 2016, 14, 94–101. [Google Scholar] [CrossRef]
- Berkowitz, A.R.; Nilon, C.H.; Hollweg, K.S. Understanding Urban Ecosystems: A New Frontier for Science and Education; Springer: New York, NY, USA, 2003. [Google Scholar]
- Szlavecz, K.; Warren, P.; Pickett, S. Biodiversity on the urban landscape. In Human Population: Its Influences on Biological Diversity; Cincotta, R.P., Gorenflo, L.J., Eds.; Springer: Berlin, Germany, 2011; pp. 75–101. [Google Scholar]
- Spotswood, E.N.; Beller, E.E.; Grossinger, R.; Grenier, J.L.; Heller, N.E.; Aronson, M.F. The biological deserts fallacy: Cities in their landscapes contribute more than we think to regional biodiversity. BioScience 2021, 71, 148–160. [Google Scholar] [CrossRef] [PubMed]
- Clinton, S.M.; Hartman, J.; Macneale, K.H.; Roy, A.H. Stream macroinvertebrate reintroductions: A cautionary approach for restored urban streams. Freshw. Sci. 2022, 41, 507–520. [Google Scholar] [CrossRef]
- Heywood, V.H. The nature and composition of urban plant diversity in the Mediterranean. Flora Mediterr. 2017, 27, 195–220. [Google Scholar] [CrossRef]
- Breuste, J.; Schnellinger, J.; Qureshi, S.; Faggi, A. Urban Ecosystem services on the local level: Urban green spaces as providers. Ekol. Bratisl. 2013, 32, 290–304. [Google Scholar] [CrossRef]
- Bretzel, F.; Vannucchi, F.; Pezzarossa, B.; Paraskevopoulou, A.; Romano, D. Establishing wildflower meadows in anthropogenic landscapes. Front. Hortic. 2023, 2, 1248785. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, J.; Qian, Y.; Pickett, S.T.; Li, W.; Han, L. The rapid but “invisible” changes in urban greenspace: A comparative study of nine Chinese cities. Sci. Total Environ. 2018, 627, 1572–1584. [Google Scholar] [CrossRef]
- Yılmaz, H.; Ku¸sak, B.; Akkemik, Ü. The role of Aşiyan Cemetery (İstanbul) as a green urban space from an ecological perspective and its importance in urban plant diversity. Urban For. Urban Green. 2018, 33, 92–98. [Google Scholar] [CrossRef]
- Ilie, D.; Cosmulescu, S. Spontaneous plant diversity in urban contexts: A review of its impact and importance. Diversity 2023, 15, 277. [Google Scholar] [CrossRef]
- Duncan, J.M.A.; Boruff, B.; Saunders, A.; Sun, Q.; Hurley, J.; Amati, M. Turning down the heat: An enhanced understanding of the relationship between urban vegetation and surface temperature at the city scale. Sci. Total Environ. 2019, 656, 118–128. [Google Scholar] [CrossRef]
- Liu, O.Y.; Russo, A. Assessing the contribution of urban green spaces in green infrastructure strategy planning for urban ecosystem conditions and services. Sustain. Cities Soc. 2021, 68, 102772. [Google Scholar] [CrossRef]
- Lundholm, J.T.; Richardson, P.J. Mini-review: Habitat analogues for reconciliation ecology in urban and industrial environments. J. Appl. Ecol. 2010, 47, 966–975. [Google Scholar] [CrossRef]
- Vannucchi, F.; Buoncristiano, A.; Scatena, M.; Caudai, C.; Bretzel, F. Low productivity substrate leads to functional diversification of green roof plant assemblage. Ecol. Eng. 2022, 176, 106547. [Google Scholar] [CrossRef]
- Hoyle, H.; Norton, B.; Dunnett, N.; Richards, P.; Russell, J.; Warren, P. Plant species or flower colour diversity? Identifying the drivers of public and invertebrate response to designed annual meadows. Landsc. Urban Plan. 2018, 180, 103–113. [Google Scholar] [CrossRef]
- Wang, Y.; Niemelä, J.; Kotze, D.J. The delivery of cultural ecosystem services in urban forests of different landscape features and land use contexts. People Nat. 2022, 4, 1369–1386. [Google Scholar] [CrossRef]
- Sanderson, E.W.; Huron, A. Conservation in the city. Conserv. Biol. 2011, 25, 421–423. [Google Scholar] [CrossRef]
- Potts, S.G.; Biesmeijer, J.C.; Kremen, C.; Neumann, P.; Schweiger, O.; Kunin, W.E. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 2010, 25, 345–353. [Google Scholar] [CrossRef]
- Honchar, G.Y.; Gnatiuk, A.M. Urban ornamental plants for sustenance of wild bees (Hymenoptera, Apoidea). Plant Introd. 2020, 85–86, 93–108. [Google Scholar] [CrossRef]
- Rupprecht, C.D.; Byrne, J.A.; Garden, J.G.; Hero, J.M. Informal urban green space: A trilingual systematic review of its role for biodiversity and trends in the literature. Urban For. Urban Green. 2015, 14, 883–908. [Google Scholar] [CrossRef]
- Dunn, C.P.; Heneghan, L. Composition and diversity of urban vegetation. In Urban Ecology: Patterns, Processes and Applications; Niemeliä, J., Ed.; Oxford University Press: Oxford, UK, 2011; pp. 103–134. [Google Scholar]
- McKinney, M.L. Effects of urbanization on species richness: A review of plants and animals. Urban Ecosyst. 2008, 11, 161–176. [Google Scholar] [CrossRef]
- Kowarik, I. Novel urban ecosystems, biodiversity, and conservation. Environ. Pollut. 2011, 159, 1974–1983. [Google Scholar] [CrossRef] [PubMed]
- Hope, D.; Gries, C.; Zhu, W.X.; Fagan, W.F.; Redman, C.L.; Grimm, N.B.; Nelson, A.L.; Martin, C.; Kinzig, A. Socioeconomics drive urban plant diversity. Proc. Natl. Acad. Sci. USA 2003, 100, 8788–8792. [Google Scholar] [CrossRef] [PubMed]
- Seitz, B.; Buchholz, S.; Kowarik, I.; Herrmann, J.; Neuerburg, L.; Wendler, J.; Winker, L.; Egerer, M. Land sharing between cultivated and wild plants: Urban gardens as hotspots for plant diversity in cities. Urban Ecosyst. 2022, 25, 927–939. [Google Scholar] [CrossRef]
- Acar, C.; Acar, H.; Eroğlu, E. Evaluation of ornamental plant resources to urban biodiversity and cultural changing: A case study of residential landscapes in Trabzon city (Turkey). Build. Environ. 2007, 42, 218–229. [Google Scholar] [CrossRef]
- Wilson, E.O. Biophilia; Harvard University Press: Cambridge, MA, USA, 1984; p. 176. [Google Scholar]
- Frumkin, H. Beyond toxicity: Human health and the natural environment. Am. J. Prev. Med. 2001, 20, 234–240. [Google Scholar] [CrossRef]
- Kisvarga, S.; Horotán, K.; Wani, M.A.; Orlóci, L. Plant responses to global climate change and urbanization: Implications for sustainable urban landscapes. Horticulturae 2023, 9, 1051. [Google Scholar] [CrossRef]
- Taylor, L.; Hochuli, D.F. Creating better cities: How biodiversity and ecosystem functioning enhance urban residents’ wellbeing. Urban Ecosyst. 2015, 18, 747–762. [Google Scholar] [CrossRef]
- Singh, H.P. Landscape gardening for ecological and aesthetic gains. In Floriculture and Landscape Gardening; Malhotra, S.K., Ram, L., Eds.; Central Institute of Horticulture: Nagaland, India, 2017; pp. 1–10. [Google Scholar]
- Rihn, A.L.; Knuth, M.J.; Behe, B.K.; Hall, C.R. Benefit information’s impact on ornamental plant value. Horticulturae 2023, 9, 740. [Google Scholar] [CrossRef]
- Li, X.-P.; Fan, S.-X.; Kühn, N.; Dong, L.; Hao, P.-Y. Residents’ ecological and aesthetical perceptions toward spontaneous vegetation in urban parks in China. Urban For. Urban Green. 2019, 44, 126397. [Google Scholar] [CrossRef]
- Ciftcioglu, G.C.; Ebedi, S.; Abak, K. Evaluation of the relationship between ornamental plants–based ecosystem services and human wellbeing: A case study from Lefke Region of North Cyprus. Ecol. Indic. 2019, 102, 278–288. [Google Scholar] [CrossRef]
- Gabellini, S.; Scaramuzzi, S. Evolving consumption trends, marketing strategies, and governance settings in ornamental horticulture: A grey literature review. Horticulturae 2022, 8, 234. [Google Scholar] [CrossRef]
- Wilson, A.; Kendal, D.; Moore, J.L. Humans and ornamental plants: A mutualism? Ecopsychology 2016, 8, 257–263. [Google Scholar] [CrossRef]
- Tunnard, C. Gardens in the Modern Landscape: A Facsimile of the Revised 1948 Edition; University of Pennsylvania Press: Philadelphia, PA, USA, 2014; p. 184. [Google Scholar]
- Dehnen-Schmutz, K. Determining non-invasiveness in ornamental plants to build green lists. J. Appl. Ecol. 2011, 48, 1374–1380. [Google Scholar] [CrossRef]
- da Silva Mouga, D.M.D.; Feretti, V.; de Sena, J.C.; Warkentin, M.; dos Santos, A.K.G.; Ribeiro, C.L. Ornamental bee plants as foraging resources for urban bees in Southern Brazil. Agric. Sci. 2015, 6, 365. [Google Scholar] [CrossRef]
- Frankie, G.W.; Vinson, S.B.; Rizzardi, M.A.; Griswold, T.L.; Coville, R.E.; Grayum, M.H.; Martinez, L.E.S.; Foltz-Sweat, J.; Pawelek, J.C. Relationships of bees to host ornamental and weedy flowers in urban Northwest Guanacaste Province, Costa Rica. J. Kans. Entomol. Soc. 2013, 86, 325–351. [Google Scholar] [CrossRef]
- Flores, P.M.C.; Fernandez, A.I.; Orozco, K.J.U.; Endino, R.M.C.; Picardal, J.P.; Garces, J.J.C. Ornamental plant diversity, richness and composition in urban parks: Studies in Metro Cebu, Philippines. Environ. Exp. Biol. 2020, 18, 183–192. [Google Scholar] [CrossRef]
- Restrepo, L.A.V.; Villa, M.H. Contemporary ornamental gardens: Trans-nationalisation, landscaping and biodiversity. An exploratory study in Medellín, Colombia. Rev. Fac. Nac. Agron. Medellin 2015, 68, 7557–7568. [Google Scholar] [CrossRef]
- Kellert, S.R. Birthright: People and Nature in the Modern World; Yale University Press: New Haven, CT, USA, 2012; p. 242. [Google Scholar]
- Le Maitre, D.C.; Van Wilgen, B.W.; Gelderblom, C.; Bailey, C.; Chapman, R.A.; Nel, J. Invasive alien trees and water resources in South Africa: Case studies of the costs and benefits of management. For. Ecol. Manag. 2002, 160, 143–159. [Google Scholar] [CrossRef]
- Gann, G.D.; McDonald, T.; Walder, B.; Aronson, J.; Nelson, C.R.; Jonson, J.; Hallett, J.G.; Eisenberg, C.; Guariguata, M.R.; Liu, J.; et al. International principles and standards for the practice of ecological restoration. Restor. Ecol. 2019, 27 (Suppl. 1), S1–S46. [Google Scholar] [CrossRef]
- van Kleunen, M.; Essl, F.; Pergl, J.; Brundu, G.; Carboni, M.; Dullinger, S.; Early, R.; González-Moreno, P.; Groom, Q.J.; Hulme, P.E.; et al. The changing role of ornamental horticulture in alien plant invasions. Biol. Rev. 2018, 93, 1421–1437. [Google Scholar] [CrossRef]
- Čeplová, N.; Lososová, Z.; Kalusová, V. Urban ornamental trees: A source of current invaders; a case study from a European City. Urban Ecosyst. 2017, 20, 1135–1140. [Google Scholar] [CrossRef]
- Mayer, K.; Haeuser, E.; Dawson, W.; Essl, F.; Kreft, H.; Pergl, J.; Pyšek, P.; Weigelt, P.; Winter, M.; Lenzner, B.; et al. Naturalization of ornamental plant species in public green spaces and private gardens. Biol. Invasions 2017, 19, 3613–3627. [Google Scholar] [CrossRef]
- Potgieter, L.J.; Gaertner, M.; Irlich, U.M.; O′Farrell, P.J.; Stafford, L.; Vogt, H.; Richardson, D.M. Managing Urban Plant Invasions: A Multi-Criteria Prioritization Approach. Environ. Manag. 2018, 62, 1168–1185. [Google Scholar] [CrossRef] [PubMed]
- Pyšek, P.; Hulme, P.E.; Simberloff, D.; Bacher, S.; Blackburn, T.M.; Carlton, J.T.; Dawson, W.; Essl, F.; Foxcroft, L.C.; Genovesi, P.; et al. Scientists’ warning on invasive alien species. Biol. Rev. 2020, 95, 1511–1534. [Google Scholar] [CrossRef]
- Shapiro, A.M. The Californian urban butterfly fauna is dependent on alien plants. Divers. Distrib. 2002, 8, 31–40. [Google Scholar] [CrossRef]
- Chowdhuri, T.K.; Deka, K. Biodiversity and Conservation of Ornamental Crops. In Conservation and Utilization of Horticultural Genetic Resources; Rajasekharan, P., Rao, V., Eds.; Springer: Singapore, 2019; pp. 139–216. [Google Scholar] [CrossRef]
- Toscano, S.; Tribulato, A.; Romano, D. The biodiversity of Sicilian traditional gardens. Acta Hortic. 2018, 1215, 263–266. [Google Scholar] [CrossRef]
- Poole, O.; Costa, A.; Kaiser-Bunbury, C.N.; Shaw, R.F. Pollinators respond positively to urban green space enhancements using wild and ornamental flowers. Insect Conserv. Divers. 2024, 18, 16–28. [Google Scholar] [CrossRef]
- Cable, J.; Barber, I.; Boag, B.; Ellison, A.R.; Morgan, E.R.; Murray, K.; Pascoe, E.L.; Sait, S.M.; Wilson, A.J.; Booth, M. Global change, parasite transmission and disease control: Lessons from ecology. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2017, 372, 20160088. [Google Scholar] [CrossRef]
- Kendal, D.; Dobbs, C.; Lohr, V.I. Global patterns of diversity in the urban forest: Is there evidence to support the 10/20/30 rule? Urban For. Urban Green. 2014, 13, 411–417. [Google Scholar] [CrossRef]
- Qiao, H.; Wu, L.; Li, C.; Yuan, T.; Gao, J. Microbial perspective on restoration of degraded urban soil using ornamental plants. J. Environ. Manag. 2024, 359, 120920. [Google Scholar] [CrossRef]
- Hoyle, H.E.; Sant’Anna, C.G. Rethinking ‘future nature’ through a transatlantic research collaboration: Climate-adapted urban green infrastructure for human wellbeing and biodiversity. Landsc. Res. 2023, 48, 460–476. [Google Scholar] [CrossRef]
- Klaus, V.H.; Kiehl, K. A conceptual framework for urban ecological restoration and rehabilitation. Basic Appl. Ecol. 2021, 52, 82–94. [Google Scholar] [CrossRef]
- Knapp, S.; Dinsmore, L.; Fissore, C.; Hobbie, S.E.; Jakobsdottir, I.; Kattge, J.; King, J.Y.; Klotz, S.; McFadden, J.P.; Cavender-Bares, J. Phylogenetic and functional characteristics of household yard floras and their changes along an urbanization gradient. Ecology 2012, 93, 83–98. [Google Scholar] [CrossRef]
- Williams, N.S.G.; Hahs, A.K.; Vesk, P.A. Urbanisation, plant traits and the composition of urban floras. Perspect. Pl. Ecol. Evol. Syst. 2015, 17, 78–86. [Google Scholar] [CrossRef]
- Díaz, S.; Cabido, M. Vive la différence: Plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 2001, 16, 646–655. [Google Scholar] [CrossRef]
- Pearse, W.D.; Cavender-Bares, J.; Hobbie, S.E.; Avolio, M.L.; Bettez, N.; Roy Chowdhury, R.; Darling, L.E.; Groffman, P.M.; Grove, J.M.; Hall, S.J.; et al. Homogenization of plant diversity, composition, and structure in North American urban yards. Ecosphere 2018, 9, e02105. [Google Scholar] [CrossRef]
- Wang, H.-F.; Qureshi, S.; Knapp, S.; Friedman, C.R.; Hubacek, K. A basic assessment of residential plant diversity and its ES and disservices in Beijing, China. Appl. Geogr. 2015, 64, 121–131. [Google Scholar] [CrossRef]
- Reichard, S.H.; White, P. Horticulture as a pathway of invasive plant introductions in the United States. BioScience 2001, 51, 103–113. [Google Scholar] [CrossRef]
- Whitney, G.G.; Adams, S.D. Man as a maker of new plant communities. J. Appl. Ecol. 1980, 17, 431–448. [Google Scholar] [CrossRef]
- Aronson, M.F.J.; Handel, S.N.; La Puma, I.P.; Clemants, S.E. Urbanization promotes non-native woody species and diverse plant assemblages in the New York metropolitan region. Urban Ecosyst. 2015, 18, 31–45. [Google Scholar] [CrossRef]
- Cameron, R.W.F.; Blanuša, T.; Taylor, J.E.; Salisbury, A.; Halstead, A.J.; Henricot, B.; Thompson, K. The domestic garden—Its contribution to urban green infrastructure. Urban For. Urban Green. 2012, 11, 129–137. [Google Scholar] [CrossRef]
- Dehnen-Schmutz, K.; Touza, J.; Perrings, C.; Williamson, M. The horticultural trade and ornamental plant invasions in Britain. Conserv. Biol. 2007, 21, 224–231. [Google Scholar] [CrossRef] [PubMed]
- Kendal, D.; Williams, K.J.H.; Williams, N.S.G. Plant traits link people’s plant preferences to the composition of their gardens. Landsc. Urban Plan. 2012, 105, 34–42. [Google Scholar] [CrossRef]
- Avolio, M.L.; Pataki, D.E.; Trammell, T.L.E.; Endter-Wada, J. Biodiverse cities: The nursery industry, homeowners, and neighborhood differences drive urban tree composition. Ecol. Monogr. 2018, 88, 259–276. [Google Scholar] [CrossRef]
- Kelcey, J.G.; Müller, N. Plants and Habitats of European Cities; Springer: New York, NY, USA, 2009; pp. XVII, 685. [Google Scholar] [CrossRef]
- Luck, G.W. A review of the relationships between human population density and biodiversity. Biol. Rev. Camb. Philos. Soc. 2007, 82, 607–645. [Google Scholar] [CrossRef]
- Kowarick, I. On the role of alien species in urban flora and vegetation. In Plant Invasions—General Aspects and Special Problems; Pysek, P., Prach, K., Rejmanek, M., Wade, M., Eds.; SPB Academic Publishing: Amsterdam, The Netherlands, 2008; pp. 85–103. [Google Scholar]
- Kühn, I.; Brandl, R.; Klotz, S. The flora of German cities is naturally species rich. Evol. Ecol. Res. 2004, 6, 749–764. Available online: https://www.evolutionary-ecology.com/issues/v06n05/jjar1629.pdf (accessed on 30 January 2025).
- Avolio, M.; Pataki, D.E.; Jenerette, G.D.; Pincetl, S.; Clarke, L.W.; Cavender-Bares, J.; Gillespie, T.W.; Hobbie, S.E.; Larson, K.L.; McCarthy, H.R.; et al. Urban plant diversity in Los Angeles, California: Species and functional type turnover in cultivated landscapes. Plants People Planet 2020, 2, 144–156. [Google Scholar] [CrossRef]
- Gobster, P.H. Urban ecological restoration. Nat. Cult. 2010, 5, 227–230. [Google Scholar] [CrossRef]
- Hoyle, H.; Hitchmough, J.D.; Jorgensen, A. Attractive, climate-adapted and sustainable? Public perception of non-native planting in the designed urban landscape. Landsc. Urban Plan. 2017, 164, 49–63. [Google Scholar] [CrossRef]
- Scheffers, B.R.; De Meester, L.; Bridge, T.C.; Hoffmann, A.A.; Pandolfi, J.M.; Corlett, R.T.; Butchart, S.H.; Pearce-Kelly, P.; Kovacs, K.M.; Dudgeon, D.; et al. The broad footprint of climate change from genes to biomes to people. Science 2016, 354, aaf7671. [Google Scholar] [CrossRef]
- Demuzere, M.; Orru, H.; Orru, K.; Heidrich, O.; Olazabal, E.; Geneletti, D.; Bhave, A.G.; Mittal, N.; Feliu, E.; Faehnle, M. Mitigating and adapting to climate change: Multi-functional and multi-scale assessment of green urban infrastructure. J. Environ. Manag. 2014, 146, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Hoyle, H.; Hitchmough, J.D.; Jorgensen, A. All about the ‘wow factor’? The relationships between aesthetics, restorative effect and perceived biodiversity in designed urban planting. Landsc. Urban Plan. 2017, 164, 109–123. [Google Scholar] [CrossRef]
- Fischer, L.K.; Honold, J.; Botzat, A.; Brinkmeyer, D.; Cvejić, R.; Delshammar, T.; Elands, B.; Haase, D.; Kabisch, N.; Karle, S.J.; et al. Recreational ecosystem services in European cities: Sociocultural and geographical contexts matter for park use. Ecosyst. Serv. 2018, 31, 455–467. [Google Scholar] [CrossRef]
- Hartig, T.; Mitchell, R.; de Vries, S.; Frumkin, H. Nature and Health. Annu. Rev. Public. Health 2014, 35, 207–228. [Google Scholar] [CrossRef]
- Cocks, M. Biocultural diversity: Moving beyond the realm of ‘indigenous’ and ‘local’ people. Hum. Ecol. 2006, 34, 185–200. [Google Scholar] [CrossRef]
- Drake, L.; Lawson, L.J. Results of a US and Canada community garden survey: Shared challenges in garden management amid diverse geographical and organizational contexts. Agric. Hum. Values 2015, 32, 241–254. [Google Scholar] [CrossRef]
- Mörtberg, U.; Goldenberg, R.; Kalantari, Z.; Kordas, O.; Deal, B.; Balfors, B.; Cvetkovic, V. Integrating ecosystem services in the assessment of urban energy trajectories—A study of the Stockholm Region. Energy Policy 2017, 100, 338–349. [Google Scholar] [CrossRef]
- Hansen, R.; Frantzeskaki, N.; McPhearson, T.; Rall, E.; Kabisch, N.; Kaczorowska, A.; Pauleit, S. The uptake of the ecosystem services concept in planning discourses of European and American cities. Ecosyst. Serv. 2015, 12, 228–246. [Google Scholar] [CrossRef]
- Aronson, M.F.J.; Lepczyk, C.A.; Evans, K.L.; Goddard, M.A.; Lerman, S.B.; MacIvor, J.S.; Nilon, C.H.; Vargo, T. Biodiversity in the city: Key challenges for urban green space management. Front. Ecol. Environ. 2017, 15, 189–196. [Google Scholar] [CrossRef]
- Chalker-Scott, L. Nonnative, noninvasive woody species can enhance urban landscape biodiversity. Arboric. Urban For. 2015, 41, 173–186. [Google Scholar] [CrossRef]
- Tartaglia, E.S.; Aronson, M.F. Plant native: Comparing biodiversity benefits, ecosystem services provisioning, and plant performance of native and non-native plants in urban horticulture. Urban Ecosyst. 2024, 27, 2587–2611. [Google Scholar] [CrossRef]
- Leotta, L.; Toscano, S.; Romano, D. Which plant species for green roofs in the mediterranean environment? Plants 2023, 12, 3985. [Google Scholar] [CrossRef] [PubMed]
- Guidi, M.A. Investigation of Flowering Phenology, Pollinator and Invertebrate Biodiversity Value on Urban Green Roofs and an Evaluation of Ornamental Horticulture Crops for Pollinator Value. Master’s Thesis, Colorado State University, Fort Collins, CO, USA, 2023. [Google Scholar]
- Vannucchi, F.; Pini, R.; Scatena, M.; Benelli, G.; Canale, A.; Bretzel, F. Deinking sludge in the substrate reduces the fertility and enhances the plant species richness of extensive green roofs. Ecol. Eng. 2018, 116, 87–96. [Google Scholar] [CrossRef]
- Leotta, L.; Toscano, S.; Ferrante, A.; Romano, D.; Francini, A. New strategies to increase the abiotic stress tolerance in woody ornamental plants in Mediterranean climate. Plants 2023, 12, 2022. [Google Scholar] [CrossRef]
- Gupta, A.; Naorem, A.; Prasad, M.G.; Khuraijam, J.S. Using wild plant species in ornamental horticulture: A possible future. In Ornamental Horticulture: Latest Cultivation Practices and Breeding Technologies; Bhargava, B., Kumar, P., Verma, V., Eds.; Springer: Singapore, 2024; pp. 259–273. [Google Scholar] [CrossRef]
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global change and the ecology of cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef]
- Ong, T.W.; Lin, B.B.; Lucatero, A.; Cohen, H.; Bichier, P.; Egerer, M.H.; Danieu, A.; Jha, S.; Philpott, S.M.; Liere, H. Rarity begets rarity: Social and environmental drivers of rare organisms in cities. Ecol. Appl. 2022, 32, e2708. [Google Scholar] [CrossRef]
- De Pascale, S.; Romano, D. Potential use of wild plants in floriculture. Acta Hortic. 2019, 1240, 87–98. [Google Scholar] [CrossRef]
- Weaver, D. Mass and urban ecotourism: New manifestations of an old concept. Tour. Recreat. Res. 2005, 30, 19–26. [Google Scholar] [CrossRef]
- Rupprecht, C.D.D.; Byrne, J.A. Informal urban greenspace: A typology and trilingual systematic review of its role for urban residents and trends in the literature. Urban For. Urban Green. 2014, 13, 597–611. [Google Scholar] [CrossRef]
- Gawryszewska, B.J.; Łepkowski, M.; Pietrych, Ł.; Wilczyńska, A.; Archiciński, P. The structure of beauty: Informal green spaces in their users’ eyes. Sustainability 2024, 16, 1619. [Google Scholar] [CrossRef]
- Threlfall, C.G.; Mata, L.; Mackie, J.A.; Hahs, A.K.; Stork, N.E.; Williams, N.S.G.; Livesley, S.J. Increasing biodiversity in urban green spaces through simple vegetation interventions. J. Appl. Ecol. 2017, 54, 1874–1883. [Google Scholar] [CrossRef]
- Li, F.; Zheng, W.; Wang, Y.; Liang, J.; Xie, S.; Guo, S.; Li, X.; Yu, C. Urban green space fragmentation and urbanization: A spatiotemporal perspective. Forests 2019, 10, 333. [Google Scholar] [CrossRef]
- Lepczyk, C.A.; Aronson, M.F.J.; Evans, M.K.L.; Goddard, A.; Lerman, S.B.; MacIvor, J.S. Biodiversity in the city: Fundamental questions for understanding the ecology of urban green spaces for biodiversity conservation. BioScience 2017, 67, 799–807. [Google Scholar] [CrossRef]
- Aziz, H.A.; Rasidi, M.H. The role of green corridors for wildlife conservation in urban landscape: A literature review. IOP Conf. Ser. Earth Environ. Sci. 2014, 18, 012093. [Google Scholar] [CrossRef]
- Ahern, J. Greenways as a planning strategy. Landsc. Urban Plan. 1995, 33, 131–155. [Google Scholar] [CrossRef]
- App, M.; Strohbach, M.W.; Schneider, A.-K.; Schröder, B. Making the case for gardens: Estimating the contribution of urban gardens to habitat provision and connectivity based on hedgehogs (Erinaceus europaeus). Landsc. Urban Plan. 2022, 220, 104347. [Google Scholar] [CrossRef]
- Beumer, C.; Martens, P. Biodiversity in my (back)yard: Towards a framework for citizen engagement in exploring biodiversity and ecosystem services in residential gardens. Sustain. Sci. 2015, 10, 87–100. [Google Scholar] [CrossRef]
- Kong, F.H.; Yin, H.W.; Nakagoshi, N.; Zong, Y.G. Urban green space network development for biodiversity conservation: Identification based on graph theory and gravity modeling. Landsc. Urban Plan. 2010, 95, 16–27. [Google Scholar] [CrossRef]
- Patankar, S.; Jambhekar, R.; Suryawanshi, K.R.; Nagendra, H. Which traits influence bird survival in the city? A review. Land 2021, 10, 92. [Google Scholar] [CrossRef]
- Idilfitri, S.; Sulaiman, S.; Salleh, N.S. Role of ornamental plants for bird community’ habitats in urban parks. Procedia Soc. Behav. Sci. 2014, 153, 666–677. [Google Scholar] [CrossRef]
- Blair, R.B. Land use and avian species diversity along an urban gradient. Ecol. Appl. 1996, 6, 506–519. [Google Scholar] [CrossRef]
- Batáry, P.; Kurucz, K.; Suarez-Rubio, M.; Chamberlain, D.E. Non-linearities in bird responses across urbanization gradients: A meta-analysis. Glob. Chang. Biol. 2018, 24, 1046–1054. [Google Scholar] [CrossRef] [PubMed]
- Leveau, L.M.; Ruggiero, A.; Matthews, T.J.; Bellocq, M.I. A global consistent positive effect of urban green area size on bird richness. Avian Res. 2019, 10, 30. [Google Scholar] [CrossRef]
- Reynolds, S.J.; Ibáñez-Álamo, J.D.; Sumasgutner, P.; Mainwaring, M.C. Urbanisation and nest building in birds: A review of threats and opportunities. J. Ornithol. 2019, 160, 841–860. [Google Scholar] [CrossRef]
- Pena, J.C.; Martello, F.; Ribeiro, M.C.; Armitage, R.A.; Young, R.J.; Rodrigues, M. Street trees reduce the negative effects of urbanization on birds. PLoS ONE 2017, 12, e0174484. [Google Scholar] [CrossRef]
- Marlès Magre, J.; Boada Juncà, M.; Campanera, J.M.; Bach Pagès, A.; Ruiz Mallén, I.; Maneja Zaragoza, R.; Sánchez Mateo, S.; Pallarès Barberà, M.; Barriocanal Lozano, C. How Urban Green Management Is Influencing Passerine Birds’ Nesting in the Mediterranean: A case study in a Catalan city. Urban For. Urban Green. 2019, 41, 221–229. [Google Scholar] [CrossRef]
- Yang, G.; Xu, J.; Wang, Y.; Wang, X.; Pei, E.; Yuan, X.; Li, H.; Ding, Y.; Wang, Z. Evaluation of microhabitats for wild birds in a Shanghai urban area park. Urban For. Urban Green. 2015, 14, 246–254. [Google Scholar] [CrossRef]
- Wood, E.M.; Esaian, S. The importance of street trees to urban avifauna. Ecol. Appl. 2020, 30, e02149. [Google Scholar] [CrossRef]
- French, K.; Major, R.; Hely, K. Use of native and exotic garden plants by suburban nectarivorous birds. Biol. Conserv. 2005, 121, 545–559. [Google Scholar] [CrossRef]
- Pellissier, V.; Cohen, M.; Boulay, A.; Clergeau, P. Birds are also sensitive to landscape composition and configuration within the city centre. Landsc. Urban Plan. 2012, 104, 181–188. [Google Scholar] [CrossRef]
- Pearce, H.; Walters, C.L. Do green roofs provide habitat for bats in urban areas? Acta Chiropterol. 2012, 14, 469–478. [Google Scholar] [CrossRef]
- Smallwood, N.L.; Wood, E.M. The ecological role of native-plant landscaping in residential yards to birds during the nonbreeding period. Ecosphere 2022, 14, e4360. [Google Scholar] [CrossRef]
- Cerra, J.F.; Crain, R. Urban birds and planting design: Strategies for incorporating ecological goals into residential landscapes. Urban Ecosyst. 2016, 19, 1823–1846. [Google Scholar] [CrossRef]
- Jung, K.; Threlfall, C.G. Trait-Dependent Tolerance of Bats to Urbanization: A Global Meta-Analysis. Proc. R. Soc. B Biol. Sci. 2018, 285, 20181222. [Google Scholar] [CrossRef]
- Corlett, R.T. Interactions between birds, fruit bats and exotic plants in urban Hong Kong, South China. Urban Ecosyst. 2005, 8, 275–283. [Google Scholar] [CrossRef]
- Nunes, H.; Rocha, F.L.; Cordeiro-Estrela, P. Bats in urban areas of Brazil: Roosts, food resources and parasites in disturbed environments. Urban Ecosyst. 2017, 20, 953–969. [Google Scholar] [CrossRef]
- Callas, M.; Lumsden, L.F.; Rendall, A.R.; Yokochi, K. More trees and fewer roads: The importance of local and landscape features for insectivorous bats in open urban green spaces. Wildl. Res. 2024, 51, WR23079. [Google Scholar] [CrossRef]
- Marquardt, M.; Kienbaum, L.; Kretschmer, L.A.; Penell, A.; Schweikert, K.; Ruttensperger, U.; Rosenkranz, P. Evaluation of the importance of ornamental plants for pollinators in urban and suburban areas in Stuttgart, Germany. Urban Ecosyst. 2020, 24, 811–825. [Google Scholar] [CrossRef]
- Palmersheim, M.C.; Schürch, R.; O’Rourke, M.E.; Slezak, J.; Couvillon, M.J. If you grow it, they will come: Ornamental plants impact the abundance and diversity of pollinators and other flower-visiting insects in gardens. Horticulturae 2022, 8, 1068. [Google Scholar] [CrossRef]
- Lerch, D.; Blüthgen, N.; Mody, K. Home sweet home: Evaluation of native versus exotic plants as resources for insects in urban green spaces. Ecol. Solut. Evid. 2024, 5, e12380. [Google Scholar] [CrossRef]
- Matteson, K.C.; Langellotto, G.A. Small scale additions of native plants fail to increase beneficial insect richness in urban gardens. Insect. Conserv. Divers. 2011, 4, 89–98. [Google Scholar] [CrossRef]
- Schueller, S.K.; Li, Z.; Bliss, Z.; Roake, R.; Weiler, B. How informed design can make a difference: Supporting insect pollinators in cities. Land 2023, 12, 1289. [Google Scholar] [CrossRef]
- Kim, T.E.; Oh, S.-Y.; Chang, E.; Jang, Y. Host availability hypothesis: Complex interactions with abiotic factors and predators may best explain population densities of cicada species. Anim. Cells Syst. 2014, 18, 143–153. [Google Scholar] [CrossRef]
- Patoka, J.; Bláha, M.; Kalous, L.; Vrabec, V.; Buřič, M.; Kouba, A. Potential pest transfer mediated by international ornamental plant trade. Sci. Rep. 2016, 6, 25896. [Google Scholar] [CrossRef]
- Fukano, Y.; Soga, M. Why do so many modern people hate insects? The urbanization–disgust hypothesis. Sci. Total Environ. 2021, 777, 146229. [Google Scholar] [CrossRef]
- Vanderstock, A.; Grandi-Nagashiro, C.; Kudo, G.; Latty, T.; Nakamura, S.; White, T.E.; Soga, M. For the love of insects: Gardening grows positive emotions (biophilia) towards invertebrates. J. Insect Conserv. 2022, 26, 751–762. [Google Scholar] [CrossRef]
- Noriega, J.A.; Hortal, J.; Azcárate, F.M.; Berg, M.P.; Bonada, N.; Briones, M.J.; Del Toro, I.; Goulson, D.; Ibanez, S.; Landis, D.A.; et al. Research trends in ecosystem services provided by insects. Basic Appl. Ecol. 2018, 26, 8–23. [Google Scholar] [CrossRef]
- Żołnierz, L.; Fudali, E.; Szymanowski, M. Epiphytic Bryophytes in an urban landscape: Which factors determine their distribution, species richness, and diversity? A case study in Wroclaw, Poland. Int. J. Environ. Res. Public. Health 2022, 19, 6274. [Google Scholar] [CrossRef]
- Jung, N.J.; Eyster, H.N.; Chan, K.M.A. Re-envisioning urban landscapes: Lichens, liverworts, and mosses coexist spontaneously with us. Front. Ecol. Environ. 2025, 23, e2836. [Google Scholar] [CrossRef]
- Gregory, A.; Spence, E.; Beier, P.; Garding, E. Toward best management practices for ecological corridors. Land 2021, 10, 140. [Google Scholar] [CrossRef]
- Bretzel, F.; Vannucchi, F.; Romano, D.; Malorgio, F.; Benvenuti, S.; Pezzarossa, B. Wildflowers: From conserving biodiversity to urban greening—A review. Urban For. Urban Green. 2016, 20, 428–436. [Google Scholar] [CrossRef]
- Benvenuti, S. Wildflower green roofs for urban landscaping, ecological sustainability and biodiversity. Landsc. Urban Plan. 2014, 124, 151–161. [Google Scholar] [CrossRef]
- Haaland, C.; Gyllin, M. Sown wildflower strips–a strategy to enhance biodiversity and amenity in intensively used agricultural areas. In The importance of biological interactions in the study of biodiversity; López-Pujol, J., Ed.; InTech: Rijeka, Croatia, 2011; pp. 155–172. [Google Scholar]
- Bhatt, A.; Bhat, N.R.; Santo, A.; Phartyal, S.S. Influence of temperature, light and salt on the germination of Deverra triradiata seeds. Seed Sci. Technol. 2019, 47, 25–31. [Google Scholar] [CrossRef]
- Scheper, J.; Bukovinszky, T.; Huigens, M.E.; Kleijn, D. Attractiveness of sown wildflower strips to flower-visiting insects depends on seed mixture and establishment success. Basic Appl. Ecol. 2021, 56, 401–415. [Google Scholar] [CrossRef]
- Fernandes, M.P.; Matono, P.; Almeida, E.; Pinto-Cruz, C.; Belo, A.D. Sowing wildflower meadows in Mediterranean peri-urban green areas to promote grassland diversity. Front. Ecol. Evol. 2023, 11, 1112596. [Google Scholar] [CrossRef]
- Karamaouna, F.; Kati, V.; Volakakis, N.; Varikou, K.; Garantonakis, N.; Economou, L.; Birouraki, A.; Markellou, E.; Liberopoulou, S.; Edwards, M. Ground cover management with mixtures of flowering plants to enhance insect pollinators and natural enemies of pests in olive groves. Agric. Ecosyst. Environ. 2019, 274, 76–89. [Google Scholar] [CrossRef]
- Kiehl, K.; Kirmer, A.; Shaw, N. (Eds.) Guidelines for Native Seed Production and Grassland Restoration; Scholars Publishing: Cambridge, UK, 2014; p. 315. [Google Scholar]
- Winkler, J.; Pasternak, G.; Sas, W.; Hurajová, E.; Koda, E.; Vaverková, M.D. Nature-Based Management of Lawns—Enhancing Biodiversity in Urban Green Infrastructure. Appl. Sci. 2024, 14, 1705. [Google Scholar] [CrossRef]
- Delahay, R.J.; Sherman, D.; Soyalan, B.; Gaston, K.J. Biodiversity in residential gardens: A review of the evidence base. Biodivers. Conserv. 2023, 32, 4155–4179. [Google Scholar] [CrossRef]
- Minor, E.S.; Anderson, E.C.; Belaire, J.A.; Garfinkel, M.; Smith, A.D. Urban green infrastructures and ecological networks for urban biodiversity conservation. In Urban Biodiversity. From Research to Practice; Ossola, A., Niemelä, J., Eds.; Routledge: London, UK, 2018; pp. 186–199. [Google Scholar]
- English, J.; Barry, K.E.; Wood, E.M.; Wright, A.J. The effect of urban environments on the diversity of plants in unmanaged grasslands in Los Angeles, United States. Front. Ecol. Evol. 2022, 10, 921472. [Google Scholar] [CrossRef]
- Erickson, E.; Patch, H.M.; Grozinger, C.M. Herbaceous perennial ornamental plants can support complex pollinator communities. Sci. Rep. 2021, 11, 17352. [Google Scholar] [CrossRef]
- Erickson, E.; Adam, S.; Russo, L.; Wojcik, V.; Patch, H.M.; Grozinger, C.M. More than meets the eye? The role of annual ornamental flowers in supporting pollinators. Environ. Entomol. 2020, 49, 178–188. [Google Scholar] [CrossRef] [PubMed]
- Quinanzoni, M.; Marcolet, D.; Michelot-Antalik, A. Drought response and urban-pollinator attractiveness of ornamental plant species. Basic Appl. Ecol. 2024, 78, 1–13. [Google Scholar] [CrossRef]
- Fekete, R.; Valkó, O.; Fischer, L.K.; Deák, B.; Klaus, V.H. Ecological restoration and biodiversity-friendly management of urban grasslands–A global review on the current state of knowledge. J. Environ. Manag. 2024, 368, 122220. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toscano, S.; Romano, D.; Lazzeri, V.; Leotta, L.; Bretzel, F. How Can Plants Used for Ornamental Purposes Contribute to Urban Biodiversity? Sustainability 2025, 17, 4061. https://doi.org/10.3390/su17094061
Toscano S, Romano D, Lazzeri V, Leotta L, Bretzel F. How Can Plants Used for Ornamental Purposes Contribute to Urban Biodiversity? Sustainability. 2025; 17(9):4061. https://doi.org/10.3390/su17094061
Chicago/Turabian StyleToscano, Stefania, Daniela Romano, Valerio Lazzeri, Luca Leotta, and Francesca Bretzel. 2025. "How Can Plants Used for Ornamental Purposes Contribute to Urban Biodiversity?" Sustainability 17, no. 9: 4061. https://doi.org/10.3390/su17094061
APA StyleToscano, S., Romano, D., Lazzeri, V., Leotta, L., & Bretzel, F. (2025). How Can Plants Used for Ornamental Purposes Contribute to Urban Biodiversity? Sustainability, 17(9), 4061. https://doi.org/10.3390/su17094061