Artificial Intelligence as Enabler for Adoption of Sustainable Nuclear-Powered Maritime Ships: Challenges and Opportunities
Abstract
:1. Introduction
2. Nuclear-Powered Maritime Ships
3. Artificial Intelligence as Enabler for Adoption of Nuclear Maritime Ships
3.1. Monitoring and Maintenance
3.2. Core Refueling Optimization
3.3. On-Ship Nuclear Integrated Energy Systems Management
3.4. Digital Twins for Nuclear-Powered Maritime Vessel Operations
3.5. Radiation Protection
3.6. Safeguards and Security of Nuclear Materials
3.7. Cybersecurity
3.8. Nuclear Contamination Management
- (i)
- Predicting the dispersion of radioactive material in the water;
- (ii)
- Controlling unmanned aerial vehicles (UAVs) and autonomous underwater vehicles (AUVs) to monitor radiation levels;
- (iii)
- Operating autonomous vehicles for decontamination efforts in affected ocean areas.
3.9. Onboard Digital Panel Operation
3.10. Electricity Supply at Ports
3.11. Secure Informative Navigation Systems
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Freire, L.O.; de Andrade, D.A. Historic survey on nuclear merchant ships. Nucl. Eng. Des. 2015, 293, 176–186. [Google Scholar] [CrossRef]
- Hidayatullah, H.; Susyadi, S.; Subki, M.H. Design and technology development for small modular reactors–Safety expectations, prospects and impediments of their deployment. Prog. Nucl. Energy 2015, 79, 127–135. [Google Scholar] [CrossRef]
- Schøyen, H.; Steger-Jensen, K. Nuclear propulsion in ocean merchant shipping: The role of historical experiments to gain insight into possible future applications. J. Clean. Prod. 2017, 169, 152–160. [Google Scholar] [CrossRef]
- Wróbel, K. A tale of two disruptive maritime technologies: Nuclear propulsion and autonomy. TransNav Int. J. Mar. Navig. Saf. Sea Transp. 2022, 16, 733–741. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, H.; Zhu, P. Using nuclear energy for maritime decarbonization and related environmental challenges: Existing regulatory shortcomings and improvements. Int. J. Environ. Res. Public Health 2023, 20, 2993. [Google Scholar] [CrossRef]
- Virvou, M.; Tsihrintzis, G.A.; Bourbakis, N.G.; Jain, L.C. Introduction to Handbook on Artificial Intelligence-Empowered Applied Software Engineering—Vol. 2: Smart Software Applications in Cyber-Physical Systems; Springer International Publishing: New York, NY, USA, 2022; pp. 1–7. [Google Scholar]
- Alamaniotis, M. Challenges and AI-based solutions for smart energy consumption in smart cities. In Advances in Artificial Intelligence-Based Technologies: Selected Papers in Honour of Professor Nikolaos G. Bourbakis—Vol. 1; Springer: Berlin/Heidelberg, Germany, 2022; pp. 111–124. [Google Scholar]
- Durlik, I.; Miller, T.; Kostecka, E.; Tuński, T. Artificial Intelligence in Maritime Transportation: A Comprehensive Review of Safety and Risk Management Applications. Appl. Sci. 2024, 14, 8420. [Google Scholar] [CrossRef]
- Alamaniotis, M.; Heifetz, A. Survey of Machine Learning Approaches in Radiation Data Analytics Pertained to Nuclear Security. In Advances in Machine Learning/Deep Learning-Based Technologies: Selected Papers in Honour of Professor Nikolaos, G. Bourbakis–Vol. 2; Springer International Publishing: Cham, Switzerland, 2022; pp. 97–115. [Google Scholar]
- Uhrig, R.E. Use of Expert Systems in Nuclear Power Plants; No. CONF-890899-1; Oak Ridge National Lab.: Oak Ridge, TN, USA, 1989. [Google Scholar]
- Upadhyaya, B.R.; Zhao, K.; Lu, B. Fault monitoring of nuclear power plant sensors and field devices. Prog. Nucl. Energy 2003, 43, 337–342. [Google Scholar] [CrossRef]
- Sethu, M.; Kotla, B.; Russell, D.; Madadi, M.; Titu, N.A.; Coble, J.B.; Boring, R.L.; Blache, K.; Agarwal, V.; Yadav, V.; et al. Application of artificial intelligence in detection and mitigation of human factor errors in nuclear power plants: A review. Nucl. Technol. 2023, 209, 276–294. [Google Scholar] [CrossRef]
- Zhou, G.; Tan, D. Review of nuclear power plant control research: Neural network-based methods. Ann. Nucl. Energy 2023, 181, 109513. [Google Scholar] [CrossRef]
- Radaideh, M.I.; Pigg, C.; Kozlowski, T.; Deng, Y.; Qu, A. Neural-based time series forecasting of loss of coolant accidents in nuclear power plants. Expert Syst. Appl. 2020, 160, 113699. [Google Scholar] [CrossRef]
- Son, J.; Choi, J.; Yoon, H. New complementary points of cyber security schemes for critical digital assets at nuclear power plants. IEEE Access 2019, 7, 78379–78390. [Google Scholar] [CrossRef]
- Wu, J.; Ma, Y.; Yu, C.; Zou, C.; Cai, X.; Chen, J. Nuclear non-proliferation review and improving proliferation resistance assessment in the future. Int. J. Energy Res. 2021, 45, 11399–11422. [Google Scholar] [CrossRef]
- Boahen, J.K.; Elsagheer Mohamed, S.A.; Khalil, A.S.; Hassan, M.A. Application of artificial intelligence techniques in modeling attenuation behavior of ionization radiation: A review. Radiat. Detect. Technol. Methods 2023, 7, 56–83. [Google Scholar] [CrossRef]
- Fu, Y.; Zhang, H.; Morris, E.D.; Glide-Hurst, C.K.; Pai, S.; Traverso, A.; Wee, L.; Hadzic, I.; Lønne, P.I.; Shen, C.; et al. Artificial intelligence in radiation therapy. IEEE Trans. Radiat. Plasma Med. Sci. 2021, 6, 158–181. [Google Scholar] [CrossRef]
- Seah, J.; Brady, Z.; Ewert, K.; Law, M. Artificial intelligence in medical imaging: Implications for patient radiation safety. Br. J. Radiol. 2021, 94, 20210406. [Google Scholar] [CrossRef]
- Assani, N.; Matić, P.; Kaštelan, N.; Čavka, I.R. A review of artificial neural networks applications in maritime industry. IEEE Access 2023, 11, 139823–139848. [Google Scholar] [CrossRef]
- Simion, D.; Postolache, F.; Fleacă, B.; Fleacă, E. Ai-driven predictive maintenance in modern maritime transport—Enhancing operational efficiency and reliability. Appl. Sci. 2024, 14, 9439. [Google Scholar] [CrossRef]
- Theodoropoulos, P.; Spandonidis, C.C.; Giannopoulos, F.; Fassois, S. A deep learning-based fault detection model for optimization of shipping operations and enhancement of maritime safety. Sensors 2021, 21, 5658. [Google Scholar] [CrossRef]
- Tang, W.; Roman, D.; Dickie, R.; Robu, V.; Flynn, D. Prognostics and health management for the optimization of marine hybrid energy systems. Energies 2020, 13, 4676. [Google Scholar] [CrossRef]
- Pérez-Canosa, J.M.; Lama-Carballo, F.J.; Salgado-Don, A.; Cao-Feijóo, G.; Pacheco, E.A.; Orosa, J.A. Novel Modeling for the Calculation of the Center of Lateral Resistance Position of Different Ships Making Use of a Full Mission Bridge Simulator and AI Tools. J. Mar. Sci. Eng. 2024, 12, 1381. [Google Scholar] [CrossRef]
- Kim, M.K.; Kim, J.H.; Yang, H. Optimal route generation and route-following control for autonomous vessel. J. Mar. Sci. Eng. 2023, 11, 970. [Google Scholar] [CrossRef]
- Alexiou, K.; Pariotis, E.G.; Zannis, T.C.; Leligou, H.C. Prediction of a ship’s operational parameters using artificial intelligence techniques. J. Mar. Sci. Eng. 2021, 9, 681. [Google Scholar] [CrossRef]
- Jian, J.; Sun, Z.; Sun, K. An intelligent automatic sea forecasting system targeting specific areas on sailing routes. Sustainability 2024, 16, 1117. [Google Scholar] [CrossRef]
- Martínez, R.; García, J.A.; Felis, I. AI-Driven Estimation of Vessel Sailing Times and Underwater Acoustic Pressure for Optimizing Maritime Logistics. Eng. Proc. 2023, 58, 26. [Google Scholar] [CrossRef]
- Lee, J.; Eom, J.; Park, J.; Jo, J.; Kim, S. The development of a machine learning-based carbon emission prediction method for a multi-fuel-propelled smart ship by using onboard measurement data. Sustainability 2024, 16, 2381. [Google Scholar] [CrossRef]
- Qiao, D.; Liu, G.; Lv, T.; Li, W.; Zhang, J. Marine vision-based situational awareness using discriminative deep learning: A survey. J. Mar. Sci. Eng. 2021, 9, 397. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, D.; Jiang, H. A review of artificial intelligence-based optimization applications in traditional active maritime collision avoidance. Sustainability 2023, 15, 13384. [Google Scholar] [CrossRef]
- Haruna, M.; Gebremeskel, K.G.; Troscia, M.; Tardo, A.; Pagano, P. Mechanisms for Securing Autonomous Shipping Services and Machine Learning Algorithms for Misbehaviour Detection. Telecom 2024, 5, 1031–1050. [Google Scholar] [CrossRef]
- Valero, C.I.; Ivancos Pla, E.; Vaño, R.; Garro, E.; Boronat, F.; Palau, C.E. Design and development of an aiot architecture for introducing a vessel eta cognitive service in a legacy port management solution. Sensors 2021, 21, 8133. [Google Scholar] [CrossRef]
- Camarasa, C.; Mata, É.; Navarro, J.P.J.; Reyna, J.; Bezerra, P.; Angelkorte, G.B.; Feng, W.; Filippidou, F.; Forthuber, S.; Harris, C.; et al. A global comparison of building decarbonization scenarios by 2050 towards 1.5–2 C targets. Nat. Commun. 2022, 13, 3077. [Google Scholar] [CrossRef]
- Edgerton, M. Port and maritime security and sustainability. In Sustainability in the Maritime Domain: Towards Ocean Governance and Beyond; Springer International Publishing: New York, NY, USA, 2021; pp. 155–167. [Google Scholar]
- Carlton, J.; Aldwinkle, J.; Anderson, J. Future ship powering options: Exploring alternative methods of ship propulsion. Lond R. Acad. Eng. 2013, 1–95. Available online: https://www.semanticscholar.org/paper/FUTURE-SHIP-POWERING-OPTIONS-Exploring-alternative/2d4294d734371e2c957e2e249a492e655c9a1ed0 (accessed on 15 February 2025).
- Lange, R.S. Theme Study–Large Vessel NS Savannah; US Department of the Interior, History Division: Washington, DC, USA, 1990; Volume 32.
- Alamaniotis, M. Intelligent Scheduling of Floating Nuclear Reactor Operation for Implementation of Distributed Smart Energy Systems in Remote Coastal Locations. In Proceedings of the IEEE 36th International Conference on Tools with Artificial Intelligence, Herndon, VA, USA, 28–30 October 2024. [Google Scholar]
- Lu, C.; Lyu, J.; Zhang, L.; Gong, A.; Fan, Y.; Yan, J.; Li, X. Nuclear power plants with artificial intelligence in industry 4.0 era: Top-level design and current applications—A systemic review. IEEE Access 2020, 8, 194315–194332. [Google Scholar] [CrossRef]
- Cappelli, M. (Ed.) Instrumentation and Control Systems for Nuclear Power Plants; Woodhead Publishing: Cambridge, UK, 2023. [Google Scholar]
- Alamaniotis, M.; Cappelli, M. Intelligent identification of boiling water reactor state utilizing relevance vector regression models. J. Nucl. Eng. Radiat. Sci. 2018, 4, 020904. [Google Scholar] [CrossRef]
- Xu, B.; Kumar, S.A. Big data analytics framework for system health monitoring. In 2015 IEEE International Congress on Big Data; IEEE: Piscataway, NJ, USA, 2015; pp. 401–408. [Google Scholar]
- Alamaniotis, M.; Cappelli, M. Real-Time State Identification of Boiling Water Reactors Using Relevance Vector Machines. In International Conference on Nuclear Engineering; American Society of Mechanical Engineers: New York, NY, USA, 2016; Volume 50015, p. V001T04A001. [Google Scholar]
- Gohel, H.A.; Upadhyay, H.; Lagos, L.; Cooper, K.; Sanzetenea, A. Predictive maintenance architecture development for nuclear infrastructure using machine learning. Nucl. Eng. Technol. 2020, 52, 1436–1442. [Google Scholar] [CrossRef]
- Saley, A.M.; Marchand, J.; Sekhari, A.; Cheutet, V.; Danielou, J.B. State-of-art and maturity overview of the nuclear industry on predictive maintenance. In Proceedings of the IFIP International Conference on Product Lifecycle Management, Grenoble, France, 10–13 July 2022; Springer Nature: Cham, Switzerland, 2022; pp. 337–346. [Google Scholar]
- Achouch, M.; Dimitrova, M.; Ziane, K.; Sattarpanah Karganroudi, S.; Dhouib, R.; Ibrahim, H.; Adda, M. On predictive maintenance in industry 4.0: Overview, models, and challenges. Appl. Sci. 2022, 12, 8081. [Google Scholar] [CrossRef]
- Zhao, X.; Kim, J.; Warns, K.; Wang, X.; Ramuhalli, P.; Cetiner, S.; Kang, H.G.; Golay, M. Prognostics and health management in nuclear power plants: An updated method-centric review with special focus on data-driven methods. Front. Energy Res. 2021, 9, 696785. [Google Scholar] [CrossRef]
- Agarwal, V.; Lybeck, N.J.; Bickford, R.; Rusaw, R. Development of asset fault signatures for prognostic and health management in the nuclear industry. In Proceedings of the 2014 International Conference on Prognostics and Health Management, Cheney, DC, USA, 22–25 June 2014; IEEE: Piscataway, NJ, USA; pp. 1–7. [Google Scholar]
- Liao, L.; Köttig, F. Review of hybrid prognostics approaches for remaining useful life prediction of engineered systems, and an application to battery life prediction. IEEE Trans. Reliab. 2014, 63, 191–207. [Google Scholar] [CrossRef]
- Maitlo, A.A.; Liu, Y.K.; Lakhan, M.N.; Raza, W.; Shar, A.H.; Ali, A.; Hanan, A.; Ahmed, M. Recent advances in nuclear power plant for fault detection diagnosis-a review. J. Crit. Rev. 2020, 7, 4340–4349. [Google Scholar]
- Elshenawy, L.M.; Halawa, M.A.; Mahmoud, T.A.; Awad, H.A.; Abdo, M.I. Unsupervised machine learning techniques for fault detection and diagnosis in nuclear power plants. Prog. Nucl. Energy 2021, 142, 103990. [Google Scholar] [CrossRef]
- Qi, B.; Liang, J.; Tong, J. Fault diagnosis techniques for nuclear power plants: A review from the artificial intelligence perspective. Energies 2023, 16, 1850. [Google Scholar] [CrossRef]
- Adumene, S.; Islam, R.; Amin, M.T.; Nitonye, S.; Yazdi, M.; Johnson, K.T. Advances in nuclear power system design and fault-based condition monitoring towards safety of nuclear-powered ships. Ocean. Eng. 2022, 251, 111156. [Google Scholar] [CrossRef]
- Reyes, A.M.; Chengu, A.; Gatsis, N.; Ahmed, S.; Alamaniotis, M. Model Explainable AI Method for Fault Detection in Inverter-Based Distribution Systems. In Proceedings of the 2024 IEEE Texas Power and Energy Conference (TPEC), College Station, TX, USA, 13–14 February 2024; IEEE: Piscataway, NJ, USA; pp. 1–6. [Google Scholar]
- Nissan, E. An overview of AI methods for in-core fuel management: Tools for the automatic design of nuclear reactor core configurations for fuel reload, (re)arranging new and partly spent fuel. Designs 2019, 3, 37. [Google Scholar] [CrossRef]
- Ortiz, J.J.; Castillo, A.; Montes, J.L.; Perusquía, R. A new system to fuel loading and control rod pattern optimization in boiling water reactors. Nucl. Sci. Eng. 2007, 157, 236–244. [Google Scholar] [CrossRef]
- Sobolev, A.V.; Gazetdinov, A.S.; Samokhin, D.S. Genetic algorithms for nuclear reactor fuel load and reload optimization problems. Nucl. Energy Technol. 2017, 3, 231–235. [Google Scholar] [CrossRef]
- Li, Z.; Wang, J.; Ding, M. A review on optimization methods for nuclear reactor fuel reloading analysis. Nucl. Eng. Des. 2022, 397, 111950. [Google Scholar] [CrossRef]
- Rowinski, M.K.; White, T.J.; Zhao, J. Small and Medium sized Reactors (SMR): A review of technology. Renew. Sustain. Energy Rev. 2015, 44, 643–656. [Google Scholar] [CrossRef]
- Arvanitidis, A.I.; Agarwal, V.; Alamaniotis, M. Nuclear-driven integrated energy systems: A state-of-the-art review. Energies 2023, 16, 4293. [Google Scholar] [CrossRef]
- Ali, M.S.; Sharma, A.; Joy, T.A.; Halim, M.A. A Comprehensive Review of Integrated Energy Management for Future Smart Energy System. Control Syst. Optim. Lett. 2024, 2, 43–51. [Google Scholar] [CrossRef]
- Bragg-Sitton, S.M.; Boardman, R.; Rabiti, C.; O’Brien, J. Reimagining future energy systems: Overview of the US program to maximize energy utilization via integrated nuclear-renewable energy systems. Int. J. Energy Res. 2020, 44, 8156–8169. [Google Scholar] [CrossRef]
- Azman, M.A.N.; Ali, N.S.M.; Sarkawi, M.S.; Sazali, M.A.; Basri, N.A. Nuclear fuel materials and its sustainability for low carbon energy system: A review. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2022; Volume 1231, p. 012016. [Google Scholar]
- Kumbhar, A.; Dhawale, P.G.; Kumbhar, S.; Patil, U.; Magdum, P. A comprehensive review: Machine learning and its application in integrated power system. Energy Rep. 2021, 7, 5467–5474. [Google Scholar] [CrossRef]
- Gabbar, H.A.; Adham, M.I.; Abdussami, M.R. Optimal planning of integrated nuclear-renewable energy system for marine ships using artificial intelligence algorithm. Energies 2021, 14, 3188. [Google Scholar] [CrossRef]
- Arvanitidis, A.I.; Alamaniotis, M. Integrating an Ensemble Reward System into an Off-Policy Reinforcement Learning Algorithm for the Economic Dispatch of Small Modular Reactor-Based Energy Systems. Energies 2024, 17, 2056. [Google Scholar] [CrossRef]
- Gabbar, H.A.; Adham, M.I.; Abdussami, M.R. Analysis of nuclear-renewable hybrid energy system for marine ships. Energy Rep. 2021, 7, 2398–2417. [Google Scholar] [CrossRef]
- Ghazi, Z.M.; Rizvi, S.W.F.; Shahid, W.M.; Abdulhameed, A.M.; Saleem, H.; Zaidi, S.J. An overview of water desalination systems integrated with renewable energy sources. Desalination 2022, 542, 116063. [Google Scholar] [CrossRef]
- Peakman, A.; Owen, H.; Abram, T. The core design of a Small Modular Pressurised Water Reactor for commercial marine propulsion. Prog. Nucl. Energy 2019, 113, 175–185. [Google Scholar] [CrossRef]
- Jones, D.; Snider, C.; Nassehi, A.; Yon, J.; Hicks, B. Characterising the Digital Twin: A systematic literature review. CIRP J. Manuf. Sci. Technol. 2020, 29, 36–52. [Google Scholar] [CrossRef]
- Stewart, R.; Treviño, E.; Shields, A.; Heaps, K.; Darrington, J.; Williams, Q.; Pope, C.; Scott, J.; Baker, B.; Palmer, J.; et al. The AGN-201 Digital Twin: A test bed for remotely monitoring nuclear reactors. Ann. Nucl. Energy 2025, 213, 111041. [Google Scholar] [CrossRef]
- Mengyan, H.; Xueyan, Z.; Cuiting, P.; Yixuan, Z.; Jun, Y. Current status of digital twin architecture and application in nuclear energy field. Ann. Nucl. Energy 2024, 202, 110491. [Google Scholar] [CrossRef]
- Daniell, J.; Kobayashi, K.; Alajo, A.; Alam, S.B. Digital twin-centered hybrid data-driven multi-stage deep learning framework for enhanced nuclear reactor power prediction. Energy AI 2025, 19, 100450. [Google Scholar] [CrossRef]
- Satu, P.; Jari, L.; Hanna, K.; Tomi, P.; Marja, L.; Tuisku-Tuuli, S. Virtual-Reality training solutions for nuclear power plant field operators: A scoping review. Prog. Nucl. Energy 2024, 169, 105104. [Google Scholar] [CrossRef]
- Hall, A.; Murray, P.; Boring, R.L.; Agarwal, V. Human-centered and explainable artificial intelligence in nuclear operations. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, Online, 8–13 September 2024; SAGE Publications: Sage, CA, USA; Los Angeles, CA, USA; Volume 68, pp. 1563–1568. [Google Scholar]
- Carvalho, P.V.; dos Santos, I.L.; Gomes, J.O.; Borges, M.R.; Guerlain, S. Human factors approach for evaluation and redesign of human–system interfaces of a nuclear power plant simulator. Displays 2008, 29, 273–284. [Google Scholar] [CrossRef]
- Martin, A.; Harbison, S.; Beach, K.; Cole, P. An Introduction to Radiation Protection; Crc Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Fei, T.; Zhong, Z.; Bays, S.E.; Heidet, F. Radiation Protection and Shielding Analysis of the Versatile Test Reactor. Nucl. Sci. Eng. 2022, 196 (Suppl. S1), 98–109. [Google Scholar] [CrossRef]
- Chandra, A.; Chakraborty, A. Exploring the role of large language models in radiation emergency response. J. Radiol. Prot. 2024, 44, 011510. [Google Scholar] [CrossRef]
- Zhang, K.; Li, L.; Xu, X.; Xin, R.; Xu, X.; Zhang, P. Intelligent Q&A System for Power Dispatching Based on Retrieval Augmented Generation. In Proceedings of the 2024 6th International Conference on Energy, Power and Grid (ICEPG), Guangzhou, China, 27–29 September 2024; IEEE: Piscataway, NJ, USA; pp. 1604–1608. [Google Scholar]
- Miles, P.R.; Cook, J.A.; Angers, Z.V.; Swenson, C.J.; Kiedrowski, B.C.; Mattingly, J.; Smith, R.C. Radiation source localization using surrogate models constructed from 3-D Monte Carlo transport physics simulations. Nucl. Technol. 2021, 207, 37–53. [Google Scholar] [CrossRef]
- Alamaniotis, M.; Heifetz, A.; Raptis, A.C.; Tsoukalas, L.H. Fuzzy-logic radioisotope identifier for gamma spectroscopy in source search. IEEE Trans. Nucl. Sci. 2013, 60, 3014–3024. [Google Scholar] [CrossRef]
- Gharibshahi, E.; Alamaniotis, M. Artificial Intelligence Detection System of Radioactive Nanocomposites in Liquid-Filled Containers for Nuclear Security. Nucl. Technol. 2024, 210, 868–883. [Google Scholar] [CrossRef]
- Ştefănescu, R.; Hite, J.; Cook, J.; Smith, R.C.; Mattingly, J. Surrogate-based robust design for a non-smooth radiation source detection problem. Algorithms 2019, 12, 113. [Google Scholar] [CrossRef]
- Maglaras, L.; Kantzavelou, I.; Ferrag, M.A. Digital transformation and cybersecurity of critical infrastructures. Appl. Sci. 2021, 11, 8357. [Google Scholar] [CrossRef]
- Wilson, C. Cyber threats to critical information infrastructure. In Cyberterrorism: Understanding, Assessment, and Response; Springer: New York, NY, USA, 2014; pp. 123–136. [Google Scholar]
- Ayodeji, A.; Mohamed, M.; Li, L.; Di Buono, A.; Pierce, I.; Ahmed, H. Cyber security in the nuclear industry: A closer look at digital control systems, networks and human factors. Prog. Nucl. Energy 2023, 161, 104738. [Google Scholar] [CrossRef]
- Salem, A.H.; Azzam, S.M.; Emam, O.E.; Abohany, A.A. Advancing cybersecurity: A comprehensive review of AI-driven detection techniques. J. Big Data 2024, 11, 105. [Google Scholar] [CrossRef]
- Campos, B.M.; Alamaniotis, M. Review of internal cyber attacks in nuclear facilities and an artificial neural network model for implementing internal cyberforensics. Nucl. Technol. Radiat. Prot. 2021, 36, 128–138. [Google Scholar] [CrossRef]
- Kaur, R.; Gabrijelčič, D.; Klobučar, T. Artificial intelligence for cybersecurity: Literature review and future research directions. Inf. Fusion 2023, 97, 101804. [Google Scholar] [CrossRef]
- Bokkena, B. Enhancing IT Security with LLM-Powered Predictive Threat Intelligence. In Proceedings of the 2024 5th International Conference on Smart Electronics and Communication (ICOSEC), Trichy, India, 18–20 September 2024; IEEE: Piscataway, NJ, USA; pp. 751–756. [Google Scholar]
- Kim, S.; Kim, S.; Nam, K.H.; Kim, S.; Kwon, K.H. Cyber security strategy for nuclear power plant through vital digital assets. In Proceedings of the 2019 International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas, NV, USA, 5–7 December 2019; IEEE: Piscataway, NJ, USA; pp. 224–226. [Google Scholar]
- Mertzimekis, T.J.; Nomikou, P.; Petra, E.; Batista, P.; Cabecinhas, D.; Pascoal, A.; Sebastiño, L.; Escartín, J.; Kebkal, K.; Karantzalos, K.; et al. Radioactivity monitoring in ocean ecosystems (RAMONES). In Proceedings of the Conference on Information Technology for Social Good, Rome, Italy, 9–11 September 2021; pp. 216–220. [Google Scholar]
- Chen, M.; Qi, C.; Wu, X. Applications of Artificial Intelligence in Oceanic Nuclear Contamination Management. In Proceedings of the 2024 IEEE Conference on Artificial Intelligence (CAI), Singapore, 25–27 June 2024; IEEE: Piscataway, NJ, USA; pp. 210–215. [Google Scholar]
- Simonsen, E.; Osvalder, A.L. Aspects of the nuclear power plant control room system contributing to safe operation. Procedia Manuf. 2015, 3, 1248–1255. [Google Scholar] [CrossRef]
- Lagari, P.L.; Nasiakou, A.; Alamaniotis, M. Evaluation of human machine interface (HMI) on a digital analog control room in nuclear power plants using a fuzzy logic approach. Int. J. Monit. Surveill. Technol. Res. 2016, 4, 50–68. [Google Scholar] [CrossRef]
- Porthin, M.; Liinasuo, M.; Kling, T. Effects of digitalization of nuclear power plant control rooms on human reliability analysis–A review. Reliab. Eng. Syst. Saf. 2020, 194, 106415. [Google Scholar] [CrossRef]
- Liao, J.; Ou, X.; Zhao, W.; Li, X.; Yu, Q. Research on Intelligent Operation Support Technology for 5G Nuclear-Powered Ships. In Proceedings of the 2021 3rd International Conference on Artificial Intelligence and Advanced Manufacture (AIAM), Manchester, UK, 23–25 October 2021; IEEE: Piscataway, NJ, USA; pp. 500–504. [Google Scholar]
- Sethu, M.; Titu, N.A.; Hu, D.; Madadi, M.; Coble, J.; Boring, R.; Blache, K.; Agarwal, V.; Yadav, V.; Khojandi, A. Using artificial intelligence to mitigate human factor errors in nuclear power plants: A review. In Proceedings of the 12th Nuclear Plant Instrumentation, Control and Human-Machine Interface Technologies, Online, 14–17 June 2021; pp. 129–141. [Google Scholar]
- Shorthill, T.H.; Chen, E.; Kim, J.; Wang, C.; Athe, P.; Bao, H.; Dinh, N.; Lawrence, S. An Integrated Framework for Risk Assessment of Safety-Related Digital Instrumentation and Control Systems in Nuclear Power Plants: Methodology Advancement and Application; No. INL/RPT-24-80888-Rev000; Idaho National Laboratory (INL): Idaho Falls, ID, USA, 2024. [Google Scholar]
- Alamaniotis, M.; Fevgas, A. Intelligent Management of Integrated Energy Systems in Remote Maritime Environments utilizing Fuzzy Modes. In Proceedings of the Mediterranean Conference on Power Generation, Transmission, Distribution, and Energy Conversion (MEDPOWER 2024), Athens, Greece, 3–6 November 2024; pp. 1–6. [Google Scholar]
- Narula, K. Ships as workhorses of energy trade. The Maritime Dimension of Sustainable Energy Security; Springer: Berlin/Heidelberg, Germany, 2019; pp. 95–115. [Google Scholar]
- Mischos, S.; Dalagdi, E.; Vrakas, D. Intelligent energy management systems: A review. Artif. Intell. Rev. 2023, 56, 11635–11674. [Google Scholar] [CrossRef]
- Nti, I.K.; Teimeh, M.; Nyarko-Boateng, O.; Adekoya, A.F. Electricity load forecasting: A systematic review. J. Electr. Syst. Inf. Technol. 2020, 7, 13. [Google Scholar] [CrossRef]
- Winn, J.I.; Govern, K.H. Maritime pirates, sea robbers, and terrorists: New approaches to emerging threats. Homel. Secur. Rev. 2008, 2, 131. [Google Scholar]
- Helmick, J.S. Maritime piracy and the supply chain. In Global Supply Chain Security: Emerging Topics in Research, Practice and Policy; Springer: Berlin/Heidelberg, Germany, 2015; pp. 17–34. [Google Scholar]
- Li, H.; Yang, Z. Towards safe navigation environment: The imminent role of spatio-temporal pattern mining in maritime piracy incidents analysis. Reliab. Eng. Syst. Saf. 2023, 238, 109422. [Google Scholar] [CrossRef]
- Vaněk, O.; Jakob, M.; Hrstka, O.; Pěchouček, M. Agent-based model of maritime traffic in piracy-affected waters. Transp. Res. Part C: Emerg. Technol. 2013, 36, 157–176. [Google Scholar] [CrossRef]
- Carlton, J.S.; Smart, R.; Jenkins, V. The nuclear propulsion of merchant ships: Aspects of engineering, science and technology. J. Mar. Eng. Technol. 2011, 10, 47–59. [Google Scholar] [CrossRef]
- Reistad, O.; Soerlie, A. Non-proliferation and Other Security-related Issues Associated with the Dismantling of Nuclear Vessels in North-West Russia. In Remaining Issues in the Decommissioning of Nuclear Powered Vessels: Including Issues Related to the Environmental Remediation of the Supporting Infrastructure; Springer: Dordrecht, The Netherlands, 2003; pp. 79–90. [Google Scholar]
- Okochi, M.; Haberfield, M.; Hemmi, S.; Takemoto, T. Safety and Security Measures for the Maritime Transport of Nuclear Material: Technical Standards and Physical Protection. Trans. Navig. 2021, 6, 97–107. [Google Scholar]
- Earle, O.K. Options for the handling and storage of nuclear vessel spent fuel. In Remaining Issues in the Decommissioning of Nuclear Powered Vessels: Including Issues Related to the Environmental Remediation of the Supporting Infrastructure; Springer: Dordrecht, The Netherlands, 2002; pp. 285–295. [Google Scholar]
- Jendoubi, C.; Asad, A. A Survey of Artificial Intelligence Applications in Nuclear Power Plants. IoT 2024, 5, 666–691. [Google Scholar] [CrossRef]
- Tambouratzis, T.; Giannatsis, J.; Kyriazis, A.; Siotropos, P. Applying the computational intelligence paradigm to nuclear power plant operation: A review (1990–2015). In Research Anthology on Artificial Intelligence Applications in Security; IGI Global: Hershey, PA, USA, 2021; pp. 1507–1578. [Google Scholar]
Application Area | AI Solutions |
---|---|
Monitoring and Maintenance |
|
Core Refueling Optimization |
|
On-Ship Nuclear Integrated Energy Systems Management |
|
Digital Twins for Nuclear-Powered Maritime Vessel Operations |
|
Radiation Protection |
|
Safeguarding and Security of Nuclear Materials |
|
Cybersecurity |
|
Nuclear Contamination Management |
|
Onboard Digital Panel Operation |
|
Electricity Supply at Ports |
|
Secure Informative Navigation Systems |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alamaniotis, M.; Ipiotis, K. Artificial Intelligence as Enabler for Adoption of Sustainable Nuclear-Powered Maritime Ships: Challenges and Opportunities. Sustainability 2025, 17, 3654. https://doi.org/10.3390/su17083654
Alamaniotis M, Ipiotis K. Artificial Intelligence as Enabler for Adoption of Sustainable Nuclear-Powered Maritime Ships: Challenges and Opportunities. Sustainability. 2025; 17(8):3654. https://doi.org/10.3390/su17083654
Chicago/Turabian StyleAlamaniotis, Miltiadis, and Konstantinos Ipiotis. 2025. "Artificial Intelligence as Enabler for Adoption of Sustainable Nuclear-Powered Maritime Ships: Challenges and Opportunities" Sustainability 17, no. 8: 3654. https://doi.org/10.3390/su17083654
APA StyleAlamaniotis, M., & Ipiotis, K. (2025). Artificial Intelligence as Enabler for Adoption of Sustainable Nuclear-Powered Maritime Ships: Challenges and Opportunities. Sustainability, 17(8), 3654. https://doi.org/10.3390/su17083654