Exploring the Spatiotemporal Influence of Community Regeneration on Urban Vitality: Unraveling Spatial Nonstationarity with Difference-in-Differences and Nonlinear Effect with Gradient Boosting Decision Tree Regression
Abstract
:1. Introduction
- (1)
- To what extent did the community regeneration influence urban vitality in terms of social perception and spatial behavior?
- (2)
- How do community regeneration interventions impact urban vitality across different districts at varying stages of development?
- (3)
- Which built environment elements exhibit significant correlations with changes in urban vitality following regeneration efforts?
2. Literature Review
2.1. Regeneration Efficiency Assessment via Urban Vitality
2.2. Assessing OCRE via Multisource Data
2.3. Research Gaps and Framework
3. Methods and Data
3.1. Study Area
3.2. Research Methods
3.2.1. Spatial Qualitative Analysis Methods
- (1)
- Place-based: place agglomeration
- (2)
- People-based: individual agglomeration
- (3)
- Social Perception
- (4)
- Principal component analysis (PCA)
3.2.2. DID Model
3.2.3. Spatial Quantitative Analysis
- (1)
- Image semantic segmentation
- (2)
- GBDT
3.3. Data Collection
4. Results
4.1. Qualitative Analysis Results
4.1.1. Spatial Analysis via Spatial Behavior and Social Perception
4.1.2. PCA Analysis Results
4.2. DID Analysis Results
4.2.1. Parallel Trend Test
4.2.2. Reliability Test of DID Model
4.3. A Case Study on the Applicability of Gusu District as a Sample
4.3.1. Image Semantic Segmentation Results
4.3.2. GBDT Analysis Results
5. Discussion
5.1. To What Extent Did the Community Regeneration Influence Urban Vitality Regarding Social Perception and Spatial Behavior?
5.2. How Consistent Are the Impacts of Community Regeneration Interventions on Urban Vitality Across Districts at Different Stages of Development?
5.3. Which Elements of the Built Environment Demonstrate Significant Correlations with Changes in Urban Vitality Following Community Regeneration Efforts?
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kalfas, D.; Kalogiannidis, S.; Chatzitheodoridis, F.; Toska, E. Urbanization and Land Use Planning for Achieving the Sustainable Development Goals (SDGs): A Case Study of Greece. Urban Sci. 2023, 7, 43. [Google Scholar] [CrossRef]
- State Council of the PRC Notice of the General Office of the Ministry of Housing and Urban Rural Development on Carrying out the First Batch of Urban Renewal Pilot Work. Available online: https://www.gov.cn/zhengce/zhengceku/2021-11/06/content_5649443.htm (accessed on 10 December 2024).
- Jiang, C.; Xiao, Y.; Cao, H. Co-Creating for Locality and Sustainability: Design-Driven Community Regeneration Strategy in Shanghai’s Old Residential Context. Sustainability 2020, 12, 2997. [Google Scholar] [CrossRef]
- Kim, G.; Newman, G.; Jiang, B. Urban Regeneration: Community Engagement Process for Vacant Land in Declining Cities. Cities 2020, 102, 102730. [Google Scholar] [CrossRef] [PubMed]
- Mayer, B.; Joshweseoma, L.; Sehongva, G. Environmental Risk Perceptions and Community Health: Arsenic, Air Pollution, and Threats to Traditional Values of the Hopi Tribe. J. Community Health 2019, 44, 896–902. [Google Scholar] [CrossRef]
- Winston, N. Urban Regeneration for Sustainable Development: The Role of Sustainable Housing? Eur. Plan. Stud. 2009, 17, 1781–1796. [Google Scholar] [CrossRef]
- Bevilacqua, C.; Calabrò, J.; Maione, C. The Role of Community in Urban Regeneration: Mixed Use Areas Approach in USA. Proceedings REAL CORP 2013. pp. 1361–1365. Available online: https://www.corp.at/archive/CORP2013_194.pdf (accessed on 10 December 2024).
- Wang, X.; Aoki, N. Paradox between Neoliberal Urban Redevelopment, Heritage Conservation, and Community Needs: Case Study of a Historic Neighbourhood in Tianjin, China. Cities 2019, 85, 156–169. [Google Scholar] [CrossRef]
- Zhuang, T. Urban Renewal Decision—Making in China. 2020. ISBN 9789463663120. Available online: https://journals.open.tudelft.nl/abe/article/view/5247 (accessed on 10 December 2024).
- He, X.; Lv, F.; Wei, X. Research on the Renewal Strategy of Old Urban Communities Based on Multi Objective Collaboration. West. J. Hum. Settl. Environ. 2021, 102–111. [Google Scholar] [CrossRef]
- Korkmaz, C.; Balaban, O. Sustainability of Urban Regeneration in Turkey: Assessing the Performance of the North Ankara Urban Regeneration Project. Habitat Int. 2020, 95, 102081. [Google Scholar] [CrossRef]
- Bianchi, C.; Bereciartua, P.; Vignieri, V.; Cohen, A. Enhancing Urban Brownfield Regeneration to Pursue Sustainable Community Outcomes through Dynamic Performance Governance. Int. J. Public Adm. 2021, 44, 100–114. [Google Scholar] [CrossRef]
- Yao, X.; Ye, B.; Lan, Y.; Lin, Z.; Zhu, Z.; Yang, F.; Zeng, X. Diurnal Contrast of Urban Park Cooling Effects in a “Furnace City” Using Multi-Source Geospatial Data and Optimal Parameters-Based Geographical Detector Model. Sustain. Cities Soc. 2024, 114, 105765. [Google Scholar] [CrossRef]
- Lin, Z.; Xu, H.; Yao, X.; Yang, C.; Ye, D. How Does Urban Thermal Environmental Factors Impact Diurnal Cycle of Land Surface Temperature? A Multi-Dimensional and Multi-Granularity Perspective. Sustain. Cities Soc. 2024, 101, 105190. [Google Scholar] [CrossRef]
- Yao, X.; Yu, K.; Zeng, X.; Lin, Y.; Ye, B.; Shen, X.; Liu, J. How Can Urban Parks Be Planned to Mitigate Urban Heat Island Effect in “Furnace Cities”? An Accumulation Perspective. J. Clean. Prod. 2022, 330, 129852. [Google Scholar] [CrossRef]
- Anrong, D.; Jian, X.M. Summary of Research on the Application of Big Data in Urban Planning. Geogr. Inf. World 2019, 26, 8. [Google Scholar]
- Liang, Z. Assessment of the Construction of a Climate Resilient City: An Empirical Study Based on the Difference in Differences Model. Int. J. Environ. Res. Public Health 2021, 18, 2082. [Google Scholar] [CrossRef]
- Li, Y.; Cheshmehzangi, A.; He, B.-J. A Framework of Urban Renewal for Leisure Space in Neighborhood Streets: A Case Study of Shazheng Street in Chongqing, China. In Proceedings of the International Conference on Urban Climate, Sustainability and Urban Design, Mianyang, China, 11–12 November 2023; Springer: Berlin/Heidelberg, Germany, 2023; pp. 693–705. [Google Scholar]
- Li, C.; Zhao, J.; Hou, W. Nonlinear Effects of Landscape Patterns on Ecosystem Services at Multiple Scales Based on Gradient Boosting Decision Tree Models. Remote Sens. 2023, 15, 1919. [Google Scholar] [CrossRef]
- Jun, M.-J. A Comparison of a Gradient Boosting Decision Tree, Random Forests, and Artificial Neural Networks to Model Urban Land Use Changes: The Case of the Seoul Metropolitan Area. Int. J. Geogr. Inf. Sci. 2021, 35, 2149–2167. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, J.; Wang, H.; Yang, D. From Policy Synergy to Equitable Greenspace: Unveiling the Multifaceted Effects of Regional Cooperation upon Urban Greenspace Exposure Inequality in China’s Megacity-Regions. Appl. Geogr. 2025, 174, 103472. [Google Scholar] [CrossRef]
- Jinliu, C.; Pengcheng, L.; Haoqi, W. Assessment of Influential Factors on Commute and Life Satisfaction in a Historic Campus-Adjacent Environment: Evidence from a Comparison Study of Twin Cities. J. Urban Plan. Dev. 2025, 151, 4024065. [Google Scholar] [CrossRef]
- Figueiredo, Y.D.d.S.; Prim, M.A.; Dandolini, G.A. Urban Regeneration in the Light of Social Innovation: A Systematic Integrative Literature Review. Land Use Policy 2022, 113, 105873. [Google Scholar] [CrossRef]
- Canton, H. United Nations Human Settlements Programme—UN-Habitat. In The Europa Directory of International Organizations 2021; Routledge: London, UK, 2021; pp. 234–240. [Google Scholar]
- Van Orden, G.C.; Pennington, B.F.; Stone, G.O. Word Identification in Reading and the Promise of Subsymbolic Psycholinguistics. Psychol. Rev. 1990, 97, 488. [Google Scholar] [CrossRef]
- Cao, J. The Association between Light Rail Transit and Satisfactions with Travel and Life: Evidence from Twin Cities. Transportation 2013, 40, 921–933. [Google Scholar] [CrossRef]
- Cao, X.; Wang, D. Environmental Correlates of Residential Satisfaction: An Exploration of Mismatched Neighborhood Characteristics in the Twin Cities. Landsc. Urban Plan. 2016, 150, 26–35. [Google Scholar] [CrossRef]
- Fan, L.; Cao, J.; Hu, M.; Yin, C. Exploring the Importance of Neighborhood Characteristics to and Their Nonlinear Effects on Life Satisfaction of Displaced Senior Farmers. Cities 2022, 124, 103605. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, Y. Travel Satisfaction and Travel Well-Being: Which Is More Related to Travel Choice Behaviour in the Post COVID-19 Pandemic? Evidence from Public Transport Travellers in Xi’an, China. Transp. Res. Part A Policy Pract. 2022, 166, 218–233. [Google Scholar] [CrossRef]
- Song, H.; Chen, J.; Li, P. Decoding the Cultural Heritage Tourism Landscape and Visitor Crowding Behavior from the Multidimensional Embodied Perspective : Insights from Chinese Classical Gardens. Tour. Manag. 2025, 110, 105180. [Google Scholar] [CrossRef]
- Hu, J.; Chen, J.; Li, P.; Yan, J.; Wang, H. Systematic Review of Socially Sustainable and Community Regeneration: Research Traits, Focal Points, and Future Trajectories. Buildings 2024, 14, 881. [Google Scholar] [CrossRef]
- Zhao, M.; Liu, N.; Chen, J.; Wang, D.; Li, P.; Yang, D.; Zhou, P. Navigating Post-COVID-19 Social–Spatial Inequity: Unravelling the Nexus between Community Conditions, Social Perception, and Spatial Differentiation. Land 2024, 13, 563. [Google Scholar] [CrossRef]
- Chen, J.; Gan, W.; Liu, N.; Li, P.; Wang, H.; Zhao, X.; Yang, D. Community Quality Evaluation for Socially Sustainable Regeneration: A Study Using Multi-Sourced Geospatial Data and AI-Based Image Semantic Segmentation. ISPRS Int. J. Geo-Inf. 2024, 13, 167. [Google Scholar] [CrossRef]
- Hoggett, P. Contested Communities: Experiences, Struggles, Policies; Policy Press: Bristol, UK, 1997; ISBN 1861340362. [Google Scholar]
- Chen, J.; Pellegrini, P.; Xu, Y.; Ma, G.; Wang, H.; An, Y.; Shi, Y.; Feng, X. Evaluating Residents’ Satisfaction before and after Regeneration. The Case of a High-Density Resettlement Neighbourhood in Suzhou, China. Cogent Soc. Sci. 2022, 8, 2144137. [Google Scholar] [CrossRef]
- Chen, J.; Ren, K.; Li, P.; Wang, H.; Zhou, P. Toward Effective Urban Regeneration Post-COVID-19: Urban Vitality Assessment to Evaluate People Preferences and Place Settings Integrating LBSNs and POI. Environ. Dev. Sustain. 2024. [Google Scholar] [CrossRef]
- Chen, J.; Li, P.; Wang, H. MSPA-Based Collaborative Evaluation and Planning Governance of Territory and Natural Environment in Metropolitan Agglomerations—A Case Study of EGIDDZ in Yangtze River Delta. J. Resour. Ecol. 2024, 15, 1263–1273. [Google Scholar] [CrossRef]
- Zhang, T.; Liu, Y.; Rao, Y.; Li, X.; Zhao, Q. Optimal Design of Building Environment with Hybrid Genetic Algorithm, Artificial Neural Network, Multivariate Regression Analysis and Fuzzy Logic Controller. Build. Environ. 2020, 175, 106810. [Google Scholar] [CrossRef]
- Asadi, S.; Amiri, S.S.; Mottahedi, M. On the Development of Multi-Linear Regression Analysis to Assess Energy Consumption in the Early Stages of Building Design. Energy Build. 2014, 85, 246–255. [Google Scholar] [CrossRef]
- Boarnet, M.G.; Greenwald, M.; McMillan, T.E. Walking, Urban Design, and Health: Toward a Cost-Benefit Analysis Framework. J. Plan. Educ. Res. 2008, 27, 341–358. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, X.; Wang, H.; Yan, J.; Yang, D.; Xie, K. Portraying Heritage Corridor Dynamics and Cultivating Conservation Strategies Based on Environment Spatial Model: An Integration of Multi-Source Data and Image Semantic Segmentation. Herit. Sci. 2024, 12, 419. [Google Scholar] [CrossRef]
- Yang, N.; Chen, J.; Ban, L.; Li, P.; Wang, H. Pre-Planning and Post-Evaluation Approaches to Sustainable Vernacular Architectural Practice: A Research-by-Design Study to Building Renovation in Shangri-La’s Shanpian House, China. Sustainability 2024, 16, 9568. [Google Scholar] [CrossRef]
- Xu, Q.; Jiao, R.J.; Yang, X.; Helander, M.; Khalid, H.M.; Opperud, A. An Analytical Kano Model for Customer Need Analysis. Des. Stud. 2009, 30, 87–110. [Google Scholar] [CrossRef]
- Turel, H.S.; Yigit, E.M.; Altug, I. Evaluation of Elderly People’s Requirements in Public Open Spaces: A Case Study in Bornova District (Izmir, Turkey). Build. Environ. 2007, 42, 2035–2045. [Google Scholar] [CrossRef]
- Przybylowski, A.; Stelmak, S.; Suchanek, M. Mobility Behaviour in View of the Impact of the COVID-19 Pandemic—Public Transport Users in Gdansk Case Study. Sustainability 2021, 13, 364. [Google Scholar] [CrossRef]
- Zhao, X.; Chen, J.; Li, J.; Wang, H.; Zhang, X.; Yu, F. Unraveling the Renewal Priority of Urban Heritage Communities via Macro-Micro Dimensional Assessment—A Case Study of Nanjing City, China. Sustain. Cities Soc 2025, 124, 106317. [Google Scholar] [CrossRef]
- Deakin, M. A Community-Based Approach to Sustainable Urban Regeneration. J. Urban Technol. 2009, 16, 91–112. [Google Scholar] [CrossRef]
- Yang, D.; Lin, Q.; Li, H.; Chen, J.; Ni, H.; Li, P.; Hu, Y.; Wang, H. Unraveling Spatial Nonstationary and Nonlinear Dynamics in Life Satisfaction: Integrating Geospatial Analysis of Community Built Environment and Resident Perception via MGWR, GBDT, and XGBoost. ISPRS Int. J. Geoinf. 2025, 14, 131. [Google Scholar] [CrossRef]
- Lin, H.; Wen, H.; Zhang, D.-Y.; Yang, L.; Hong, X.-C.; Wen, C. How Social Media Data Mirror Spatio-Temporal Behavioral Patterns of Tourists in Urban Forests: A Case Study of Kushan Scenic Area in Fuzhou, China. Forests 2024, 15, 1016. [Google Scholar] [CrossRef]
- Sdino, L.; Rosasco, P.; Lombardini, G. The Evaluation of Urban Regeneration Processes. In Regeneration of the Built Environment from a Circular Economy Perspective; Della Torre, S., Cattaneo, S., Lenzi, C., Zanelli, A., Eds.; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Zhu, L.; Dong, S.; Chen, X.; Zhou, Q.; Li, F.; Wang, G. Does Social Distancing Affect the Stress Reduction and Attention Restoration of College Students in Different Natural Settings? Sustainability 2024, 16, 3274. [Google Scholar] [CrossRef]
- Zhang, A.; Li, W.; Wu, J.; Lin, J.; Chu, J.; Xia, C. How Can the Urban Landscape Affect Urban Vitality at the Street Block Level? A Case Study of 15 Metropolises in China. Environ. Plan. B Urban Anal. City Sci. 2021, 48, 1245–1262. [Google Scholar] [CrossRef]
- Biljecki, F.; Ito, K. Street View Imagery in Urban Analytics and GIS: A Review. Landsc. Urban Plan. 2021, 215, 104217. [Google Scholar] [CrossRef]
- Zhang, L.; Ye, Y.; Zeng, W.; Chiaradia, A. A Systematic Measurement of Street Quality through Multi-Sourced Urban Data: A Human-Oriented Analysis. Int. J. Environ. Res. Public Health 2019, 16, 1782. [Google Scholar] [CrossRef]
- Liu, K.; Yin, L.; Lu, F.; Mou, N. Visualizing and Exploring POI Configurations of Urban Regions on POI-Type Semantic Space. Cities 2020, 99, 102610. [Google Scholar] [CrossRef]
- Hu, Y.; Han, Y. Identification of Urban Functional Areas Based on POI Data: A Case Study of the Guangzhou Economic and Technological Development Zone. Sustainability 2019, 11, 1385. [Google Scholar] [CrossRef]
- Wang, D.; Zhong, W.; Yin, Z.; Xie, D.; Luo, X. Spatio-Temporal Dynamics of Population in Shanghai: A Case Study Based on Cell Phone Signaling Data. Adv. Geogr. Inf. Sci. 2018, 239–254. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, Z.; Lu, S. Exploring Spatial-Temporal Patterns of Urban Human Mobility Hotspots. Sustainability 2016, 8, 674. [Google Scholar] [CrossRef]
- Lee, K.S.; You, S.Y.; Eom, J.K.; Song, J.; Min, J.H. Urban Spatiotemporal Analysis Using Mobile Phone Data: Case Study of Medium- and Large-Sized Korean Cities. Habitat Int. 2018, 73, 6–15. [Google Scholar] [CrossRef]
- Tu, W.; Cao, J.; Yue, Y.; Shaw, S.L.; Zhou, M.; Wang, Z.; Chang, X.; Xu, Y.; Li, Q. Coupling Mobile Phone and Social Media Data: A New Approach to Understanding Urban Functions and Diurnal Patterns. Int. J. Geogr. Inf. Sci. 2017, 31, 2331–2358. [Google Scholar] [CrossRef]
- Calabrese, F.; Diao, M.; Di Lorenzo, G.; Ferreira, J.; Ratti, C. Understanding Individual Mobility Patterns from Urban Sensing Data: A Mobile Phone Trace Example. Transp. Res. Part C Emerg. Technol. 2013, 26, 301–313. [Google Scholar] [CrossRef]
- Hui, E.C.; Chen, T.; Lang, W.; Ou, Y. Urban Community Regeneration and Community Vitality Revitalization through Participatory Planning in China. Cities 2021, 110, 103072. [Google Scholar] [CrossRef]
- Pan, L.; Gan, W.; Chen, J.; Ren, K. An Integrated Model for Constructing Urban Ecological Networks and Identifying the Ecological Protection Priority: A Case Study of Wujiang District, Suzhou. Sustainability 2023, 15, 4487. [Google Scholar] [CrossRef]
- Chen, J.; Wang, H.; Yang, Z.; Li, P.; Ma, G.; Zhao, X. Comparative Spatial Vitality Evaluation of Traditional Settlements Based on SUF: Taking Anren Ancient Town’s Urban Design as an Example. Sustainability 2023, 15, 8178. [Google Scholar] [CrossRef]
- Middel, A.; Lukasczyk, J.; Zakrzewski, S.; Arnold, M.; Maciejewski, R. Urban Form and Composition of Street Canyons: A Human-Centric Big Data and Deep Learning Approach. Landsc. Urban Plan. 2019, 183, 122–132. [Google Scholar] [CrossRef]
- Fan, F.; Zhang, X. Transformation Effect of Resource-Based Cities Based on PSM-DID Model: An Empirical Analysis from China. Environ. Impact Assess. Rev. 2021, 91, 106648. [Google Scholar] [CrossRef]
- Yoo, S.; Kumagai, J.; Sho, K.; Managi, S. Impact of High-Speed Railway on Gentrification and Regional Inequality in Japan. Transp. Res. Part D Transp. Environ. 2024, 134, 104346. [Google Scholar] [CrossRef]
- Yuan, L.; Sho, K.; Eom, S.; Nishi, H.; Hasegawa, D.; Zhao, H.; Aoki, T.; Zhu, J.; Matsuo, K.; Masumura, A. Changes in Visitor Behaviour across COVID-19 Pandemic: Unveiling Urban Visitation Dynamics and Non-Linear Relationships with the Built Environment Using Mobile Big Data. Habitat Int. 2024, 154, 103216. [Google Scholar] [CrossRef]
- Li, X.; Zhang, F.; Hui, E.C.; Lang, W. Collaborative Workshop and Community Participation: A New Approach to Urban Regeneration in China. Cities 2020, 102, 102743. [Google Scholar] [CrossRef]
- Cabuk, S.N.; Cabuk, A.; Bakış, R. Landscape Based Urbanism Enriched with Geospatial Understanding against Landscape Urbanism: Regeneration Project Proposal for Antakya City. Afr. J. Agric. Res. 2013, 8, 832–843. [Google Scholar] [CrossRef]
- Kusumaningdyah, N.H.; Ratri, W. Evaluating Human-Centered Design Methods as an Approach for Inclusive Green Design: Case Study Kampung Kota Surakarta. IOP Conf. Ser. Earth Environ. Sci. 2021, 780, 012030. [Google Scholar] [CrossRef]
- Yin, C.; Zhao, W.; Cherubini, F.; Pereira, P. Integrate Ecosystem Services into Socio-Economic Development to Enhance Achievement of Sustainable Development Goals in the Post-Pandemic Era. Geogr. Sustain. 2021, 2, 68–73. [Google Scholar] [CrossRef]
- Liao, C.; Nong, L.; Wu, Y.-F.; Wu, Y.-T.; Ye, J.-H. The Relationships between University Students’ Physical Activity Needs, Involvement, Flow Experience and Sustainable Well-Being in the Post-Pandemic Era. Sustainability 2023, 15, 8719. [Google Scholar] [CrossRef]
- Suzhou Municipal Bureau Statistics. Suzhou Statistical Yearbook 2021. Available online: https://www.suzhou.gov.cn/sztjj/tjnj/2021/zk/indexee.htm (accessed on 10 December 2024).
- Wang, L.; Shen, J.; Chung, C.K.L. City Profile: Suzhou-a Chinese City under Transformation. Cities 2015, 44, 60–72. [Google Scholar] [CrossRef]
- Ding, L.; Zhang, Y.; Li, Y. A Novel Multi-Dimensional Evaluation Framework and Spatiotemporal Analysis of Shipping Cities Based on Entropy-Weighted TOPSIS Method. J. Knowl. Econ. 2024, 1–32. [Google Scholar] [CrossRef]
- Zhang, M.; Kukadia, N. Metrics of Urban Form and the Modifiable Areal Unit Problem. Transp. Res. Rec. 2005, 1902, 71–79. [Google Scholar] [CrossRef]
- Jelinski, D.E.; Wu, J. The Modifiable Areal Unit Problem and Implications for Landscape Ecology. Landsc. Ecol. 1996, 11, 129–140. [Google Scholar] [CrossRef]
- Wang, Y.; Di, Q. Modifiable Areal Unit Problem and Environmental Factors of COVID-19 Outbreak. Sci. Total Environ. 2020, 740, 139984. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, J.; Luo, K.; Liang, Y.; Wang, S. Exploring the Spillover Effects of Urban Renewal on Local House Prices Using Multi-Source Data and Machine Learning: The Case of Shenzhen, China. Land 2022, 11, 1439. [Google Scholar] [CrossRef]
- Fan, Y.; Fu, Y.; Qian, Z. Time-Varying and Land Use-Induced Spillover Effects of Urban Redevelopment: Evidence from Hong Kong. Cities 2024, 146, 104760. [Google Scholar] [CrossRef]
- Bardaka, E.; Delgado, M.S.; Florax, R.J.G.M. Causal Identification of Transit-Induced Gentrification and Spatial Spillover Effects: The Case of the Denver Light Rail. J. Transp. Geogr. 2018, 71, 15–31. [Google Scholar] [CrossRef]
- Jin, X.; Long, Y.; Sun, W.; Lu, Y.; Yang, X.; Tang, J. Evaluating Cities’ Vitality and Identifying Ghost Cities in China with Emerging Geographical Data. Cities 2017, 63, 98–109. [Google Scholar] [CrossRef]
- Dye, K.; Mills, A.J.; Weatherbee, T. Maslow: Man Interrupted: Reading Management Theory in Context. Manag. Decis. 2005, 43, 1375–1395. [Google Scholar] [CrossRef]
- Gaines, L.K.; Van Tubergen, N.; Paiva, M.A. Police Officer Perceptions of Promotion as a Source of Motivation. J. Crim. Justice 1984, 12, 265–275. [Google Scholar] [CrossRef]
- BenSaïda, A. Herding Effect on Idiosyncratic Volatility in US Industries. Financ. Res. Lett. 2017, 23, 121–132. [Google Scholar] [CrossRef]
- Chen, C.-C.; Chuang, M.-C. Integrating the Kano Model into a Robust Design Approach to Enhance Customer Satisfaction with Product Design. Int. J. Prod. Econ. 2008, 114, 667–681. [Google Scholar] [CrossRef]
- Dosen, A.S.; Ostwald, M.J. Prospect and Refuge Theory: Constructing a Critical Definition for Architecture and Design. Int. J. Des. Soc. 2013, 6, 9. [Google Scholar] [CrossRef]
- Veenhoven, R. Is Happiness a Trait? Tests of the Theory That a Better Society Does Not Make People Any Happier. Soc. Indic. Res. 1994, 32, 101–160. [Google Scholar] [CrossRef]
- Mouratidis, K.; Poortinga, W. Built Environment, Urban Vitality and Social Cohesion: Do Vibrant Neighborhoods Foster Strong Communities? Landsc. Urban Plan. 2020, 204, 103951. [Google Scholar] [CrossRef]
- Yue, W.; Chen, Y.; Zhang, Q.; Liu, Y. Spatial Explicit Assessment of Urban Vitality Using Multi-Source Data: A Case of Shanghai, China. Sustainability 2019, 11, 638. [Google Scholar] [CrossRef]
Item | Description and Source | Quantity | Time |
---|---|---|---|
Community basic information | House sale price in RMB/community construction time/height of community buildings/community floor area ratio/community greenery rate. Accessed from: https://anjuke.com, accessed on 5 April 2024. | 5917 pieces | 2019–2023 |
Social media data | Weibo check-in data with text and geo-location. Accessed from: https://weibo.com, accessed on 5 April 2024. | 359,841 pieces | 2019–2023 |
POI data | Building outline/urban park green space/spatial distribution of public facilities/public transportation services. Accessed from: https://lbs.amap.com/, accessed on 5 April 2024. | 674,794 polygons | 2019–2023 |
Street view data | Panoramic images, geographic location information, street names, and building information. Accessed from: https://lbs.amap.com/, accessed on 5 April 2024. | 7263 images | 2019/2023 |
Vitality | Range | Model 1 (Suzhou) | Model 2 (Gusu) | Model 3 (Xiangcheng) | Model 4 (SIP) | Model 5 (SND) | Model 6 (Wuzhong) | Model 7 (Wujiang) |
---|---|---|---|---|---|---|---|---|
19 | <0.90 | 210 (/) | 57 (27.1%) | 12 (5.7%) | 31 (14.8%) | 24 (11.9%) | 54 (25.7%) | 32 (15.2%) |
[0.90, 1.86] | 14 (/) | 7 (50.0%) | / | 2 (14.3%) | 2 (14.3%) | 3 (21.4%) | / | |
[1.87, 2.80] | 1 (/) | / | / | / | 1 (100.0%) | / | / | |
>2.80 | 1 (/) | 1 (100.0%) | / | / | / | / | / | |
21 | <0.80 | 211 (/) | 58 (27.5%) | 12 (5.7%) | 32 (15.2%) | 24 (11.5%) | 32 (15.2%) | 32 (15.2%) |
[0.81, 1.63] | 12 (/) | 5 (41.7%) | / | 1 (8.3%) | 2 (14.3%) | / | / | |
[1.64, 2.50] | 2 (/) | 1 (50%) | / | / | 1 (100.0%) | / | / | |
>2.50 | 1 (/) | 1 (100.0%) | / | / | / | / | / | |
23 | <0.35 | 120 (/) | 23 (19.2%) | 12 (10.0%) | 11 (9.2%) | 13 (0.8%) | 34 (28.3%) | 27 (22.5%) |
[0.36, 1.10] | 94 (/) | 37 (39.4%) | / | 18 (19.1%) | 12 (12.8%) | 22 (23.4%) | 5 (5.3%) | |
[1.11, 1.80] | 8 (/) | 5 (62.5%) | / | 1 (12.5%) | 1 (12.5%) | 1 (12.5%) | / | |
>1.80 | 4 (/) | / | / | 3 (75%) | 1 (25%) | / | / | |
Sum | 226 | 65 | 12 | 33 | 27 | 57 | 32 |
Variables | Model 1 (Suzhou) | Model 2 (Gusu) | Model 3 (Xiangcheng) | Model 4 (SIP) | |||||
Coff | p | Coff | p | Coff | p | Coff | p | ||
Before | Control | 0.34 | 0.44 | 0.09 | 0.29 | ||||
Treated | 0.30 | 0.40 | 0.15 | 0.23 | |||||
Diff (T-C) | −0.05 | 0.050 * | −0.04 | 0.34 | 0.06 | 0.414 | −0.06 | 0.42 | |
After | Control | 0.24 | 0.34 | 0.07 | 0.22 | ||||
Treated | 0.45 | 0.59 | 0.28 | 0.44 | |||||
Diff (T-C) | 0.21 | 0.00 *** | 0.24 | 0.00 *** | 0.21 | 0.00 *** | 0.22 | 0.00 *** | |
Diff-in-Diff | 0.25 | 0.00 *** | 0.29 | 0.00 *** | 0.15 | 0.131 | 0.28 | 0.00 *** | |
Variables | Model 5 (SND) | Model 6 (Wuzhong) | Model 7 (Wujiang) | ||||||
Coff | p | Coff | p | Coff | p | ||||
Before | Control | 0.35 | 0.37 | 0.28 | |||||
Treated | 0.19 | 0.32 | 0.15 | ||||||
Diff (T-C) | −0.16 | 0.00 *** | −0.05 | 0.35 | −0.13 | 0.00 *** | |||
After | Control | 0.21 | 0.26 | 0.16 | |||||
Treated | 0.30 | 0.30 | 0.21 | ||||||
Diff (T-C) | 0.09 | 0.0540 * | 0.04 | 0.347 | −0.04 | 0.18 | |||
Diff-in-Diff | 0.25 | 0.00 *** | 0.09 | 0.199 | 0.17 | 0.00 *** |
Variables | Relative Importance (%) | Rank |
---|---|---|
Individuals | 17.60 | 2 |
Community architecture | 23.90 | / |
Building | 12.10 | 4 |
Glass wall | 10.20 | 5 |
Sidewalk | 1.60 | 10 |
Landscape and greenery | 29.90 | / |
Sky | 24.90 | 1 |
Plant—grass | 4.50 | 7 |
Plant—tree | 0.40 | 12 |
River | 0.10 | 14 |
Facility and transportation | 30.20 | / |
Nonprivate car | 14.80 | 3 |
Private car | 6.70 | 6 |
Street sign | 3.30 | 8 |
Road | 2.20 | 9 |
Ship | 1.20 | 11 |
Bridge | 0.30 | 13 |
Tower | 0.10 | 15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ni, H.; Li, H.; Li, P.; Yang, J. Exploring the Spatiotemporal Influence of Community Regeneration on Urban Vitality: Unraveling Spatial Nonstationarity with Difference-in-Differences and Nonlinear Effect with Gradient Boosting Decision Tree Regression. Sustainability 2025, 17, 3509. https://doi.org/10.3390/su17083509
Ni H, Li H, Li P, Yang J. Exploring the Spatiotemporal Influence of Community Regeneration on Urban Vitality: Unraveling Spatial Nonstationarity with Difference-in-Differences and Nonlinear Effect with Gradient Boosting Decision Tree Regression. Sustainability. 2025; 17(8):3509. https://doi.org/10.3390/su17083509
Chicago/Turabian StyleNi, Hong, Haoran Li, Pengcheng Li, and Jing Yang. 2025. "Exploring the Spatiotemporal Influence of Community Regeneration on Urban Vitality: Unraveling Spatial Nonstationarity with Difference-in-Differences and Nonlinear Effect with Gradient Boosting Decision Tree Regression" Sustainability 17, no. 8: 3509. https://doi.org/10.3390/su17083509
APA StyleNi, H., Li, H., Li, P., & Yang, J. (2025). Exploring the Spatiotemporal Influence of Community Regeneration on Urban Vitality: Unraveling Spatial Nonstationarity with Difference-in-Differences and Nonlinear Effect with Gradient Boosting Decision Tree Regression. Sustainability, 17(8), 3509. https://doi.org/10.3390/su17083509