The Impact of Visual Elements in Street View on Street Quality: A Quantitative Study Based on Deep Learning, Elastic Net Regression, and SHapley Additive exPlanations (SHAP)
Abstract
:1. Introduction
2. Study Area and Data Collection
2.1. Study Area
2.2. Collecting Street View Image Data
2.3. Urban Street Visual Elements Data
2.4. Street Quality Perception Label Data
3. Methodology
3.1. Urban Street Quality Perception Modeling Using Random Forests
3.2. Exploring Factors Influencing Street Quality
3.2.1. Elastic Net Regression
3.2.2. SHapley Additive exPlanations
4. Results
4.1. Performance Evaluation of the Random Forest Model for Street Quality Perception Prediction
4.2. Spatial Statistical Analysis of Urban Spatial Quality and Indicators
4.2.1. Descriptive Statistical Analysis
4.2.2. Spatial Patterns of Street Quality: Optimized Hot Spot Analysis
4.2.3. Spatial Cluster Analysis and Typological Features of Street Quality
4.3. Analysis of Factors Affecting Street Quality
4.3.1. Descriptive Analysis of Influencing Factors
4.3.2. Elastic Net Regression Analysis
4.3.3. Using SHAP to Analyze the Elastic Net Regression Model
5. Discussion
5.1. Summary of Research Findings
5.2. Implications for Urban Planning and Design
5.3. Study Limitations and Future Research Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Evaluation Indicator | Evaluation Use Question |
---|---|
Comfort | Please evaluate whether the space shown in the street view image is comfortable. In your assessment, please consider the following aspects:
|
Safety | Do you think the space shown in this street view image is safe? When evaluating, please consider the following aspects:
|
Convenience | Do you think the space shown in this street view image is convenient? When evaluating, please consider the following aspects:
|
Culture | Do you think the space shown in this street view image has culture? When evaluating, please consider the following aspects:
|
References
- Long, Y.; Tang, J. Large-Scale Quantitative Measurement of the Quality of Urban Street Space: The Research Progress. City Plan. Rev. 2019, 43, 107–114. [Google Scholar]
- Karndacharuk, A.; Wilson, D.J.; Dunn, R. A Review of the Evolution of Shared (Street) Space Concepts in Urban Environments. Transp. Rev. 2014, 34, 190–220. [Google Scholar] [CrossRef]
- Xing, H.; Meng, Y. Measuring Urban Landscapes for Urban Function Classification Using Spatial Metrics. Ecol. Indic. 2020, 108, 105722. [Google Scholar] [CrossRef]
- Zhu, D.; Wang, N.; Wu, L.; Liu, Y. Street as a Big Geo-Data Assembly and Analysis Unit in Urban Studies: A Case Study Using Beijing Taxi Data. Appl. Geogr. 2017, 86, 152–164. [Google Scholar] [CrossRef]
- Tang, J.; Long, Y. Measuring Visual Quality of Street Space and Its Temporal Variation: Methodology and Its Application in the Hutong Area in Beijing. Landsc. Urban Plan. 2019, 191, 103436. [Google Scholar] [CrossRef]
- Liu, M.; Han, L.; Xiong, S.; Qing, L.; Ji, H.; Peng, Y. Large-Scale Street Space Quality Evaluation Based on Deep Learning Over Street View Image. In Image and Graphics, Proceedings of the 10th International Conference (ICIG 2019), Beijing, China, 23–25 August 2019; Zhao, Y., Barnes, N., Chen, B., Westermann, R., Kong, X., Lin, C., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 690–701. [Google Scholar]
- Chen, J.; Wu, Z.; Lin, S. The Influence of Neighborhood Quality on Tourism in China: Using Baidu Street View Pictures and Deep Learning Techniques. PLoS ONE 2022, 17, e0276628. [Google Scholar] [CrossRef]
- Enright, M.J.; Newton, J. Tourism Destination Competitiveness: A Quantitative Approach. Tour. Manag. 2004, 25, 777–788. [Google Scholar] [CrossRef]
- Du, H.; Jiang, H.; Song, X.; Zhan, D.; Bao, Z. Assessing the Visual Aesthetic Quality of Vegetation Landscape in Urban Green Space from a Visitor’s Perspective. J. Urban Plan. Dev. 2016, 142, 04016007. [Google Scholar] [CrossRef]
- Gehl, J. Cities for People; Island Press: Washington, DC, USA, 2013; ISBN 978-1-59726-984-1. [Google Scholar]
- Almulhim, A.I.; Sharifi, A.; Aina, Y.A.; Ahmad, S.; Mora, L.; Filho, W.L.; Abubakar, I.R. Charting Sustainable Urban Development Through a Systematic Review of SDG11 Research. Nat. Cities 2024, 1, 677–685. [Google Scholar] [CrossRef]
- Duncan, J.S. Progress Report: Review of Urban Imagery: Urban Semiotics. Urban Geogr. 1987, 8, 473–483. [Google Scholar] [CrossRef]
- Harvey, C.; Aultman-Hall, L.; Hurley, S.E.; Troy, A. Effects of Skeletal Streetscape Design on Perceived Safety. Landsc. Urban Plan. 2015, 142, 18–28. [Google Scholar] [CrossRef]
- Rezvanipour, S.; Hassan, N.; Ghaffarianhoseini, A.; Danaee, M. Why Does the Perception of Street Matter? A Dimensional Analysis of Multisensory Social and Physical Attributes Shaping the Perception of Streets. Archit. Sci. Rev. 2021, 64, 359–373. [Google Scholar] [CrossRef]
- Gehl, J.; Gemzøe, L. Public Spaces—Public Life; Arkitektens Forlag: Copenhagen, Denmark, 2004. [Google Scholar]
- Sallis, J.F.; Johnson, M.F.; Calfas, K.J.; Caparosa, S.; Nichols, J.F. Assessing Perceived Physical Environmental Variables that May Influence Physical Activity. Res. Q. Exerc. Sport 1997, 68, 345–351. [Google Scholar] [CrossRef]
- Aghaabbasi, M.; Moeinaddini, M.; Zaly Shah, M.; Asadi-Shekari, Z. A New Assessment Model to Evaluate the Microscale Sidewalk Design Factors at the Neighbourhood Level. J. Transp. Health 2017, 5, 97–112. [Google Scholar] [CrossRef]
- Lin, J.; Wu, Z.; Li, X. Measuring Inter-City Connectivity in an Urban Agglomeration Based on Multi-Source Data. Int. J. Geogr. Inf. Sci. 2019, 33, 1062–1081. [Google Scholar] [CrossRef]
- Logan, T.; Williams, T.; Nisbet, A.; Liberman, K.; Zuo, C.; Guikema, S. Evaluating Urban Accessibility: Leveraging Open-Source Data and Analytics to Overcome Existing Limitations. Environ. Plan. B Urban Anal. City Sci. 2019, 46, 897–913. [Google Scholar] [CrossRef]
- Lothian, A. Landscape and the Philosophy of Aesthetics: Is Landscape Quality Inherent in the Landscape or in the Eye of the Beholder? Landsc. Urban Plan. 1999, 44, 177–198. [Google Scholar] [CrossRef]
- Daniel, T.C.; Schroeder, H. Scenic Beauty Estimation Model: Predicting Perceived Beauty of Forest Landscapes. In Proceedings of Our National Landscape: A Conference on Applied Techniques for Analysis and Management of the Visual Resource, Incline Village, NV, USA, 23–25 April 1979; Elsner, G.H., Richard, C.S., Technical Coordinators; General Technical Reports PSW-GTR-35; Pacific Southwest Forest and Range Experiment Station, Forest Service, U.S. Department of Agriculture: Berkeley, CA, USA, 2022; pp. 514–523. [Google Scholar]
- Odgers, C.L.; Caspi, A.; Bates, C.J.; Sampson, R.J.; Moffitt, T.E. Systematic Social Observation of Children’s Neighborhoods Using Google Street View: A Reliable and Cost-Effective Method. Child Psychol. Psychiatry 2012, 53, 1009–1017. [Google Scholar] [CrossRef]
- Zhang, L.; Ye, Y.; Zeng, W.; Chiaradia, A. A Systematic Measurement of Street Quality through Multi-Sourced Urban Data: A Human-Oriented Analysis. Int. J. Environ. Res. Public Health 2019, 16, 1782. [Google Scholar] [CrossRef]
- Wang, M.; He, Y.; Meng, H.; Zhang, Y.; Zhu, B.; Mango, J.; Li, X. Assessing Street Space Quality Using Street View Imagery and Function-Driven Method: The Case of Xiamen, China. ISPRS Int. J. Geo-Inf. 2022, 11, 282. [Google Scholar] [CrossRef]
- Wang, Y.; Xiu, C. Spatial Quality Evaluation of Historical Blocks Based on Street View Image Data: A Case Study of the Fangcheng District. Buildings 2023, 13, 1612. [Google Scholar] [CrossRef]
- Wang, L.; Han, X.; He, J.; Jung, T. Measuring Residents’ Perceptions of City Streets to Inform Better Street Planning Through Deep Learning and Space Syntax. ISPRS J. Photogramm. Remote Sens. 2022, 190, 215–230. [Google Scholar] [CrossRef]
- Zhang, F.; Zhou, B.; Liu, L.; Liu, Y.; Fung, H.H.; Lin, H.; Ratti, C. Measuring Human Perceptions of a Large-Scale Urban Region Using Machine Learning. Landsc. Urban Plan. 2018, 180, 148–160. [Google Scholar] [CrossRef]
- Lee, S.; Han, M.; Rhee, K.; Bae, B. Identification of Factors Affecting Pedestrian Satisfaction toward Land Use and Street Type. Sustainability 2021, 13, 10725. [Google Scholar] [CrossRef]
- Ma, S.; Wang, B.; Liu, W.; Zhou, H.; Wang, Y.; Li, S. Assessment of Street Space Quality and Subjective Well-Being Mismatch and Its Impact, Using Multi-Source Big Data. Cities 2024, 147, 104797. [Google Scholar] [CrossRef]
- Ma, X.; Ma, C.; Wu, C.; Xi, Y.; Yang, R.; Peng, N.; Zhang, C.; Ren, F. Measuring Human Perceptions of Streetscapes to Better Inform Urban Renewal: A Perspective of Scene Semantic Parsing. Cities 2021, 110, 103086. [Google Scholar] [CrossRef]
- Jia, Q.; Syed Mahdzar, S.S.; Binti Shaharuddin, S.N. Study on the Spatial Characteristics of Urban Heritage in Xi’an City’s Historical Core Area. IOP Conf. Ser. Earth Environ. Sci. 2023, 1274, 012042. [Google Scholar] [CrossRef]
- Hou, Y.; Biljecki, F. A Comprehensive Framework for Evaluating the Quality of Street View Imagery. Int. J. Appl. Earth Obs. Geoinf. 2022, 115, 103094. [Google Scholar] [CrossRef]
- Ren, Z.; Wang, L.; Song, T.; Li, Y.; Zhang, J.; Zhao, F. Enhancing Road Scene Segmentation with an Optimized DeepLabV3+. IEEE Access 2024, 12, 197748–197765. [Google Scholar] [CrossRef]
- Wang, R.; Helbich, M.; Yao, Y.; Zhang, J.; Liu, P.; Yuan, Y.; Liu, Y. Urban Greenery and Mental Wellbeing in Adults: Cross-Sectional Mediation Analyses on Multiple Pathways Across Different Greenery Measures. Environ. Res. 2019, 176, 108535. [Google Scholar] [CrossRef]
- Yu, M.; Zheng, X.; Qin, P.; Cui, W.; Ji, Q. Urban Color Perception and Sentiment Analysis Based on Deep Learning and Street View Big Data. Appl. Sci. 2024, 14, 9521. [Google Scholar] [CrossRef]
- Lindal, P.J.; Hartig, T. Architectural Variation, Building Height, and the Restorative Quality of Urban Residential Streetscapes. J. Environ. Psychol. 2013, 33, 26–36. [Google Scholar] [CrossRef]
- Liu, Z.; Ma, X.; Hu, L.; Lu, S.; Ye, X.; You, S.; Tan, Z.; Li, X. Information in Streetscapes—Research on Visual Perception Information Quantity of Street Space Based on Information Entropy and Machine Learning. ISPRS Int. J. Geo-Inf. 2022, 11, 628. [Google Scholar] [CrossRef]
- Ivanovici, M.; Richard, N. A Naive Complexity Measure for Color Texture Images. In Proceedings of the 2017 International Symposium on Signals, Circuits and Systems (ISSCS), Iasi, Romania, 13–14 July 2017; pp. 1–4. [Google Scholar]
- Ismail, M.F.; Jaafar, T.R.; Pin, N.C.; Zaini, N.H. Sobel Operator for Edges Detection in Surface Texture Analysis. J. Teknol. (Sci. Eng.) 2015, 76, 71–74. [Google Scholar] [CrossRef]
- Greene, M.; Oliva, A. Recognition of Natural Scenes from Global Properties: Seeing the Forest Without Representing the Trees. Cogn. Psychol. 2009, 58, 137–176. [Google Scholar] [CrossRef] [PubMed]
- Ewing, R.; Handy, S. Measuring the Unmeasurable: Urban Design Qualities Related to Walkability. J. Urban Des. 2009, 14, 65–84. [Google Scholar] [CrossRef]
- Kaplan, R.; Kaplan, S. The Experience of Nature: A Psychological Perspective; CUP Archive: Cambridge, UK, 1989; ISBN 978-0-521-34939-0. [Google Scholar]
- Fuller, M.; Moore, R. An Analysis of Jane Jacobs’s the Death and Life of Great American Cities; Macat Library: London, UK, 2017; ISBN 978-1-912282-66-1. [Google Scholar]
- Erna, W.; Antariksa; Surjono; Amin, S.L. Convenience Component of Walkability in Malang City Case Study the Street Corridors Around City Squares. Procedia—Soc. Behav. Sci. 2016, 227, 587–592. [Google Scholar] [CrossRef]
- Loo, B.P.Y.; Lian, T.; Frank, L.D. Walking (In)Convenience: An In-Depth Study of Pedestrian Detours to Daily Facilities. J. Am. Plan. Assoc. 2024, 90, 742–757. [Google Scholar] [CrossRef]
- Yao, Y.; Liang, Z.; Yuan, Z.; Liu, P.; Bie, Y.; Zhang, J.; Wang, R.; Wang, J.; Guan, Q. A Human-Machine Adversarial Scoring Framework for Urban Perception Assessment Using Street-View Images. Int. J. Geogr. Inf. Sci. 2019, 33, 2363–2384. [Google Scholar] [CrossRef]
- Han, X.; Wang, L.; Seo, S.H.; He, J.; Jung, T. Measuring Perceived Psychological Stress in Urban Built Environments Using Google Street View and Deep Learning. Front. Public Health 2022, 10, 891736. [Google Scholar] [CrossRef]
- Dupont, L.; Antrop, M.; Van Eetvelde, V. Eye-Tracking Analysis in Landscape Perception Research: Influence of Photograph Properties and Landscape Characteristics. Landsc. Res. 2014, 39, 417–432. [Google Scholar] [CrossRef]
- Malkewitz, C.P.; Schwall, P.; Meesters, C.; Hardt, J. Estimating reliability: A Comparison of Cronbach’s α, McDonald’s Ωt and the Greatest Lower Bound. Soc. Sci. Humanit. Open 2023, 7, 100368. [Google Scholar] [CrossRef]
- Hayes, A.F.; Coutts, J.J. Use Omega Rather than Cronbach’s Alpha for Estimating Reliability. But…. Commun. Methods Meas. 2020, 14, 1–24. [Google Scholar] [CrossRef]
- Zou, H.; Hastie, T. Regularization and Variable Selection Via the Elastic Net. J. R. Stat. Soc. Ser. B Stat. Methodol. 2005, 67, 301–320. [Google Scholar] [CrossRef]
- Shiomi, Y.; Toriumi, A.; Nakamura, H. International Analysis on Social and Personal Determinants of Traffic Violations and Accidents Employing Logistic Regression with Elastic Net Regularization. IATSS Res. 2022, 46, 36–45. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.-I. A Unified Approach to Interpreting Model Predictions. In NIPS’17, Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Curran Associates Inc.: Red Hook, NY, USA, 2017; Volume 30. [Google Scholar]
- Stefanidis, R.-M.; Bartzokas-Tsiompras, A. Where to Improve Pedestrian Streetscapes: Prioritizing and Mapping Street-Level Walkability Interventions in Cape Town’s City Centre. Urbani Izziv 2022, 33, 115–126. [Google Scholar] [CrossRef]
- Tom-Jack, Q.T.; Bernstein, J.M.; Loyola, L.C. The Role of Geoprocessing in Mapping Crime Using Hot Streets. ISPRS Int. J. Geo-Inf. 2019, 8, 540. [Google Scholar] [CrossRef]
- Zhong, W.; Schröder, T.; Bekkering, J. Biophilic Design in Architecture and Its Contributions to Health, Well-Being, and Sustainability: A Critical Review. Front. Archit. Res. 2022, 11, 114–141. [Google Scholar] [CrossRef]
- Wong, M.S.; Nichol, J.; Ng, E. A Study of the “Wall Effect” Caused by Proliferation of High-Rise Buildings Using GIS Techniques. Landsc. Urban Plan. 2011, 102, 245–253. [Google Scholar] [CrossRef]
- Ulrich, R.S. Human Responses to Vegetation and Landscapes. Landsc. Urban Plan. 1986, 13, 29–44. [Google Scholar] [CrossRef]
- Xie, X.; Jiang, Q.; Wang, R.; Gou, Z. Correlation between Vegetation Landscape and Subjective Human Perception: A Systematic Review. Buildings 2024, 14, 1734. [Google Scholar] [CrossRef]
- Zhang, H.-L.; Nizamani, M.M.; Guo, L.-Y.; Cui, J.; Padullés Cubino, J.; Hughes, A.C.; Wang, H.-F. Interplay of Socio-Economic and Environmental Factors in Shaping Urban Plant Biodiversity: A Comprehensive Analysis. Front. Ecol. Evol. 2024, 12, 1344343. [Google Scholar] [CrossRef]
Variables | Classification | Number of People/Proportion (%) |
---|---|---|
Total number of people | 25/100% | |
Gender | Male | 12/48% |
Female | 13/52% | |
Place of affiliation | Local resident | 15/60% |
Tourists | 10/40% | |
Age | 19–30 | 11/44% |
30–45 | 10/40% | |
45–55 | 4/10% |
Indicator Types | MAE (%) | RMSE (%) | R2 (%) | N_Estimators | OOB MAE (%) | OOB RMSE (%) |
---|---|---|---|---|---|---|
Comfort | 1.9851 | 3.8877 | 0.9186 | 84 | 1.9172 | 3.5404 |
Safety | 2.8630 | 4.4855 | 0.8601 | 110 | 2.6986 | 4.5084 |
Convenience | 1.9836 | 4.0511 | 0.9100 | 67 | 2.1792 | 3.9824 |
Culture | 1.8503 | 3.2227 | 0.8982 | 191 | 2.4927 | 4.3463 |
Level | 1 | 2 | 3 | 4 | 5 | |
---|---|---|---|---|---|---|
Street Classification | Very Poor | Poor | Moderate | Good | Excellent | |
Comfort | Score range | 26–48 | 48–58 | 58–67 | 67–73 | 73–85 |
Number (Proportion%) | 857 (16) | 796 (15) | 790 (15) | 1260 (24) | 1600 (30) | |
Safety | Score range | 35–50 | 50–59 | 59–68 | 68–75 | 75–83 |
Number (Proportion%) | 835 (16) | 701 (13) | 931 (17) | 1732 (33) | 1106 (21) | |
Convenience | Score range | 32–50 | 50–58 | 58–66 | 66–73 | 73–87 |
Number (Proportion%) | 628 (12) | 825 (16) | 976 (18) | 1209 (23) | 1666 (31) | |
Culture | Score range | 36–56 | 56–62 | 62–69 | 69–74 | 74–82 |
Number (Proportion%) | 1015 (19) | 681 (13) | 756 (14) | 942 (18) | 1910 (36) | |
Street quality | Score range | 1–49 | 49–57 | 57–65 | 65–72 | 72–80 |
Number (Proportion%) | 624 (12) | 737 (14) | 752 (14) | 1206 (23) | 1990 (37) |
Number | Visual Elements | Mean | Max | Min | S.D. |
---|---|---|---|---|---|
1 | Building | 0.355 | 0.892 | 0.001 | 0.174 |
2 | Sky | 0.175 | 0.511 | 0.001 | 0.114 |
3 | Road | 0.161 | 0.427 | 0.001 | 0.078 |
4 | Vegetation | 0.121 | 0.448 | 0.001 | 0.059 |
5 | Sidewalk | 0.064 | 0.369 | 0.001 | 0.056 |
6 | Car | 0.035 | 0.260 | 0.001 | 0.037 |
7 | Wall | 0.021 | 0.786 | 0.001 | 0.056 |
8 | Fence | 0.016 | 0.180 | 0.001 | 0.021 |
9 | Signboard | 0.006 | 0.083 | 0.001 | 0.008 |
10 | Railing | 0.004 | 0.142 | 0.001 | 0.010 |
11 | Ground | 0.001 | 0.105 | 0.001 | 0.005 |
12 | Column | 0.001 | 0.079 | 0.001 | 0.002 |
13 | Color complexity | 0.239 | 0.999 | 0.001 | 0.123 |
14 | Material complexity | 0.319 | 0.999 | 0.001 | 0.104 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuang, B.; Yang, H.; Jung, T. The Impact of Visual Elements in Street View on Street Quality: A Quantitative Study Based on Deep Learning, Elastic Net Regression, and SHapley Additive exPlanations (SHAP). Sustainability 2025, 17, 3454. https://doi.org/10.3390/su17083454
Kuang B, Yang H, Jung T. The Impact of Visual Elements in Street View on Street Quality: A Quantitative Study Based on Deep Learning, Elastic Net Regression, and SHapley Additive exPlanations (SHAP). Sustainability. 2025; 17(8):3454. https://doi.org/10.3390/su17083454
Chicago/Turabian StyleKuang, Baoyue, Hao Yang, and Taeyeol Jung. 2025. "The Impact of Visual Elements in Street View on Street Quality: A Quantitative Study Based on Deep Learning, Elastic Net Regression, and SHapley Additive exPlanations (SHAP)" Sustainability 17, no. 8: 3454. https://doi.org/10.3390/su17083454
APA StyleKuang, B., Yang, H., & Jung, T. (2025). The Impact of Visual Elements in Street View on Street Quality: A Quantitative Study Based on Deep Learning, Elastic Net Regression, and SHapley Additive exPlanations (SHAP). Sustainability, 17(8), 3454. https://doi.org/10.3390/su17083454