Application of GIS in the Maritime-Port Sector: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bibliometric Method
2.1.1. Step 1: Search Strategy
- Key question: “In the maritime-port logistics interface, how are spatial data infrastructures (SDI) and geographic information systems (GIS) integrated into collaborative geovisualisation platforms?”.
2.1.2. Step 2: Data Collection
2.1.3. Step 3: Data Analysis
2.1.4. Data Visualisation
2.1.5. Step 4. Interpretation
3. Results and Discussion
3.1. Bibliometric Analysis
3.1.1. Descriptive Bibliometric Analysis
3.1.2. Distribution of Annual Documents and Citations
3.1.3. Most Influential Journals
3.1.4. Authors’ Keywords
3.1.5. Mapping Scientific Collaboration Between Countries
3.1.6. Evolution of the Main Themes and Trends
3.2. PRISMA Analysis
3.2.1. Spatial Data Infrastructures (SDI) in the Maritime-Port Sector
3.2.2. GIS in the Maritime-Port Sector
3.2.3. Web Tools for Geospatial Data Sharing
3.2.4. Implementation of Digital Technologies and Artificial Intelligence Models
3.2.5. Challenges and Trends in Maritime GIS
3.2.6. Future Perspectives of GIS in the Maritime-Port Sector
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations. Global Maritime Trade Could Suffer Biggest Decline in Decades in 2023. Available online: https://news.un.org/en/ (accessed on 26 December 2024).
- Wu, F.; Bai, J.; Zhu, B.; Ma, W.; Sun, J.; Zheng, G. Reviewing Geo-Information Science for Port Information Management in China. In Proceedings of the ICTIS 2013: Improving Multimodal Transportation Systems—Information, Safety, and Integration, Wuhan, China, 29 June–2 July 2013; American Society of Civil Engineers: Reston, VA, USA, 2013; pp. 2139–2145. [Google Scholar] [CrossRef]
- Ray, C.; Dréo, R.; Camossi, E.; Jousselme, A.-L.; Iphar, C. Heterogeneous Integrated Dataset for Maritime Intelligence, Surveillance, and Reconnaissance. Data Brief 2019, 25, 104141. [Google Scholar] [CrossRef] [PubMed]
- Zrodowski, C.; Kniat, A.; Pyszko, R. Geographic Information System (GIS) Tools for Aiding Development of Inland Waterways. Fleet. Pol. Marit. Res. 2006, 13, 102–112. [Google Scholar]
- McCabe, R.; Flynn, B. Under the radar: Ireland, maritime security capacity, and the governance of subsea infrastructure. Eur. Secur. 2023, 33, 324–344. [Google Scholar] [CrossRef]
- Ovando, D.; Bradley, D.; Burns, E.; Thomas, L.; Thorson, J.T. Simulating Benefits, Costs and Trade-offs of Spatial Management in Marine Social-ecological Systems. Fish Fish. 2024, 25, 218–234. [Google Scholar] [CrossRef]
- Bonnevie, I.M.; Hansen, H.S.; Schrøder, L. SEANERGY—A Spatial Tool to Facilitate the Increase of Synergies and to Minimise Conflicts Between Human Uses at Sea. Environ. Model. Softw. 2020, 132, 104808. [Google Scholar] [CrossRef]
- Kao, S.-L.; Chang, K.-Y.; Hsu, T.-W. A Marine GIS-based Alert System to Prevent Vessels Collision with Offshore Platforms. J. Mar. Sci. Technol. 2021, 29, 597–608. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Z.; Zhu, Q.; Ma, S. Ship Route Planning Based on Double-Cycling Genetic Algorithm Considering Ship Maneuverability Constraint. IEEE Access 2020, 8, 190746–190759. [Google Scholar] [CrossRef]
- Fagerholt, K.; Lindstad, H. TurboRouter: An Interactive Optimization-Based Decision Support System for Ship Routing and Scheduling. Mar. Econ. Logist. 2007, 9, 214–233. [Google Scholar] [CrossRef]
- Dong, Z.; Zhou, Y.; Bao, X. A Short-Term Vessel Traffic Flow Prediction Based on a DBO-LSTM Model. Sustainability 2024, 16, 5499. [Google Scholar] [CrossRef]
- Huang, I.-L.; Lee, M.-C.; Chang, L.; Huang, J.-C. Development and Application of an Advanced Automatic Identification System (AIS)-Based Ship Trajectory Extraction Framework for Maritime Traffic Analysis. J. Mar. Sci. Eng. 2024, 12, 1672. [Google Scholar] [CrossRef]
- Veldman, S.; Buckmann, E. A model on container port competition: An application for the West European container hub-ports. Marit. Econ. Logist. 2003, 5, 3–22. [Google Scholar] [CrossRef]
- Benedecti, R.C.; Silva, V.M.D.; da Costa, G.A.A. Integrated simulation of an inland container terminal and waterway service for enhancing the maritime supply chain connectivity between Joinville and Itapoá Port. Lat. Am. Transp. Stud. 2024, 2, 100019. [Google Scholar] [CrossRef]
- Önden, İ.; Pamucar, D.; Deveci, M.; As, Y.; Birol, B.; Yıldız, F.Ş. Prioritization of transfer centers using GIS and fuzzy Dombi Bonferroni weighted Assessment (DOBAS) model. Expert Syst. Appl. 2024, 238, 121827. [Google Scholar] [CrossRef]
- Claramunt, C.; Devogele, T.; Fournier, S.; Noyon, V.; Petit, M.; Ray, C. Maritime GIS: From monitoring to simulation systems. In Information Fusion and Geographic Information Systems; Popovich, V.V., Schrenk, M., Korolenko, K.V., Eds.; Lecture Notes in Geoinformation and Cartography; Springer: Berlin/Heidelberg, Germany, 2007; pp. 34–44. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, H.; Lau, Y.-Y.; Liu, K.; Ng, A.K.Y.; Chen, W.; Liao, Q.; Dulebenets, M.A. A Geographic Information System (GIS)-Based Investigation of Spatiotemporal Characteristics of Pirate Attacks in the Maritime Industry. J. Mar. Sci. Eng. 2023, 11, 2295. [Google Scholar] [CrossRef]
- Halder, B.; Juneng, L.; Abdul Maulud, K.N.; Banik, P.; Yaseen, Z.M. Remote Sensing-Based Decadal Landform Monitoring in Island Ecosystem. J. Coast. Conserv. 2024, 28, 74. [Google Scholar] [CrossRef]
- Guo, Z.; Qiao, Y.; Umprasoet, W.; Sun, Y.; Plathong, S.; Jantharakhantee, C.; Zhang, Z. Integrating Issue-Oriented Solution of Marine Spatial Planning (MSP): A Case Study of Koh Sichang in Thailand. Ocean Coast. Manag. 2024, 258, 107381. [Google Scholar] [CrossRef]
- Huang, Z.; Nanson, R.A.; McNeil, M.; Wenderlich, M.; Gafeira, J.; Post, A.L.; Nichol, S.L. Rule-Based Semi-Automated Tools for Mapping Seabed Morphology from Bathymetry Data. Front. Mar. Sci. 2023, 10, 123678. [Google Scholar] [CrossRef]
- Parra, L. Remote Sensing and GIS in Environmental Monitoring. Appl. Sci. 2022, 12, 8045. [Google Scholar] [CrossRef]
- Photis, M.; Panayides, M.; Song, D.-W. Port Integration in Global Supply Chains: Measures and Implications for Maritime Logistics. Int. J. Logist. Res. Appl. 2009, 12, 133–145. [Google Scholar] [CrossRef]
- Manikandan, J.; Mangaiyarkarasi, V.; Mahalakshmi, S.; Karthigeyan, S.; Varsha, G. Development of an Integrated Water Body Surveillance System for Environmental Monitoring and Resource Management. In Proceedings of the 2024 International Conference on Communication, Computing and Internet of Things (IC3IoT), Chennai, India, 17–18 April 2024; pp. 1–5. [Google Scholar] [CrossRef]
- Kaklis, D.; Varlamis, I.; Giannakopoulos, G.; Varelas, T.J.; Spyropoulos, C.D. Enabling Digital Twins in the Maritime Sector through the Lens of AI and Industry 4.0. Int. J. Inf. Manag. Data Insights 2023, 3, 100178. [Google Scholar] [CrossRef]
- Zhang, Z.; Song, C.; Zhang, J.; Chen, Z.; Liu, M.; Aziz, F.; Yap, P.S. Digitalization and Innovation in Green Ports: A Review of Current Issues, Contributions and the Way Forward in Promoting Sustainable Ports and Maritime Logistics. Sci. Total Environ. 2024, 912, 169075. [Google Scholar] [CrossRef] [PubMed]
- Hasan, K.R.; Zhang, W.; Shi, W. A Sustainable Port-Hinterland Container Transport System: The Simulation-Based Scenarios for CO2 Emission Reduction. Sustainability 2023, 15, 9444. [Google Scholar] [CrossRef]
- Buonomano, A.; Del Papa, G.; Giuzio, G.F.; Palombo, A.; Russo, G. Future Pathways for Decarbonization and Energy Efficiency of Ports: Modelling and Optimization as Sustainable Energy Hubs. J. Clean. Prod. 2023, 420, 138389. [Google Scholar] [CrossRef]
- Sarabia-Jácome, D.; Palau, C.E.; Esteve, M.; Boronat, F. Seaport Data Space for Improving Logistic Maritime Operations. IEEE Access 2020, 8, 4372–4382. [Google Scholar] [CrossRef]
- Marine Traffic—AIS Data. Available online: https://www.marinetraffic.com/ (accessed on 30 April 2024).
- ECDIS. Maritime Navigation Specialists. Available online: https://ecdis.org/ (accessed on 30 April 2024).
- MDA. Situational Indication Linkages. Available online: https://www.msil.go.jp/msil/htm/main.html?Lang=1 (accessed on 30 April 2024).
- Lam, S.Y.W.; Yip, T.L. The Role of Geomatics Engineering in Establishing the Marine Information System for Maritime Management. Marit. Policy Manag. 2008, 35, 53–60. [Google Scholar] [CrossRef]
- Schmidt, S.; Maudire, G.; Nys, C.; Sudre, J.; Harscoat, V.; Dibarboure, G.; Huynh, F. Streamlining Data and Service Centers for Easier Access to Data and Analytical Services: The Strategy of ODATIS as the Gateway to French Marine Data. Front. Mar. Sci. 2020, 7, 548126. [Google Scholar] [CrossRef]
- Emani, C.K.; Cullot, N.; Nicolle, C. Big Data Understandable: A Survey. Comput. Sci. Rev. 2015, 17, 70–81. [Google Scholar] [CrossRef]
- Tavra, M.; Jajac, N.; Cetl, V. Marine Spatial Data Infrastructure Development Framework: Croatia Case Study. ISPRS Int. J. Geo-Inf. 2017, 6, 117. [Google Scholar] [CrossRef]
- Scarlat, C.; Ioanid, A.; Andrei, N. Use of the Geospatial Technologies and Its Implications in the Maritime Transport and Logistics. Int. Marit. Transp. Logist. J. 2023, 12, 19–30. [Google Scholar] [CrossRef]
- Fernández, P.; Santana, J.M.; Ortega, S.; Trujillo, A.; Suárez, J.P.; Domínguez, C.; Santana, J.; Sánchez, A. SmartPort: A Platform for Sensor Data Monitoring in a Seaport Based on FIWARE. Sensors 2016, 16, 417. [Google Scholar] [CrossRef]
- Thomas, R.; Idol, T. Development of Spatial Data Infrastructures for Marine Data Management; OGC-IHO Marine SDI Concept Development Study (CDS). Available online: https://repository.oceanbestpractices.org/handle/11329/1551 (accessed on 30 April 2024).
- Lu, B.; Xu, X. Digital Transformation and Port Operations: Optimal Investment Under Incomplete Information. Transp. Policy 2024, 151, 134–146. [Google Scholar] [CrossRef]
- Lytra, I.; Vidal, M.-E.; Orlandi, F.; Attard, J. A Big Data Architecture for Managing Oceans of Data and Maritime Applications. In Proceedings of the ICE/ITMC 2017: 2017 International Conference on Engineering, Technology and Innovation, Madeira, Portugal, 27–29 June 2017; pp. 1216–1226. [Google Scholar] [CrossRef]
- Erasmus University. SmartPort. Available online: https://www.erim.eur.nl/smartporterasmus/ (accessed on 30 April 2024).
- Batista, T.; Carreira, D.; Moutinho, E. Os SIG na gestão portuária: O caso do porto de Sines. In Aplicaciones Tig en el Análisis Territorial—Transferencia a Universidad, Sector Público y Empresas; Nieto Masot, A., Ed.; Universidad de Extremadura: Cáceres, Spain, 2015; pp. 43–54. ISBN 978-84-608-2535-7. Available online: http://hdl.handle.net/10662/4435 (accessed on 1 April 2024).
- Nexus Lab. Nexus Agenda Project. Available online: https://nexuslab.pt/ (accessed on 30 April 2024).
- Hamburg Port Authority. SmartPORT Logistics. Available online: https://www.hamburg-port-authority.de/en/hpa-360/smartport (accessed on 30 April 2024).
- Tanger Med Port Authority. Vessel Reception Services. Available online: https://www.tangermedport.com/en/service/vessel-reception/ (accessed on 30 April 2024).
- González-Cancelas, N.; Orive, A.C.; Cabrero, J.V.; Flores, F.S. Digital Transformation in Spanish Port System. In Advances in Digital Transformation—Rise of Ultra-Smart Fully Automated Cyberspace; IntechOpen: London, UK, 2024. [Google Scholar] [CrossRef]
- Paraskevas, A.; Madas, M.; Zeimpekis, V.; Fouskas, K. Smart Ports in Industry 4.0: A Systematic Literature Review. Logistics 2024, 8, 28. [Google Scholar] [CrossRef]
- Jiang, M.; Feng, J.; Zhou, J.; Zhou, L.; Ma, F.; Wu, G.; Zhang, Y. Multi-Terminal Berth and Quay Crane Joint Scheduling in Container Ports Considering Carbon Cost. Sustainability 2023, 15, 5018. [Google Scholar] [CrossRef]
- Farah, M.B.; Ahmed, Y.; Mahmoud, H.; Shah, S.A.; Al-Kadri, M.O.; Taramonli, S.; Bellekens, X.; Abozariba, R.; Idrissi, M.; Aneiba, A. A survey on blockchain technology in the maritime industry: Challenges and future perspectives. Future Gener. Comput. Syst. 2024, 157, 618–637. [Google Scholar] [CrossRef]
- Bashir, K.; Rawat, D.B.; Wu, J.; Imran, M.A. Guest Editorial: Security, Reliability, and Safety in IoT-Enabled Maritime Transportation Systems. IEEE Trans. Intell. Transp. Syst. 2023, 24, 2275–2281. [Google Scholar] [CrossRef]
- Zeneli, M.; Marinova, G. Navigating the Future: Digital Twin in Maritime Industry. In Proceedings of the 2024 International Conference on Broadband Communications for Next Generation Networks and Multimedia Applications (CoBCom), Graz, Austria, 9–11 July 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Kavallieratos, G.; Diamantopoulou, V.; Katsikas, S.K. Shipping 4.0: Security Requirements for the Cyber-Enabled Ship. IEEE Trans. Ind. Inform. 2020, 16, 6617–6625. [Google Scholar] [CrossRef]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, D.; Weng, M.L. How to Conduct a Bibliometric Analysis: An Overview and Guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Denyer, D.; Tranfield, D. Producing a systematic review. In The Sage Handbook of Organizational Research Methods; Buchanan, D., Bryman, A., Eds.; Sage Publications Ltd.: London, UK, 2009; pp. 671–689. Available online: https://books.google.com.br/books?hl=ptPT&lr=&id=vVs2EoDjm78C&oi=fnd&pg=PP1&dq=In+The+Sage+Handbook+of+Organizational+Research+Methods&ots=8S17tOPDUJ&sig=vKV7t8ZfSWr3FlEXcUbnMVJLphU (accessed on 30 April 2024).
- Pranckutė, R. Web of Science (WoS) and Scopus: The Titans of Bibliographic Information in Today’s Academic World. Publications 2021, 9, 12. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-Tool for Comprehensive Science Mapping Analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Ampah, J.D.; Yusuf, A.A.; Afrane, S.; Jin, C.; Liu, H. Reviewing Two Decades of Cleaner Alternative Marine Fuels: Towards IMO’s Decarbonization of the Maritime Transport Sector. J. Clean. Prod. 2021, 320, 128871. [Google Scholar] [CrossRef]
- Gutiérrez-Salcedo, M.; Martínez, M.Á.; Moral-Muñoz, J.A.; Herrera-Viedma, E.; Cobo, M.J. Some Bibliometric Procedures for Analyzing and Evaluating Research Fields. Appl. Intell. 2018, 48, 1275–1287. [Google Scholar] [CrossRef]
- Fadiga, A.; Ferreira, L.M.D.; Bigotte, J.F. Decarbonising maritime ports: A systematic review of the literature and insights for new research opportunities. J. Clean. Prod. 2024, 452, 142209. [Google Scholar] [CrossRef]
- Linnenluecke, M.K.; Marrone, M.; Singh, A.K. Conducting Systematic Literature Reviews and Bibliometric Analyses. Aust. J. Manag. 2020, 45, 175–194. [Google Scholar] [CrossRef]
- Web of Science—WoS. WoS Search. Available online: https://www.webofscience.com/ (accessed on 23 December 2024).
- Scopus. Scopus Search. Available online: https://www.sciencedirect.com/ (accessed on 23 December 2024).
- Caputo, A.; Kargina, M. A User-Friendly Method to Merge Scopus and Web of Science Data During Bibliometric Analysis. J. Mark. Anal. 2022, 10, 82–88. [Google Scholar] [CrossRef]
- Chadegani, A.A.; Salehi, H.; Md Yunus, M.M.; Farhadi, H.; Fooladi, M.; Farhadi, M.; Ale Ebrahim, N. A Comparison between Two Main Academic Literature Collections: Web of Science and Scopus Databases. Asian Soc. Sci. 2013, 9, 18–26. [Google Scholar] [CrossRef]
- Mingers, J.; Leydesdorff, L. A Review of Theory and Practice in Scientometrics. Eur. J. Oper. Res. 2015, 246, 1–19. [Google Scholar] [CrossRef]
- Fahimnia, B.; Sarkis, J.; Davarzani, H. Green Supply Chain Management: A Review and Bibliometric Analysis. Int. J. Prod. Econ. 2015, 162, 101–114. [Google Scholar] [CrossRef]
- Tranfield, D.; Denyer, D.; Smart, P. Towards a Methodology for Developing Evidence-Informed Management Knowledge by Means of Systematic Review. Br. J. Manag. 2003, 14, 207–222. [Google Scholar] [CrossRef]
- Mongeon, P.; Paul-Hus, A. The Journal Coverage of Web of Science and Scopus: A Comparative Analysis. Scientometrics. 2016, 106, 213–228. [Google Scholar] [CrossRef]
- Santos, J.S.d.; Parise, C.K.; Duarte, L.; Teodoro, A.C. Bibliometric Analysis of Global Research on Port Infrastructure Vulnerability to Climate Change (2012–2023): Key Indices, Influential Contributions, and Future Directions. Sustainability 2024, 16, 8622. [Google Scholar] [CrossRef]
- Barianaki, E.; Kyvelou, S.S.; Ierapetritis, D.G. How to Incorporate Cultural Values and Heritage in Maritime Spatial Planning: A Systematic Review. Heritage 2024, 7, 380–411. [Google Scholar] [CrossRef]
- Jović, M.; Tijan, E.; Brčić, D.; Pucihar, A. Digitalization in Maritime Transport and Seaports: Bibliometric, Content and Thematic Analysis. J. Mar. Sci. Eng. 2022, 10, 486. [Google Scholar] [CrossRef]
- Morales-Alarcón, C.H.; Bodero-Poveda, E.; Villa-Yánez, H.M.; Buñay-Guisñan, P.A. Blockchain and Its Application in the Peer Review of Scientific Works: A Systematic Review. Publications 2024, 12, 40. [Google Scholar] [CrossRef]
- Bibliometrix. Bibliometrix Home. Available online: https://www.bibliometrix.org/home/ (accessed on 26 December 2024).
- Moral-Muñoz, J.; Herrera-Viedma, E.; Santisteban-Espejo, A.; Cobo, M. Software Tools for Conducting Bibliometric Analysis in Science: An Up-to-Date Review. Prof. Inf. 2020, 29, e290103. [Google Scholar] [CrossRef]
- McLaren, C.D.; Bruner, M.W. Citation Network Analysis. Int. Rev. Sport Exerc. Psychol. 2022, 15, 179–198. [Google Scholar] [CrossRef]
- Abafe, E.A.; Bahta, Y.T.; Jordaan, H. Exploring Biblioshiny for Historical Assessment of Global Research on Sustainable Use of Water in Agriculture. Sustainability 2022, 14, 10651. [Google Scholar] [CrossRef]
- Kumar, R.; Rani, S.; Awadh, M.A. Exploring the Application Sphere of the Internet of Things in Industry 4.0: A Review, Bibliometric and Content Analysis. Sensors 2022, 22, 4276. [Google Scholar] [CrossRef]
- Thangavel, P.; Chandra, B. Two Decades of M-Commerce Consumer Research: A Bibliometric Analysis Using R Biblioshiny. Sustainability 2023, 15, 11835. [Google Scholar] [CrossRef]
- Sheela, S.; Alsmady, A.A.; Tanaraj, K.; Izani, I. Navigating the Future: Blockchain’s Impact on Accounting and Auditing Practices. Sustainability 2023, 15, 16887. [Google Scholar] [CrossRef]
- David, L.O.; Nwulu, N.; Aigbavboa, C.; Adepoju, O. Towards Global Water Security: The Role of Cleaner Production. Clean. Eng. Technol. 2023, 10, 100695. [Google Scholar] [CrossRef]
- Alka, T.A.; Raman, R.; Suresh, M. Research Trends in Innovation Ecosystem and Circular Economy. Discov. Sustain. 2024, 5, 323. [Google Scholar] [CrossRef]
- Silva, M.d.S.T.; de Oliveira, V.M.; Correia, S.É.N. Scientific Mapping in Scopus with Biblioshiny: A Bibliometric Analysis of Organizational Tensions. Context. Rev. Contemp. Econ. Gestão 2022, 20, 54–71. [Google Scholar] [CrossRef]
- Bibliometrix. Frequently Asked Questions. Available online: https://www.bibliometrix.org/home/index.php/faq# (accessed on 30 December 2024).
- Systematic Reviews and Meta-Analyses (PRISMA). PRISMA Statement. Available online: https://www.prisma-statement.org/ (accessed on 26 December 2024).
- Yusop, S.R.M.; Rasul, M.S.; Mohamad Yasin, R.; Hashim, H.U.; Jalaludin, N.A. An Assessment Approaches and Learning Outcomes in Technical and Vocational Education: A Systematic Review Using PRISMA. Sustainability 2022, 14, 5225. [Google Scholar] [CrossRef]
- Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A.; Prisma-P Group. Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P) 2015 Statement. Syst. Rev. 2015, 4, 1. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Moshiul, A.M.; Mohammad, R.; Hira, F.A.; Maarop, N. Alternative Marine Fuel Research Advances and Future Trends: A Bibliometric Knowledge Mapping Approach. Sustainability 2022, 14, 4947. [Google Scholar] [CrossRef]
- Lee, S.H.; Kim, H.; Kwon, S. Fishing Vessel Risk and Safety Analysis: A Bibliometric Analysis, Clusters Review and Future Research Directions. Appl. Sci. 2024, 14, 10439. [Google Scholar] [CrossRef]
- Vrdoljak, L.; Racetin, I.; Zrinjski, M. Bibliometric Analysis of Remote Sensing over Marine Areas for Sustainable Development: Global Trends and Worldwide Collaboration. Sustainability 2024, 16, 6211. [Google Scholar] [CrossRef]
- Callon, M.; Courtial, J.P.; Laville, F. Co-Word Analysis as a Tool for Describing the Network of Interactions Between Basic and Technological Research: The Case of Polymer Chemistry. Scientometrics 1991, 22, 155–205. [Google Scholar] [CrossRef]
- Cobo, M.J.; López-Herrera, A.G.; Herrera-Viedma, E.; Herrera, F. An Approach for Detecting, Quantifying, and Visualizing the Evolution of a Research Field: A Practical Application to the Fuzzy Sets Theory Field. J. Informetr. 2011, 5, 146–166. [Google Scholar] [CrossRef]
- Meyer, N.; Ben Said, F.; Alkathiri, N.A.; Soliman, M. A Scientometric Analysis of Entrepreneurial and the Digital Economy Scholarship: State of the Art and an Agenda for Future Research. J. Innov. Entrep. 2023, 12, 70. [Google Scholar] [CrossRef]
- Szomszor, M.; Adams, J.; Fry, R.; Gebert, C.; Pendlebury, D.A.; Potter, R.W.K.; Rogers, G. Interpreting Bibliometric Data. Front. Res. Metr. Anal. 2021, 5, 628703. [Google Scholar] [CrossRef] [PubMed]
- Moro, A.; Boelman, E.; Joanny, G.; Garcia, J.L. A Bibliometric-Based Technique to Identify Emerging Photovoltaic Technologies in a Comparative Assessment with Expert Review. Renew. Energy 2018, 123, 407–416. [Google Scholar] [CrossRef]
- CRAN. Bibliometrix: Comprehensive Science Mapping Analysis. Available online: https://cran.r-project.org/web/packages/bibliometrix/bibliometrix.pdf (accessed on 22 March 2025).
- Aria, M.; Misuraca, M.; Spano, M. Mapping the Evolution of Social Research and Data Science on 30 Years of Social Indicators Research. Soc. Indic. Res. 2020, 149, 803–831. [Google Scholar] [CrossRef]
- Vaitis, M.; Kopsachilis, V.; Tataris, G.; Michalakis, V.I.; Pavlogeorgatos, G. The Development of a Spatial Data Infrastructure to Support Marine Spatial Planning in Greece. Ocean Coast. Manag. 2022, 218, 106025. [Google Scholar] [CrossRef]
- Contarinis, S.; Nakos, B.; Pallikaris, A. Introducing Smart Marine Ecosystem-Based Planning (SMEP)—How SMEP Can Drive Marine Spatial Planning Strategy and Its Implementation in Greece. Geomatics 2022, 2, 197–220. [Google Scholar] [CrossRef]
- O’Connor, H.M.; Cooper, J.A.G. On the Centrality of Tenure in Spatial Data Systems for Coastal/Marine Management: International Exemplars versus Emerging Practice in Ireland. Ocean Coast. Manag. 2024, 257, 1–17. [Google Scholar] [CrossRef]
- Abramic, A.; Bigagli, E.; Barale, V.; Assouline, M.; Lorenzo-Alonso, A.; Norton, C. Maritime Spatial Planning Supported by Infrastructure for Spatial Information in Europe (INSPIRE). Ocean Coast. Manag. 2018, 152, 23–36. [Google Scholar] [CrossRef]
- Taramelli, A.; Valentini, E.; Sterlacchini, S. A GIS-Based Approach for Hurricane Hazard and Vulnerability Assessment in the Cayman Islands. Ocean Coast. Manag. 2015, 108, 116–130. [Google Scholar] [CrossRef]
- Giorgetti, A.; Partescano, E.; Barth, A.; Buga, L.; Gatti, J.; Giorgi, G.; Wenzer, M. EMODnet Chemistry Spatial Data Infrastructure for Marine Observations and Related Information. Ocean Coast. Manag. 2018, 166, 9–17. [Google Scholar] [CrossRef]
- Mamode, S.A.H.; Runghen, H.; Munnaroo, S.; Bissessur, D.; Coopen, P.; Arnim, Y.V. Mapping of Underwater Cultural Heritage: The Geophysical Survey and Data Management of HMS Sirius Shipwreck. In Proceedings of the OCEANS 2022—Chennai, Chennai, India, 21–24 February 2022; pp. 1–7. [Google Scholar] [CrossRef]
- Kazimierski, W. On Using Spatial Data Infrastructure Concept for Exchange of Navigational Information on Ships. In Proceedings of the 2017 Baltic Geodetic Congress (Geomatics), Gdansk, Poland, 22–25 June 2017; pp. 267–272. [Google Scholar] [CrossRef]
- Ogryzek, M.; Tarantino, E.; Rząsa, K. Infrastructure of the Spatial Information in the European Community (INSPIRE) Based on Examples of Italy and Poland. ISPRS Int. J. Geo-Inf. 2020, 9, 755. [Google Scholar] [CrossRef]
- Ban, H.; Kim, H.J. Analysis and Visualization of Vessels’ Relative Motion (REMO). ISPRS Int. J. Geo-Inf. 2023, 12, 115. [Google Scholar] [CrossRef]
- Wu, A.; Che, T.; Li, X.; Zhu, X. A Ship Navigation Information Service System for the Arctic Northeast Passage Using 3D GIS Based on Big Earth Data. Big Earth Data 2022, 6, 453–479. [Google Scholar] [CrossRef]
- Chou, C.C.; Wang, C.N.; Hsu, H.P.; Ding, J.F.; Tseng, W.J.; Yeh, C.Y. Integrating AIS, GIS, and E-Chart to Analyze the Shipping Traffic and Marine Accidents at the Kaohsiung Port. J. Mar. Sci. Eng. 2022, 10, 1543. [Google Scholar] [CrossRef]
- Zhao, M.; Yao, X.; Sun, J.; Zhang, S.; Bai, J. GIS-Based Simulation Methodology for Evaluating Ship Encounters Probability to Improve Maritime Traffic Safety. IEEE Trans. Intell. Transp. Syst. 2019, 20, 323–337. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Z.; Liu, Z.; Wang, X.; Wang, J. GIS-Based Analysis on the Spatial Patterns of Global Maritime Accidents. Ocean Eng. 2022, 245, 110569. [Google Scholar] [CrossRef]
- Guiziou, F.H. Assessing the Effects of a War on a Container Terminal: Lessons from Al Hudaydah, Yemen. TransNav 2024, 18, 195–204. [Google Scholar] [CrossRef]
- Rudolph, T.A. Seeing Like an Algorithm: The Limits of Using Remote Sensing to Link Vessel Movements with Worker Abuse at Sea. Marit. Stud. 2024, 23, 13. [Google Scholar] [CrossRef]
- Alahmadi, S.; Al-Ahmadi, K.; Almeshari, M. Spatial Variation in the Association between NO2 Concentrations and Shipping Emissions in the Red Sea. Sci. Total Environ. 2019, 676, 131–143. [Google Scholar] [CrossRef]
- Kim, J.; Emmerich, M.T.M.; Voors, R.; Ording, B.; Lee, J.-S. A Systematic Approach to Identify Shipping Emissions Using Spatio-Temporally Resolved TROPOMI Data. Remote Sens. 2023, 15, 3453. [Google Scholar] [CrossRef]
- Ma, J.; Ma, R.; Pan, Q.; Liang, X.; Wang, J.; Ni, X. A Global Review of Progress in Remote Sensing and Monitoring of Marine Pollution. Water 2023, 15, 3491. [Google Scholar] [CrossRef]
- Saliba, M.; Azzopardi, F.; Muscat, R.; Grima, M.; Smyth, A.; Jalkanen, J.-P.; Johansson, L.; Deidun, A.; Gauci, A.; Galdies, C.; et al. Trends in Vessel Atmospheric Emissions in the Central Mediterranean over the Last 10 Years and during the COVID-19 Outbreak. J. Mar. Sci. Eng. 2021, 9, 762. [Google Scholar] [CrossRef]
- Wei, L.; Hu, Z.; Dong, L.; Zhao, W. A Damage Assessment Model of Oil Spill Accident Combining Historical Data and Satellite Remote Sensing Information: A Case Study in Penglai 19-3 Oil Spill Accident of China. Mar. Pollut. Bull. 2015, 91, 258–271. [Google Scholar] [CrossRef] [PubMed]
- Baghdady, S.M.; Abdelsalam, A.A. Ten Years of Oil Pollution Detection in Eastern Mediterranean Shipping Routes Opposite the Egyptian Coast Using Remote Sensing Techniques. Sci. Rep. 2024, 14, 18057. [Google Scholar] [CrossRef]
- Belhadj, C.; Rifi, M.; Mohamed, A.B.; Rebai, N.; Shili, A. An Integrated GIS, Remote Sensing, Geochemical, and Ecological Approach for Correlating and Identifying Oil Contamination Sources of Tunisia’s Northern Coast. Reg. Stud. Mar. Sci. 2024, 69, 103320. [Google Scholar] [CrossRef]
- Salgado-Hernanz, P.M.; Bauzà, J.; Alomar, C.; Compa, M.; Romero, L.; Deudero, S. Assessment of Marine Litter through Remote Sensing: Recent Approaches and Future Goals. Mar. Pollut. Bull. 2021, 168, 112347. [Google Scholar] [CrossRef]
- Topouzelis, K.; Papageorgiou, D.; Suaria, G.; Aliani, S. Floating Marine Litter Detection Algorithms and Techniques Using Optical Remote Sensing Data: A Review. Mar. Pollut. Bull. 2021, 170, 112675. [Google Scholar] [CrossRef]
- Mohseni, F.; Saba, F.; Mirmazloumi, S.M.; Amani, M.; Mokhtarzade, M.; Jamali, S.; Mahdavi, S. Ocean Water Quality Monitoring Using Remote Sensing Techniques: A Review. Mar. Environ. Res. 2022, 180, 105701. [Google Scholar] [CrossRef]
- Quang, N.H.; Dinh, N.T.; Dien, N.T.; Son, L.T. Calibration of Sentinel-2 Surface Reflectance for Water Quality Modelling in Binh Dinh’s Coastal Zone of Vietnam. Sustainability 2023, 15, 1410. [Google Scholar] [CrossRef]
- Hadipour, M.; Morteza, N.; Mokhtar, M.; Ern, L.K. Geospatial Analyzing of Straits Shipping Paths for Integration of Air Quality and Marine Wildlife Conservation. J. Wildl. Biodivers. 2021, 5, 63–80. [Google Scholar] [CrossRef]
- Kao, S.L.; Chung, W.C.; Chen, C.W. AIS-Based Scenario Simulation for the Control and Improvement of Ship Emissions in Ports. J. Mar. Sci. Eng. 2022, 10, 129. [Google Scholar] [CrossRef]
- Salminen, E.A.; Murguzur, F.J.A.; Ollus, V.M.S.; Engen, S.; Hausner, V.H. Using Public Participation GIS (PPGIS) to Relate Local Concerns over Growth in Tourism and Aquaculture to Integrated Coastal Zone Management in the Tromsø Region, Norway. Ocean Coast. Manag. 2025, 261, 107510. [Google Scholar] [CrossRef]
- Brown, G.; Strickland-Munro, J.; Kobryn, H.; Moore, S.A. Stakeholder Analysis for Marine Conservation Planning Using Public Participation GIS. Appl. Geogr. 2016, 67, 77–93. [Google Scholar] [CrossRef]
- Morse, W.C.; Cox, C.; Anderson, C.J. Using Public Participation Geographic Information Systems (PPGIS) to Identify Valued Landscapes Vulnerable to Sea Level Rise. Sustainability 2020, 12, 6711. [Google Scholar] [CrossRef]
- Ettorre, B.; Daldanise, G.; Giovene di Girasole, E.; Clemente, M. Co-Planning Port–City 2030: The InterACT Approach as a Booster for Port–City Sustainable Development. Sustainability 2023, 15, 15641. [Google Scholar] [CrossRef]
- Kalyvas, C.; Kokkos, A.; Tzouramanis, T. A Survey of Official Online Sources of High-Quality Free-of-Charge Geospatial Data for Maritime Geographic Information Systems Applications. Inf. Syst. 2017, 65, 36–51. [Google Scholar] [CrossRef]
- Johansen, T.; Blindheim, S.; Torben, T.R.; Utne, I.B.; Johansen, T.A.; Sørensen, A.J. Development and Testing of a Risk-Based Control System for Autonomous Ships. Reliab. Eng. Syst. Saf. 2023, 234, 109195. [Google Scholar] [CrossRef]
- Park, D.; Park, S. E-Navigation-Supporting Data Management System for Variant S-100-Based Data. Multimed. Tools Appl. 2015, 74, 6573–6588. [Google Scholar] [CrossRef]
- Agrawal, S.; Gupta, R.D. Web GIS and Its Architecture: A Review. Arab. J. Geosci. 2017, 10, 518. [Google Scholar] [CrossRef]
- Patera, A.; Pataki, Z.; Kitsiou, D. Development of a WebGIS Application to Assess Conflicting Activities in the Framework of Marine Spatial Planning. J. Mar. Sci. Eng. 2022, 10, 389. [Google Scholar] [CrossRef]
- Ichimura, Y.; Dalaklis, D.; Kitada, M.; Christodoulou, A. Shipping in the Era of Digitalization: Mapping the Future Strategic Plans of Major Maritime Commercial Actors. Digit. Bus. 2022, 2, 100022. [Google Scholar] [CrossRef]
- Fast, V.; Hossain, F. An Alternative to Desktop GIS? Evaluating the Cartographic and Analytical Capabilities of WebGIS Platforms for Teaching. Cartogr. J. 2020, 57, 175–186. [Google Scholar] [CrossRef]
- Ports of Paraná. Logistica Inteligente. Available online: https://www.portosdoparana.pr.gov.br (accessed on 24 March 2025).
- Port of Hamburg. Interactive Port of Hamburg. Available online: https://www.hafen-hamburg.de/en/portmap/ (accessed on 24 March 2025).
- KYSTINFO. Oslo Port Live Traffic Map. Available online: https://kystinfo.no/share/8281b01e5d7f (accessed on 24 March 2025).
- Thanopoulou, H.; Patera, A.; Moresis, O.; Georgoulis, G.; Lioumi, V.; Kanavos, A.; Papadimitriou, O.; Zervakis, V.; Dagkinis, I. Supporting Informed Public Reactions to Shipping Incidents with Oil Spill Potential: An Innovative Electronic Platform. Sustainability 2023, 15, 15035. [Google Scholar] [CrossRef]
- Dawidowicz, A.; Kulawiak, M. The Potential of Web-GIS and Geovisual Analytics in the Context of Marine Cadastre. Surv. Rev. 2017, 50, 501–512. [Google Scholar] [CrossRef]
- Fernández, P.; Santana, J.M.; Ortega, S.; Trujillo, A.; Suárez, J.P.; Santana, J.A.; Domínguez, C. Web-Based GIS Through a Big Data Open-Source Computer Architecture for Real-Time Monitoring Sensors of a Seaport. In The Rise of Big Spatial Data; Springer: Cham, Switzerland, 2017; pp. 41–53. [Google Scholar] [CrossRef]
- Fernández, P.; Suárez, J.P.; Trujillo, A.; Domínguez, C.; Santana, J.M. 3D-Monitoring Big Geo Data on a Seaport Infrastructure Based on FIWARE. J. Geogr. Syst. 2018, 20, 139–157. [Google Scholar] [CrossRef]
- Makris, C.; Papadimitriou, A.; Baltikas, V.; Spiliopoulos, G.; Kontos, Y.; Metallinos, A.; Androulidakis, Y.; Chondros, M.; Klonaris, G.; Malliouri, D.; et al. Validation and Application of the Accu-Waves Operational Platform for Wave Forecasts at Ports. J. Mar. Sci. Eng. 2024, 12, 220. [Google Scholar] [CrossRef]
- Neugebauer, J.; Heilig, L.; Voß, S. Digital Twins in the Context of Seaports and Terminal Facilities. Flex. Serv. Manuf. J. 2024, 36, 821–917. [Google Scholar] [CrossRef]
- Freire, W.P.; Melo, W.S., Jr.; do Nascimento, V.D.; Nascimento, P.R.M.; de Sá, A.O. Towards a Secure and Scalable Maritime Monitoring System Using Blockchain and Low-Cost IoT Technology. Sensors 2022, 22, 4895. [Google Scholar] [CrossRef]
- Monzon Baeza, V.; Ortiz, F.; Herrero Garcia, S.; Lagunas, E. Comunicações aprimoradas em sistemas de IoT baseados em satélite para dar suporte a serviços de transporte marítimo. Sensors 2022, 22, 6450. [Google Scholar] [CrossRef]
- Argyriou, I.; Tsoutsos, T. Assessing Critical Entities: Risk Management for IoT Devices in Ports. J. Mar. Sci. Eng. 2024, 12, 1593. [Google Scholar] [CrossRef]
- Durlik, I.; Miller, T.; Cembrowska-Lech, D.; Krzemińska, A.; Złoczowska, E.; Nowak, A. Navigating the Sea of Data: A Comprehensive Review on Data Analysis in Maritime IoT Applications. Appl. Sci. 2023, 13, 9742. [Google Scholar] [CrossRef]
- Rathore, M.M.; Shah, S.A.; Shukla, D.; Bentafat, E.; Bakiras, S. The Role of AI, Machine Learning, and Big Data in Digital Twinning: A Systematic Literature Review, Challenges, and Opportunities. IEEE Access 2021, 9, 32030–32052. [Google Scholar] [CrossRef]
- de la Peña Zarzuelo, I.; Freire Soeane, M.J.; López Bermúdez, B. Industry 4.0 in the Port and Maritime Industry: A Literature Review. J. Ind. Inf. Integr. 2020, 20, 100173. [Google Scholar] [CrossRef]
- Diaz, R.; Ungo, R.; Smith, K.; Haghnegahdar, L.; Singh, B.; Phuong, T. Applications of AI/ML in Maritime Cyber Supply Chains. Procedia Comput. Sci. 2024, 232, 3247–3257. [Google Scholar] [CrossRef]
- Zhou, X. Spatial Risk Assessment of Maritime Transportation in Offshore Waters of China Using Machine Learning and Geospatial Big Data. Ocean Coast. Manag. 2024, 247, 106934. [Google Scholar] [CrossRef]
- Cioffi, R.; Travaglioni, M.; Piscitelli, G.; Petrillo, A.; De Felice, F. Artificial Intelligence and Machine Learning Applications in Smart Production: Progress, Trends, and Directions. Sustainability 2020, 12, 492. [Google Scholar] [CrossRef]
- Thill, J.-C.; Venkitasubramanian, K. Multi-Layered Hinterland Classification of Indian Ports of Containerized Cargoes Using GIS Visualization and Decision Tree Analysis. Marit. Econ. Logist. 2014, 17, 265–291. [Google Scholar] [CrossRef]
- Zhuang, X.; Li, W.; Xu, Y. Port Planning and Sustainable Development Based on Prediction Modelling of Port Throughput: A Case Study of the Deep-Water Dongjiakou Port. Sustainability 2022, 14, 4276. [Google Scholar] [CrossRef]
- Peng, W.; Bai, X.; Yang, D.; Yuen, K.F.; Wu, J. A Deep Learning Approach for Port Congestion Estimation and Prediction. Marit. Policy Manag. 2023, 50, 835–860. [Google Scholar] [CrossRef]
- Irannezhad, E.; Prato, C.G.; Hickman, M. An Intelligent Decision Support System Prototype for Hinterland Port Logistics. Decis. Support Syst. 2020, 130, 113227. [Google Scholar] [CrossRef]
- Alizadeh, D.; Alesheikh, A.A.; Sharif, M. Vessel Trajectory Prediction Using Historical Automatic Identification System Data. J. Navig. 2020, 1, 1–19. [Google Scholar] [CrossRef]
- Huang, I.-L.; Lee, M.-C.; Nieh, C.-Y.; Huang, J.-C. Ship Classification Based on AIS Data and Machine Learning Methods. Electronics 2024, 13, 98. [Google Scholar] [CrossRef]
- Nakashima, M.; Shibasaki, R. Can AIS Data Improve the Short-Term Forecast of Weekly Dry Bulk Cargo Port Throughput? A Machine-Learning Approach. Marit. Policy Manag. 2023, 51, 1788–1804. [Google Scholar] [CrossRef]
- Reggiannini, M.; Salerno, E.; Bacciu, C.; D’Errico, A.; Lo Duca, A.; Marchetti, A.; Martinelli, M.; Mercurio, C.; Mistretta, A.; Righi, M.; et al. Remote Sensing for Maritime Traffic Understanding. Remote Sens. 2024, 16, 557. [Google Scholar] [CrossRef]
- Sedaghat, A.; Arbabkhah, H.; Jafari Kang, M.; Hamidi, M. Deep Learning Applications in Vessel Dead Reckoning to Deal with Missing Automatic Identification System Data. J. Mar. Sci. Eng. 2024, 12, 152. [Google Scholar] [CrossRef]
- Rawson, A.; Brito, M. Developing Contextually Aware Ship Domains Using Machine Learning. J. Navig. 2021, 74, 515–532. [Google Scholar] [CrossRef]
- Rawson, A.; Brito, M.; Sabeur, Z. Spatial Modeling of Maritime Risk Using Machine Learning. Risk Anal. 2022, 42, 2291–2311. [Google Scholar] [CrossRef]
- Rawson, A.; Sabeur, Z.; Brito, M. Intelligent Geospatial Maritime Risk Analytics Using the Discrete Global Grid System. Big Earth Data. 2021, 6, 294–322. [Google Scholar] [CrossRef]
- Yang, Y.; Shao, Z.; Hu, Y.; Mei, Q.; Pan, J.; Song, R.; Wang, P. Geographical Spatial Analysis and Risk Prediction Based on Machine Learning for Maritime Traffic Accidents: A Case Study of Fujian Sea Area. Ocean Eng. 2022, 266, 113106. [Google Scholar] [CrossRef]
- Rawson, A.; Brito, M.; Sabeur, Z.; Tran-Thanh, L. A Machine Learning Approach for Monitoring Ship Safety in Extreme Weather Events. Saf. Sci. 2021, 141, 105336. [Google Scholar] [CrossRef]
- Najafizadegan, S.; Danesh-Yazdi, M. Variable-Complexity Machine Learning Models for Large-Scale Oil Spill Detection: The Case of Persian Gulf. Mar. Pollut. Bull. 2023, 195, 115459. [Google Scholar] [CrossRef]
- Le, L.T. Discovering Supply Chain Operation Towards Sustainability Using Machine Learning and DES Techniques: A Case Study in Vietnam Seafood. Marit. Bus. Rev. 2024, 9, 243–262. [Google Scholar] [CrossRef]
- Novaes Mathias, T.; Sugimura, Y.; Kawasaki, T.; Akakura, Y. Topological Resilience of Shipping Alliances in Maritime Transportation Networks. Logistics 2025, 9, 6. [Google Scholar] [CrossRef]
- Pagano, P.; Antonelli, S.; Tardo, A. C-Ports: A Proposal for a Comprehensive Standardization and Implementation Plan of Digital Services Offered by the “Port of the Future”. Comput. Ind. 2022, 134, 103556. [Google Scholar] [CrossRef]
- Hatlas-Sowinska, P.; Wielgosz, M. Ontology-Based Approach in Solving Collision Situations at Sea. Ocean Eng. 2022, 260, 111941. [Google Scholar] [CrossRef]
- Zhou, C.; Wen, K.; Zhao, J.; Bian, Z.; Lu, T.; Ko Ko Latt, M.; Wang, C. Ontology-Based Method for Identifying Abnormal Ship Behavior: A Navigation Rule Perspective. J. Mar. Sci. Eng. 2024, 12, 881. [Google Scholar] [CrossRef]
- Zhang, C.; Zhao, T.; Li, W. Geospatial Data Interoperability, Geography Markup Language (GML), Scalable Vector Graphics (SVG), and Geospatial Web Services. In Geospatial Semantic Web; Springer: Cham, Switzerland, 2015. [Google Scholar] [CrossRef]
- Gourmelon, F.; Le Guyader, D.; Fontenelle, G. A Dynamic GIS as an Efficient Tool for Integrated Coastal Zone Management. ISPRS Int. J. Geo-Inf. 2014, 3, 391–407. [Google Scholar] [CrossRef]
- Andrei, N.; Scarlat, C.; Ioanid, A. Transforming E-Commerce Logistics: Sustainable Practices through Autonomous Maritime and Last-Mile Transportation Solutions. Logistics 2024, 8, 71. [Google Scholar] [CrossRef]
- El-Magd, I.A.; Mohamed, Z.; Elham, M.A.; Abdulaziz, M.A. An Open-Source Approach for Near-Real-Time Mapping of Oil Spills along the Mediterranean Coast of Egypt. Remote Sens. 2021, 13, 2733. [Google Scholar] [CrossRef]
Screening | WOS | Scopus |
---|---|---|
Final Boolean Equation | TS = (((“spatial data infrastructure” OR “marine sdi” OR “geogra* information system” OR “gis*” OR “geospatial data integration”) AND (“seaport” OR “port” OR ((“smart” OR “green” OR “intelligent” OR “automated “) AND “port*”) OR “maritime*” OR “logistic*” OR “terminal*” OR “ship*” OR “vessel*” OR “berth*” OR “container*”) AND (“interoperability” OR “visualiz*” OR “open data” OR “digital*” OR (“web” AND (“map” OR “service” OR “gis” OR “based gis”)) AND (“map*” OR “dataset” OR “tool” OR “ais” OR “iot”)))) | TITLE-ABS-KEY ((“spatial data infrastructure” OR “marine sdi” OR “geogra* information system” OR “gis*” OR “geospatial data integration”) AND (“seaport” OR “port” OR ((“smart” OR “green” OR “intelligent” OR “automated “) AND “port*”) OR “maritime*” OR “logistic*” OR “terminal*” OR “ship*” OR “vessel*” OR “berth*” OR “container*”) AND (“interoperability” OR “visualiz*” OR “stakeholder*” OR “open data” OR “digital*” OR (“web” AND (“map” OR “service” OR “gis” OR “based gis”)) AND ( “map*” OR “dataset” OR “tool” OR “ais” OR “iot”))) AND PUBYEAR AFT 2014 |
Languages | English | English |
Document Types | Articles and review article | Articles and review article |
Research Areas | Environmental Sciences Ecology, Engineering, Water Resources, Remote Sensing, Computer Science, Imaging Science Photographic Technology, Science Technology Other Topics, Meteorology Atmospheric Sciences, Oceanography, Geography, Transportation, Marine Freshwater Biology, Biodiversity Conservation, Energy Fuels, Operations Research Management Science. | Environmental science, Earth and Planetary Sciences, Engineering, Agricultural and Biological Sciences, Computer Science, Energy, Business, Management and Accounting, Decision Sciences e Multidisciplinary. |
Type | Description | Results |
Main information about data | ||
Period | Years of publication | 2014:2024 |
Sources (Journals, Books, etc) | Frequency distribution of sources as journals | 279 |
Documents | Total number of documents | 530 |
Annual Growth Rate % | Average number of annual growth | 8.59 |
Document Average Age | Average age of the document | 5.14 |
Average citations per doc | Average total number of citations per document | 28.65 |
Document contents | ||
Keywords Plus (ID) | Total number of phrases that frequently appear in the title of an article’s references | 2429 |
Author’s Keywords (DE) | Total number of keywords | 2194 |
Authors | ||
Authors | Total number of authors | 2205 |
Authors of single-authored docs | Number of single authors per article | 26 |
Authors collaboration | ||
Single-authored docs | Number of documents written by a single author | 26 |
Co-Authors per Doc | Average number of co-authors in each document | 4.72 |
International co-authorships % | Average number of international co-authorships | 24.72 |
Document types | ||
Article | Number of articles | 514 |
Article; early access | Number of early access articles | 6 |
Review | Number of review articles | 10 |
Study Objective [Reference] | Models Used | Key Findings and Impact |
---|---|---|
Investigate the logistical dynamics and competitiveness of major Indian ports in container transportation [156]. | Decision tree model with advanced GIS techniques to map the hinterland port structure and dynamics. | Accuracy of 75.7% (error 0.243), identifying inter-port competition in three dimensions: spatial distribution, cargo diversity, and shipment variations. Reveals strategic connections between production centers and logistics infrastructure. |
Forecast demand and productivity at Dongjiakou Port, China [157]. | Grey model and principal component analysis to predict throughput from 2021 to 2025. | High accuracy with deviations within ±5% until 2018. Significant deviation (23.07%) in 2020 due to COVID-19. The grey model demonstrated robustness and forecasts 72.9 million tons of cargo for 2025. GIS and spatial autocorrelation analysis link port growth to economic development. |
Predict port congestion in Shanghai, Singapore, and Ningbo [158]. | Deep learning model, long short-term memory (LSTM), an advanced variant of recurrent neural network (RNN), and AIS data, tested across four scenarios. | Shanghai exhibited the highest accuracy (RMSE < 6.26; MAE < 3.62), demonstrating that incorporating data from other ports improves long-term forecasting. |
Intelligent decision support systems within the Brisbane Port PCS (Australia) [159]. | Geoprocessing in ArcGIS, Tabu Search algorithm, and reinforcement learning in a multi-agent system for logistics optimisation. | Cost reduction of >50% when all agents adhere to the solution. PCS web integration optimizes the container supply chain in the port hinterland. |
Ship trajectory prediction to prevent collisions in the Juan de Fuca/Georgia Strait (USA) [160]. | Point-based similarity search prediction (PSSP), trajectory-based similarity search prediction (TSSP), and trajectory-based similarity search prediction (TSSPL) models using LSTM to dynamically predict spatial distances. | TSSPL model reduced prediction error by up to 55.8% (for 10 to 40 min intervals), improving accuracy by leveraging LSTM-estimated spatial distances. |
Monitoring and classification of navigation patterns in the Changhua Wind Farm Channel [161]. | GIS integrated with machine learning algorithms logistic regression (LR), decision tree (DT), K-nearest neighbor (KNN), linear discriminant analysis (LDA), naive gaussian bayes (GNB), support vector machines (SVM), random forest (RF), and Xtreme gradient boosting (XGBoost). | XGBoost and RF achieved 97% accuracy in detecting anomalous navigation behaviors, demonstrating the effectiveness of machine learning in maritime analytics. |
Short-term prediction of dry bulk cargo movement at Port Hedland, Australia [162]. | LSTM-based models: LSTM-Base (weekly cargo fluctuations in similar ports) and LSTM-AIS (observed data at Hedland) | AIS-integrated LSTM improved accuracy (MAPE: 10.7%, RMSE: 1.36) over baseline model (MAPE: 15.6%, RMSE: 1.88). GIS played a key role in processing ship position data using Geohash. |
Maritime traffic assessment using optical and radar data, integrated into WebGIS and OSIRIS system [163]. | RF classification using OpenSARShip dataset (Sentinel-1) | Overall accuracy: 64%. Balanced accuracy per class: bulk carriers 0.70, cargo ships 0.76, container ships 0.86, tankers 0.70. |
Development of an online real-time maritime traffic prediction system in the Gulf Intracoastal Waterway, Texas [164]. | LSTM model | Model implemented in a user interface, achieving high predictive performance (R2 = 0.99, MAE = 0.0046). Further integration of advanced ML techniques can enhance predictive capabilities. |
Maritime collision prediction and risk analysis [165]. | RF algorithms for predicting critical passing distances under multiple conditions (Puget Sound, Washington—Vancouver Island) | RF validation model fit: R2 = 0.69. |
Annual vessel accident and grounding prediction in the UK [166]. | GIS-based spatial risk models using LR, SVM, XGBoost, and RF | RF achieved high accuracy (93%), excelling in collision risk identification for commercial and recreational ships. |
Spatial maritime risk modelling using DGGS for ship grounding prediction in the US [167]. | RF algorithm | RF effectively estimated high-risk grounding locations (R2 = 0.55, MSE = 0.002). GIS-generated risk maps supported mitigation strategies. |
Maritime accident prediction using GIS-based analysis in Fujian Sea [168]. | RF, Adaboost, GBDT, Stacking model, LSTM, convolutional neural network (CNN), SVM | GIS analysed AIS spatial distribution and accident patterns. Classification accuracy: RF (0.77), Adaboost (0.75), GBDT (0.77), Stacking (0.77). |
Predictive models for ship safety monitoring during Atlantic hurricane season (US) [169]. | Historical incident, ship traffic, geographic, and metocean data integrated via DGGS; models: LR, SVM, RF, XGBoost, stochastic gradient descent (SGD)—optimized SVM, multi-layer perception (MLP) | RF had the highest accuracy (0.99) and lowest false positives (7), but lowest recall (0.29), missing many positive cases. |
Marine ecosystem monitoring via ML-based oil spill detection in the Persian Gulf [170]. | SAR image classification (Sentinel-1) using SVM, RF, CNN | RF classifier achieved high accuracy: 99.81% (kappa 0.99) in training, 86.01% (kappa 0.69) in testing, proving model robustness. |
Supply chain dynamics analysis in Vietnam using advanced ML simulation [171]. | GIS-integrated artificial neural networks (ANNs), converting geospatial data for supply chain analysis | ANN3 showed superior performance (RMSPE: 16.1%, MPE: 1.15%, MAPE: 7.03%), confirming effectiveness in fuel consumption prediction and sustainable navigation. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Isbaex, C.; Costa, F.d.R.F.; Batista, T. Application of GIS in the Maritime-Port Sector: A Systematic Review. Sustainability 2025, 17, 3386. https://doi.org/10.3390/su17083386
Isbaex C, Costa FdRF, Batista T. Application of GIS in the Maritime-Port Sector: A Systematic Review. Sustainability. 2025; 17(8):3386. https://doi.org/10.3390/su17083386
Chicago/Turabian StyleIsbaex, Crismeire, Francisco dos Reis Fernandes Costa, and Teresa Batista. 2025. "Application of GIS in the Maritime-Port Sector: A Systematic Review" Sustainability 17, no. 8: 3386. https://doi.org/10.3390/su17083386
APA StyleIsbaex, C., Costa, F. d. R. F., & Batista, T. (2025). Application of GIS in the Maritime-Port Sector: A Systematic Review. Sustainability, 17(8), 3386. https://doi.org/10.3390/su17083386