Carbon Emissions and Innovation Cities: A SHAP-Model-Based Study on Decoupling Trends and Policy Implications in Coastal China
Abstract
:1. Introduction
2. Indicator Framework
3. Data and Methods
3.1. Data Sources
3.2. Methodology
3.2.1. Measurement of Innovation Cities
- (1)
- Data normalization
- (2)
- Index normalization
- (3)
- Weight calculation
3.2.2. Measurement of Carbon Emissions
3.2.3. Tapio Decoupling Model
3.2.4. Interpretability of Decoupling Index
4. Results
4.1. Spatiotemporal Distribution Characteristics of Innovation Cities and Carbon Emissions
4.2. Evolving Decoupling Relationship of Carbon Emissions and Innovation Cities and Influencing Factors
4.3. Influencing Factors
5. Conclusions and Policy Recommendations
5.1. Conclusions
5.2. Policy Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SHAP | SHapley Additive exPlanations |
END | Expansive Negative Decoupling |
EC | Expansive Coupling |
WD | Weak Decoupling |
SD | Strong Decoupling |
References
- Toptal, A.; Özlü, H.; Konur, D. Joint decisions on inventory replenishment and emission reduction investment under different emission regulations. Int. J. Prod. Res. 2013, 52, 243–269. [Google Scholar] [CrossRef]
- Zhang, Y.; Da, Y. The Decomposition of Energy-related Carbon Emission and Its Decoupling with Economic Growth in China. Renew. Sustain. Energy Rev. 2015, 41, 1255–1266. [Google Scholar] [CrossRef]
- Yao, X.; Kou, D.; Shao, S.; Li, X.; Wang, W.; Zhang, C. Can urbanization process and carbon emission abatement be harmonious? New evidence from China. Environ. Impact Assess. Rev. 2018, 71, 70–83. [Google Scholar] [CrossRef]
- Dong, B.; Ma, X.; Zhang, Z.; Zhang, H.; Chen, R.; Song, Y.; Shen, M.; Xiang, R. Carbon Emissions, the Industrial Structure and Economic Growth: Evidence from Heterogeneous Industries in China. Environ. Pollut. 2020, 262, 114322. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Liu, S.; Lu, C. An evaluation concentrated on post-peak carbon trend scenarios designing and carbon neutral pathways in Hebei Province, China. J. Clean. Prod. 2024, 441, 140952. [Google Scholar] [CrossRef]
- Zhang, S.; Bai, X.; Zhao, C.; Qiu, T.; Luo, G.; Wu, L.; Xi, H.; Li, C.; Chen, F.; Ran, C.; et al. China’s carbon budget inventory from 1997 to 2017 and its challenges to achieving carbon neutral strategies. J. Clean. Prod. 2022, 347, 130966. [Google Scholar] [CrossRef]
- Zhao, Y.; Su, Q.; Li, B.; Zhang, Y.; Wang, X.; Zhao, H.; Guo, S. Have those countries declaring “zero carbon” or “carbon neutral” climategoals achieved carbon emissions-economic growth decoupling? J. Clean. Prod. 2022, 363, 132450. [Google Scholar] [CrossRef]
- Huovila, A.; Siikavirta, H.; Rozado, C.; Rokman, J.; Tuominen, P.; Paiho, S.; Hedman, A.; Ylen, P. Carbon-neutral cities: Critical review of theory and practice. J. Clean. Prod. 2022, 341, 130912. [Google Scholar] [CrossRef]
- Yu, F.; Teng, H. Tactics for carbon neutral office buildings in Hong Kong. J. Clean. Prod. 2021, 326, 129369. [Google Scholar] [CrossRef]
- Yuan, Q.; Zhang, A. Research on The Present Situation of Coordinated Development and The Innovation Path of Beijing-Tianjin-Hebei Industry. In Proceedings of the 2015 3rd International Conference on Education, Management, Arts, Economics and Social Science, Changsha, China, 28–29 December 2016; Volume 279. [Google Scholar] [CrossRef]
- Liu, L.; Si, S.; Li, J. Research on The Effect of Regional Talent Allocation on High-Quality Economic Development—Based on The Perspective of Innovation-Driven Growth. Sustainability 2023, 15, 6315. [Google Scholar] [CrossRef]
- Ndabeni, L.; Rogerson, C.; Booyens, I. Innovation and Local Economic Development Policy in the global South: New South African perspectives. Local Econ. 2016, 31, 299–311. [Google Scholar] [CrossRef]
- Ma, Y.; Zhu, F.; Wang, K. Research on Environmental Regulation Influence in Shandong Province Regional Economic Development. Adv. Mater. Res. 2012, 524–527, 3241–3244. [Google Scholar] [CrossRef]
- Miao, C.; Fang, D.; Sun, L.; Luo, Q. Natural Resources Utilization Efficiency Under the Influence of Green Technological Innovation. Resour. Conserv. Recycl. 2017, 126, 153–161. [Google Scholar] [CrossRef]
- Lu, Y.; Zhu, S. Digital Economy, Scientific and Technological Innovation, and High-quality Economic Development: A Mediating Effect Model Based on The Spatial Perspective. PLoS ONE 2022, 17, e0277245. [Google Scholar] [CrossRef]
- Peng, S.; Jiang, X.; Li, Y. The Impact of The Digital Economy on Chinese Enterprise Innovation Based on Intermediation Models with Financing Constraints. Heliyon 2023, 9, e13961. [Google Scholar] [CrossRef]
- Xiao, H.; Cui, X.; Nazirul, I.; Radin, F. Impact of Industry-university-research Collaboration and Convergence on Economic Development: Evidence from Chengdu-chongqing Economic Circle in China. Heliyon 2023, 9, e21082. [Google Scholar] [CrossRef] [PubMed]
- Dvir, R.; Pasher, E. Innovation engines for knowledge cities: An innovation ecology perspective. J. Knowl. Manag. 2004, 8, 16–27. [Google Scholar] [CrossRef]
- Schaffers, H.; Komninos, N.; Pallot, M.; Trousse, B.; Nilsson, M.; Oliveira, A. Smart Cities and the Future Internet: Towards Cooperation Frameworks for Open Innovation. Future Internet 2011, 6656, 431–446. [Google Scholar] [CrossRef]
- Schuurman, D.; Baccarne, B.; De Lieven, M.; Mechant, P. Smart Ideas for Smart Cities: Investigating Crowdsourcing for Generating and Selecting Ideas for ICT Innovation in a City Context. J. Theor. Appl. Electron. Commer. Res. 2012, 7, 49–62. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, C.; Mao, X.; Liu, B.; Zhang, Z.; Jiang, S. Spatial Pattern and Benefit Allocation in Regional Collaborative Innovation of the Yangtze River Delta, China. Chin. Geogr. Sci. 2021, 31, 900–914. [Google Scholar] [CrossRef]
- Lu, Q.; Yang, H.; Huang, X.; Chuai, X.; Wu, C. Multi-sectoral Decomposition in Decoupling Industrial Growth from Carbon Emissions in The Developed Jiangsu Province, China. Energy 2015, 82, 414–425. [Google Scholar] [CrossRef]
- Yao, S.; Yu, S.; Jia, W. Does Distorted Allocation of Capital Factors Inhibit Green Technology Innovation in Chinese Cities? An Empirical Analysis Based on Spatial Effect. Environ. Sci. Pollut. Res. 2022, 30, 19234–19249. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, X.; Li, N.; Shao, S.; Geng, Y. Decoupling Economic Growth from Carbon Dioxide Emissions in China: A Sectoral Factor Decomposition Analysis. J. Clean. Prod. 2017, 142, 3500–3516. [Google Scholar] [CrossRef]
- Han, H.; Zhong, Z.; Guo, Y.; Xi, F.; Liu, S. Coupling and Decoupling Effects of Agricultural Carbon Emissions in China and Their Driving Factors. Environ. Sci. Pollut. Res. 2018, 25, 25180–25293. [Google Scholar] [CrossRef]
- Wang, M.; Feng, C. Decoupling Economic Growth from Carbon Dioxide Emissions in China’s Metal Industrial Sectors: A Technological and Efficiency Perspective. Sci. Total Environ. 2019, 691, 1173–1181. [Google Scholar] [CrossRef]
- Shan, Y.; Fang, S.; Cai, B.; Zhou, Y.; Li, D.; Feng, K.; Klaus, H. Chinese Cities Exhibit Varying Degrees of Decoupling of Economic Growth and CO2 Emissions Between 2005 and 2015. One Earth 2021, 4, 124–134. [Google Scholar] [CrossRef]
- Shen, F.; Abudukeyimu, A. Multidrivers of Energy-related Carbon Emissions and Its Decoupling with Economic Growth in Northwest China. Sci. Rep. 2024, 14, 7032. [Google Scholar] [CrossRef]
- Wang, X.; Qin, C.; Liu, Y.; Tanasescu, C.; Bao, J. Emerging enablers of green low-carbon development: Do digital economy and open innovation matter? Energy Econ. 2023, 127, 107065. [Google Scholar] [CrossRef]
- Bramwell, A. Inclusive innovation and the “ordinary” city: Incidental or integral? Local Econ. 2021, 3, 242–264. [Google Scholar] [CrossRef]
- Li, F.; Zhang, H. How the “Absorption Processes” of Urban Innovation Contribute to Sustainable Development—A Fussy Set Qualitative Comparative Analysis Based on Seventy-Two Cities in China. Sustainability 2022, 14, 15569. [Google Scholar] [CrossRef]
- Wu, Z. Intelligent City Evaluation Systems in West. In Intelligent City Evaluation System. Strategic Research on Construction and Promotion of China’s Intelligent Cities; Springer: Singapore, 2018. [Google Scholar] [CrossRef]
- Apaydin, D.; Glowacki, E.; Portenkirchner, E.; Sariciftci, N. Direct Electrochemical Capture and Release of Carbon Dioxide Using an Industrial Organic Pigment: Quinacridone. Angew. Chem. Int. Ed. 2014, 53, 6819–6822. [Google Scholar] [CrossRef]
- Liu, W.; Tian, J.; Chen, L. Greenhouse gas emissions in China’s eco-industrial parks: A case study of the Beijing Economic Technological Development Area. J. Clean. Prod. 2014, 66, 384–391. [Google Scholar] [CrossRef]
- Shi, X.; Li, X. Research on three-stage dynamic relationship between carbon emission and urbanization rate in different city groups. Ecol. Indic. 2018, 91, 195–202. [Google Scholar] [CrossRef]
- China Emission Accounts and Datasets (CEADs). Available online: http://www.ceads.net (accessed on 10 October 2024).
- China City Greenhouse Gas Working Group (CCG). Available online: http://www.cityghg.com (accessed on 10 October 2024).
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar] [CrossRef]
- Apley, D.W.; Zhu, J. Visualizing the effects of predictor variables in black box supervised learning models. J. R. Stat. Soc. Ser. B Stat. Methodol. 2020, 82, 1059–1086. [Google Scholar] [CrossRef]
- Ribeiro, M.T.; Singh, S.; Guestrin, C. Model-Agnostic Interpretability of Machine Learning. arXiv 2016, arXiv:1606.05386. [Google Scholar]
- Bi, Y.; Xiang, D.; Ge, Z.; Li, F.; Jia, C.; Song, J. Aninterpretable prediction model for identifying N7-methylguanosine sites based on XGBoost SHAP. Mol. Ther.-Nucleic Acids 2020, 22, 362–372. [Google Scholar] [CrossRef]
- Sundararajan, M.; Najmi, A. The many shapley values for model explanation. Mach. Learn. 2020, 37, 9269–9278. [Google Scholar]
Primary Indicator | Sub-Indicator | Basic Indicator | Abbreviation | Unit |
---|---|---|---|---|
Environment | Environmental | Urban green area per capita | ENU-UG | m2/p |
Friendliness | Green coverage rate in built-up area | ENU-GC | % | |
Domestic sewage treatment rate | ENU-DS | % | ||
Industrial smoke emissions | ENU-IS | tons | ||
Spatial optimization | Proportion of built-up area to total area | ENU-BA | % | |
Length of roads per 10,000 people | ENU-RL | km/10,000 p | ||
Population | Population size | Urbanization rate of resident population | POU-UR | % |
Resident population density | POU-PD | 10,000 p/km2 | ||
Population quality | Ratio of employees in the tertiary sector | POU-TS | % | |
Percentage of primary and secondary school attendance | POU-SA | % | ||
Society | Public service | The number of books in the public library per 10,000 people | SOU-LB | n/10,000 p |
The number of beds in hospitals per 10,000 people | SOU-HB | n/10,000 p | ||
Social security | Public budget expenditure | SOU-FE | CNY 100,000,000 | |
The number of social welfare home beds per 10,000 people | SOU-WB | n/10,000 p | ||
Economy | Industrial efficiency | Proportion of tertiary GDP | ECU-TG | % |
GDP per capita | ECU-PG | CNY/p | ||
Living standards | Disposable income per capita | ECU-DI | CNY/p | |
Consumption expenditure per capita | ECU-CE | CNY/p | ||
The number of motor vehicles per capita | ECU-MV | n/p | ||
Sales of commercial properties per capita | ECU-CP | m2/p |
CE (2008) | CE (2012) | CE (2018) | CE (2022) | |
---|---|---|---|---|
1 | Suzhou, 150.06 | Suzhou, 207.79 | Suzhou, 213.41 | Jinan *, 284.69 |
2 | Shanghai, 144.42 | Shanghai, 168.52 | Binzhou, 185.55 | Suzhou, 284.53 |
3 | Dongguan, 115.32 | Nanjing, 139.47 | Nanjing, 164.91 | Xuzhou, 257.27 |
4 | Nanjing, 94.24 | Ningbo, 120.16 | Xuzhou, 154.50 | Najing, 186.85 |
5 | Ningbo, 87.36 | Xuzhou, 100.07 | Shanghai, 151.47 | Shanghi, 167.96 |
6 | Guangzhou, 87.35 | Guangzhou, 97.27 | Ningbo, 130.05 | Jining, 142.47 |
… | … | … | … | … |
66 | Shanwei, 6.70 | Zhongshan, 11.73 | Xianmen, 14.75 | Qingdao, 8.38 |
67 | Suqian, 5.62 | Lishui, 8.25 | Heyuan, 10.60 | Zhongshan, 8.32 |
68 | Zhoushan, 5.37 | Putian, 8.25 | Zhongshan, 9.90 | Jiangmen, 8.14 |
69 | Putian, 4.79 | Heyuan, 7.66 | Suqian, 8.53 | Lishui, 5.65 |
70 | Yangjiang, 4.41 | Suqian, 7.38 | Lishui, 8.06 | Weihai, 3.34 |
71 | Heyuan, 4.15 | Nanping, 6.85 | Nanping, 5.63 | Shanwei, 1.28 |
IC (2008) | IC (2012) | IC (2018) | IC (2022) | |
---|---|---|---|---|
1 | Xiamen, 0.45 | Xiamen, 0.59 | Xiamen, 0.72 | Shanghai, 0.84 |
2 | Shenzhen, 0.40 | Shenzhen, 0.55 | Hangzhou, 0.70 | Hangzhou, 0.77 |
3 | Nanjing, 0.39 | Hangzhou, 0.50 | Shanghai, 0.66 | Suzhou, 0.72 |
4 | Suzhou, 0.38 | Suzhou, 0.49 | Shenzhen, 0.63 | Xiamen, 0.72 |
5 | Fuzhou, 0.37 | Nanjing, 0.46 | Suzhou, 0.62 | Nanjing, 0.72 |
6 | Hangzhou, 0.33 | Wuxi, 0.41 | Nanjing, 0.57 | Ningbo, 0.70 |
… | … | … | … | … |
66 | Jiangmen, 0.08 | Ningde, 0.09 | Shanwei, 0.09 | Heyuan, 0.13 |
67 | Shanwei, 0.06 | Shanwei, 0.08 | Heyuan, 0.09 | Shanwei, 0.12 |
68 | Heyuan, 0.06 | Heyuan, 0.07 | Meizhou, 0.09 | Zhanjiang, 0.12 |
69 | Yangjiang, 0.05 | Qingyuan, 0.06 | Yangjiang, 0.09 | Zhaoqing, 0.12 |
70 | Qiangyuan, 0.05 | Yangjiang, 0.06 | Qingyuan, 0.08 | Meizhou, 0.11 |
71 | Yunfu, 0.04 | Yunfu, 0.06 | Yunfu, 0.06 | Yunfu, 0.07 |
Time | SD-II | SD-I | WD-II | WD-I | EC | END |
---|---|---|---|---|---|---|
2008–2013 | 14.1% | 14.1% | 11.3% | 12.7% | 4.2% | 43.7% |
2013–2018 | 19.7% | 18.3% | 15.5% | 8.5% | 12.7% | 25.4% |
2018–2022 | 31% | 7.1% | 14.1% | 8.5% | 4.2% | 35.2% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, X.; Ding, L.; Gao, M. Carbon Emissions and Innovation Cities: A SHAP-Model-Based Study on Decoupling Trends and Policy Implications in Coastal China. Sustainability 2025, 17, 3344. https://doi.org/10.3390/su17083344
Fang X, Ding L, Gao M. Carbon Emissions and Innovation Cities: A SHAP-Model-Based Study on Decoupling Trends and Policy Implications in Coastal China. Sustainability. 2025; 17(8):3344. https://doi.org/10.3390/su17083344
Chicago/Turabian StyleFang, Xiaoyu, Lin Ding, and Meng Gao. 2025. "Carbon Emissions and Innovation Cities: A SHAP-Model-Based Study on Decoupling Trends and Policy Implications in Coastal China" Sustainability 17, no. 8: 3344. https://doi.org/10.3390/su17083344
APA StyleFang, X., Ding, L., & Gao, M. (2025). Carbon Emissions and Innovation Cities: A SHAP-Model-Based Study on Decoupling Trends and Policy Implications in Coastal China. Sustainability, 17(8), 3344. https://doi.org/10.3390/su17083344