Towards Sustainable Industrial Processes: A Preselection Method for Screening Green Solvents in the 1,3-Butadiene Extractive Distillation Process
Abstract
:1. Introduction
1.1. Holistic Green Solvent Assessment
1.2. The 1,3-Butadiene Extractive Distillation Process
2. Solvent Screening Approach
2.1. Integrating Environmental, Health, Safety, and Regulatory Criteria
2.2. Technical Evaluation of Solvent Performance
2.3. Evaluation of Physicochemical Properties
2.4. Economic and Market Availability Assessment
2.5. Multi-Criteria Decision-Making Using AHP
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lei, Z.; Heitao, M.; Qilei, L.; Rafiqul, G. Chemical product design—Recent advances and perspectives. Curr. Opin. Chem. Eng. 2019, 27, 22–34. [Google Scholar]
- Winterton, N. The green solvent: A critical perspective. Clean Technol. Environ. Policy 2021, 23, 2499–2522. [Google Scholar] [PubMed]
- EPA Finds Carbon Tetrachloride Poses Unreasonable Risk to Human Health. Available online: https://www.epa.gov/chemicals-under-tsca/epa-finds-carbon-tetrachloride-poses-unreasonable-risk-human-health (accessed on 26 August 2024).
- Price, D.J. Carbon Disulfide. In Hamilton & Hardy’s Industrial Toxicology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015; pp. 317–324. [Google Scholar]
- Wang, T.; Cao, Y.; Xia, Z.; Christiani, D.C.; Au, W.W. Review on novel toxicological effects and personalized health hazard in workers exposed to low doses of benzene. Arch. Toxicol. 2024, 98, 365–374. [Google Scholar] [PubMed]
- Kim, Y.W.; Kim, M.J.; Chung, B.Y.; Bang, D.Y.; Lim, S.K.; Choi, S.M.; Lim, D.S.; Cho, M.C.; Yoon, K.; Kim, H.S.; et al. Safety evaluation and risk assessment of d-limonene. J. Toxicol. Environ. Health 2023, 16, 17–38. [Google Scholar]
- European Chemicals Agency (ECHA), Substance Infocard. Available online: https://echa.europa.eu/substance-information/-/substanceinfo/100.012.345 (accessed on 20 October 2024).
- Byrne, F.P.; Jin, S.; Paggiola, G.; Petchey TH, M.; Clark, J.H.; Farmer, T.J.; Hunt, A.J.; Robert McElroy, C.; Sherwood, J. Tools and techniques for solvent selection: Green solvent selection guides. Sustain. Chem. Process. 2016, 4, 7. [Google Scholar]
- Prat, D.; Wells, A.; Hayler, J.; Sneddon, H.; McElroy, C.R.; Abou-Shehada, S.; Dunn, P.J. CHEM21 selection guide of classical- and less classical-solvents. Green Chem. 2016, 18, 288–296. [Google Scholar]
- Andraos, J. Safety/Hazard Indices: Completion of a Unified Suite of Metrics for the Assessment of “Greenness” for Chemical Reactions and Synthesis Plans. Org. Process Res. Dev. 2013, 17, 175–192. [Google Scholar]
- Tickner, J.A.; Simon, R.V.; Jacobs, M.; Pollard, L.D.; van Bergen, S.K. The nexus between alternatives assessment and green chemistry: Supporting the development and adoption of safer chemicals. Green Chem. Lett. Rev. 2020, 14, 23–44. [Google Scholar]
- White, C. Butadiene production process overview. Chem. Biol. Interact. 2007, 166, 10–14. [Google Scholar]
- Agbaje, T.A.; Vega, L.F.; Khaleel, M.; Wang, K.; Karanikolos, G.N. Membranes and adsorbents in separation of C4 hydrocarbons: A review and the definition of the current upper bounds. Sep. Purif. Technol. 2021, 278, 119530. [Google Scholar] [CrossRef]
- Gerd Bohner, K.; Kindler, M.; Pahl, G.K. Method for Recovery Crude 1,3-Butadiene by Extractive Distillation from a C4 Cut. U.S. Patent 7,226,527 B2, 5 June 2007. [Google Scholar]
- Chen, J.; Cui, C.; Liu, S.; Xi, Z.; Sun, J. Design of an energy saving ACN-based butadiene production process by using dividing wall columns. Chem. Eng. Trans. 2018, 69, 415–420. [Google Scholar]
- Gehre, M.; Guo, Z.; Rothenberg, G.; Tanase, S. Sustainable separations of C4-hydrocarbons by using microporous materials. ChemSusChem 2017, 10, 3947–3963. [Google Scholar] [CrossRef] [PubMed]
- Hähnel, T.; Kalies, G.; Krishna, R.; Möllmer, J.; Hofmann, J.; Kobalz, M.; Krautscheid, H. Adsorptive separation of C2/C3/C4-hydrocarbons on a flexible Cu-MOF: The influence of temperature, chain length and bonding character. Microporous Mesoporous Mater. 2016, 224, 392–399. [Google Scholar] [CrossRef]
- Liao, P.; Huang, N.; Zhang, W.X.; Zhang, J.; Chen, X. Controlling guest conformation for efficient purification of butadiene. Science 2017, 356, 1193–1196. [Google Scholar] [CrossRef]
- Schulze, J.; Homann, M. C4—Hydrocarbons and Derivatives: Resources, Production, Marketing; Springer: Berlin/Heidelberg, Germany, 1989; Volume 1, pp. 9–33. [Google Scholar]
- Mathias, P.M.; Richard Elliott, J.; Klamt, A. Butadiene purification using polar solvents. Analysis of solution nonideality using data and estimation methods. Ind. Eng. Chem. Res. 2008, 47, 4996–5004. [Google Scholar] [CrossRef]
- Sun, D.; Li, Y.; Yang, C.; Su, Y.; Yamada, Y.; Sato, S. Production of 1,3-butadiene from biomass-derived C4 alcohols. Fuel Process. Technol. 2020, 197, 106193. [Google Scholar] [CrossRef]
- Doherty, M.F.; Knapp, J.P. Distillation, azeotropic, and extractive. Kirk-Othmer Encycl. Chem. Technol. 2000, 8, 786–852. [Google Scholar]
- Kockmann, N. 200 Years in Innovation of Continuous Distillation. ChemBioEng Rev. 2014, 1, 40–49. [Google Scholar] [CrossRef]
- Marc, D.; Joachim, G.; Eckhard, L. Butadiene. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH Verlag GmbH & Co.: Weinheim, Germany, 2011; pp. 1–24. [Google Scholar]
- Davis, G.D.; Makin, E.E. Solvent effects on phase equilibrium of C4 hydrocarbon-solvent systems. Ind. Eng. Chem. Process Des. Dev. 1969, 8, 588–592. [Google Scholar] [CrossRef]
- Davis, G.D.; Makin, E.C.; Middlebrooks, C.H. Process evaluation of improved solvents for butadiene recovery. Am. Chem. Soc. 1970, 14, 215–227. [Google Scholar]
- Kim, Y.; Kim, S.; Lee, B. Simulation of 1,3-Butadiene extractive distillation process using N-methyl-2-pyrrolidone solvent. Korean J. Chem. Eng. 2012, 29, 1493–1499. [Google Scholar] [CrossRef]
- Lei, Z.; Wang, H.; Zhou, R.; Duan, Z. Influence of salt added to solvent on extractive distillation. Chem. Eng. J. 2002, 87, 149–156. [Google Scholar] [CrossRef]
- Pavlov, O.S.; Karsakov, S.A.; Pavlov, S.Y. Development of processes for C4 hydrocarbons separation and 1,3-butadiene purification. Theor. Found. Chem. Eng. 2011, 45, 858–867. [Google Scholar] [CrossRef]
- Kerton, F. Renewable Solvents. In Alternative Solvents for Green Chemistry; RSC Publishing: Cambridge, UK, 2009; Volume 131, pp. 97–117. [Google Scholar]
- Warner, J.C. Reaction: Exploring the chemistry frontier in water-borne vessels. Chem 2008, 4, 20008–22010. [Google Scholar] [CrossRef]
- Plechkova, N.V.; Seddon, K.R. Applications of ionic liquids in the chemical industry. Crit. Rev. 2007, 37, 123–150. [Google Scholar] [CrossRef]
- Curzons, A.; Constable, D.; Cunningham, V. Solvent selection guide: A guide to the integration of environmental, health and safety criteria into the selection of solvents. Clean Technol. Environ. Policy 1999, 1, 82–90. [Google Scholar] [CrossRef]
- Prausnitz, J.M.; Anderson, R. Thermodynamics of solvent selectivity in extractive distillation of hydrocarbons. AIChE J. 1961, 7, 96–101. [Google Scholar] [CrossRef]
- Doherty, M.F.; Malone, M.F. Conceptual Design of Distillation System; McGraw-Hill: New York, NY, USA, 2001; Volume 49, p. 2452. [Google Scholar]
- Blass, E. Entwicklung Verfahrenstechnischer Prozesse; Salle & Sauerlander: Aarau, Switzerland, 1989; Volume 2. [Google Scholar]
- Momoh, S.O. Assessing the accuracy of selectivity as a basis for solvent screening in extractive distillation processes. Sep. Sci. Technol. 1991, 26, 729–742. [Google Scholar] [CrossRef]
- Rawat, B.S.; Mallik, K.L.; Gulati, I.N. Study of solvents for butadiene extraction by gas chromatography. J. Appl. Chem. Biotechnol. 1972, 22, 1001–1006. [Google Scholar] [CrossRef]
- Letcher, T.M.; Moollan, W.C. The Determination of Activity Coefficients at Infinite Dilution Using G.L.C. with a Moderately Volatile Solvent (Dodecane) at the Temperatures 280.15 K and 298.15 K. J. Chem. Thermodyn. 1995, 27, 1025–1032. [Google Scholar] [CrossRef]
- Yahyaee, A.; Nazifi, M.; Kianpour, M.; Heidar, K.T. Experimental Investigation and Modeling of Activity Coefficient at Infinite Dilution of Solutes Using Dicationic Solvent Based on Pyrrolidinium as a New Stationary Phase in Gas Chromatography. Am. J. Anal. Chem. 2018, 9, 257–271. [Google Scholar]
- Dortmund Data Bank (DDB): Thermophysical Property Data. DDBST GmbH. Available online: https://www.ddbst.com (accessed on 24 February 2025).
- Seider, W.D.; Seader, J.D.; Lewin, D.R.; Widagdo, S.; Gani, R.; Ng, K.M. Simulation to Assist in Process Creation. In Product and Process Design Principles: Synthesis, Analysis, and Evaluation, 3rd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009; pp. 110–152. [Google Scholar]
- Bastos, J.C.; Soares, M.E.; Medina, A.G. Selection of solvents for extractive distillation. A data bank for activity coefficients at infinite dilution. Ind. Eng. Chem. Process Des. Dev. 1985, 24, 420–426. [Google Scholar]
- Gerster, J.A.; Gorton, J.A.; Eklund, R.B. Selective Solvents for Separation of n-Pentane from 1-Pentene by Extractive Distillation. J. Chem. Eng. Data 1960, 5, 423–429. [Google Scholar] [CrossRef]
- Kolbe, B.; Gmehling, J.; Onken, V. Distillation. Inst. Chem. Eng. 1979, 1, 23. [Google Scholar]
- Kyle, B.G.; Leng, D.E. Solvent Selection for Extractive Distillation. Ind. Eng. Chem. 1965, 57, 43. [Google Scholar]
- Lei, Z.; Li, C.; Chen, B. Extractive Distillation: A Review. Sep. Purif. Rev. 2003, 32, 121. [Google Scholar]
- Gerbaud, V.; Rodriguez-Donis, I.; Hegely, L.; Lang, P.; Denes, F.; You, X.Q. Review of Extractive Distillation. Process Design, Operation, Optimization and Control. Chem. Eng. Res. Des. 2019, 141, 229. [Google Scholar]
- Raeva, V.M.; Stoyakina, I.E. Selecting Extractive Agents on the Basis of Composition—Excess Gibbs Energy Data. Russ. J. Phys. Chem. A 2021, 95, 1779. [Google Scholar] [CrossRef]
- Bruce, L.G.; Edward, A.W.; Patrick, T.H. The Analytic Hierarchy Process, Applications and Studies, 1st ed.; Springer: Berlin/Heidelberg, Germany, 1989; pp. 1–265. [Google Scholar]
- Saaty, L. Axiomatic Foundation of the Analytic Hierarchy Process. Manag. Sci. 1986, 32, 841–855. [Google Scholar]
Component | Composition (wt%) |
---|---|
1,3-Butadiene | 49.9 |
iso-Butene | 25.1 |
1-Butene | 9.6 |
trans-2-Butene | 5.5 |
n-Butane | 3.4 |
cis-2-Butene | 3.1 |
iso-Butane | 1.5 |
Vinylacetylene | 1.2 |
1,2-Butadiene | 0.3 |
Propyne | 0.2 |
1-Butyne | 0.2 |
2-Methyl-1-Butene | 0.010 |
Propane | 0.005 |
Propene | 0.005 |
Propadiene | 0.001 |
Solvents | CAS Number | REACH Restriction | Solvents | CAS Number | REACH Restriction |
---|---|---|---|---|---|
Acetic Acid | 64-19-7 | No | N-Formylmorpholine | 4394-85-8 | No |
Acetone | 67-64-1 | No | Furfural | 98-01-01 | No |
Acetonitrile | 75-05-8 | No | Heptane | 142-82-5 | No |
N-Amyl Acetate | 628-63-7 | No | Hexane | 110-54-3 | No |
Anisole | 100-66-3 | No | Hexylene Glycol | 107-41-5 | No |
Benzyl Alcohol | 100-51-6 | No | Isobutyl Isobutyrate | 97-87-0 | No |
Benzyl Benzoate | 120-51-4 | No | Isopentyl Acetate | 123-92-2 | No |
1-Butanol | 71-36-3 | No | Isopropyl Acetate | 108-21-4 | No |
2-Butanol | 78-92-2 | No | Isophorone | 78-59-1 | No |
N-Butyl Acetate | 123-86-4 | No | d-Limonene | 5989-27-5 | No |
tert-Butyl Acetate | 540-88-5 | No | Methanol | 67-56-1 | Yes |
sec-Butyl Acetate | 105-46-4 | No | β-Methoxypropionitrile | 110-67-8 | No |
Butyl Benzoate | 136-60-7 | No | Methyl Acetate | 79-20-9 | No |
γ-Butyrolactone | 96-48-0 | No | Methyl Cellosolve | 109-86-4 | Yes |
ε-Caprolactone | 502-44-3 | No | Methyl Cyclohexane | 108-87-2 | No |
Cyclohexane | 110-82-7 | Yes | Methyl Ethyl Ketone | 78-93-3 | No |
Cyclohexanol | 108-93-0 | No | Methyl Isobutyl Ketone | 108-10-1 | No |
Cyclohexanone | 108-94-1 | No | Methyl Oleate | 112-62-9 | No |
Cyclopentyl Methyl Ether | 5614-37-9 | No | N-Methyl-2-Pyrrolidone | 872-50-4 | Yes |
CyreneTM | 53716-82-8 | No | Methyltetrahydrofuran | 96-47-9 | No |
Diacetone Alcohol | 123-42-2 | No | Morpholine | 110-91-8 | No |
Diethyl Carbonate | 105-58-8 | No | 1-Nitropropane | 108-03-2 | No |
Diisobutyl Ketone | 108-83-8 | No | Oxolane | 109-99-9 | No |
N,N-Dimethyl Acetamide | 127-19-5 | Yes | Pentanone | 107-87-9 | No |
Dimethyl Carbonate | 616-38-6 | No | 1-Propanol | 71-23-8 | No |
Dimethyl Cyclohexane | 590-66-9 | Yes | 2-Propanol | 67-63-0 | No |
N,N-Dimethyl Formamide | 68-12-2 | Yes | N-Propyl Acetate | 109-60-4 | No |
Dimethyl Isosorbide | 5306-85-4 | No | Propylene Carbonate | 108-32-7 | No |
Dimethyl Sulfoxide | 67-68-5 | No | Sulfolane | 126-33-0 | No |
1,4-Dioxane | 123-91-1 | Yes | Syringol | 91-10-1 | No |
Dipropylene Glycol | 2396-61-4 | No | Tetrahydrofurfuryl Alcohol | 97-99-4 | No |
EastmanTM Eeh | 1559-35-9 | No | Toluene | 108-88-3 | Yes |
Ethyl Acetate | 141-78-6 | No | γ-Valerolactone | 1679-47-6 | No |
Ethyl Lactate | 97-64-3 | No | Water | 7732-18-5 | No |
Ethylene Carbonate | 96-49-1 | No | Xylene | 106-42-3 | No |
Solvent | x1-Butene | Method 1 (Equation (3)) | Method 2 (Equation (5)) |
---|---|---|---|
Acetic Acid | 0.6 | 0.68 | 0.85 |
Anisole | 0.5 | 1.11 | 1.09 |
Benzyl Alcohol | 0.5 | 1.11 | 1.08 |
1-Butanol | 0.6 | 0.93 | 0.90 |
2-Butanol | 0.6 | 0.91 | 0.90 |
N-Butyl Acetate | 0.5 | 1.11 | 1.11 |
sec-Butyl Acetate | 0.5 | 1.11 | 1.11 |
Butyl Benzoate | 0.5 | 1.03 | 1.07 |
ε-Caprolactone | 0.5 | 1.09 | 1.09 |
Cyclohexanol | 0.6 | 0.97 | 0.92 |
Cyclohexanone | 0.5 | 1.14 | 1.13 |
Cyclopentyl Methyl Ether | 0.6 | 0.99 | 0.97 |
CyreneTM | 0.5 | 1.36 | 1.28 |
Diacetone Alcohol | 0.5 | 1.16 | 1.12 |
Diethyl Carbonate | 0.5 | 1.13 | 1.17 |
Diisobutyl Ketone | 0.5 | 1.05 | 1.05 |
Dimethyl Carbonate | 0.5 | 1.35 | 1.40 |
N,N-Dimethyl Formamide | 0.5 | 1.37 | 1.32 |
Dimethyl Isosorbide | 0.4 | 1.32 | 1.48 |
Dimethyl Sulfoxide | 0.4 | 1.61 | 1.56 |
Dipropylene Glycol | 0.6 | 1.03 | 0.93 |
Ethyl Acetate | 0.5 | 1.20 | 1.18 |
Ethyl Lactate | 0.5 | 1.01 | 1.04 |
N-Formylmorpholine | 0.5 | 1.22 | 1.13 |
Isobutyl Isobutyrate | 0.4 | 1.00 | 1.02 |
Isopentyl Acetate | 0.5 | 1.08 | 1.08 |
Isopropyl Acetate | 0.5 | 1.15 | 1.14 |
Methyl Ethyl Ketone | 0.5 | 1.24 | 1.21 |
N-Methyl-2-Pyrrolidone | 0.5 | 1.40 | 1.45 |
β-Methoxypropionitrile | 0.5 | 1.37 | 1.37 |
Pentanone | 0.5 | 1.19 | 1.14 |
1-Propanol | 0.6 | 0.89 | 0.88 |
2-Propanol | 0.6 | 0.88 | 0.88 |
N-Propyl Acetate | 0.5 | 1.15 | 1.14 |
Propylene Carbonate | 0.5 | 1.11 | 1.30 |
Syringol | 0.5 | 1.25 | 1.30 |
γ-Valerolactone | 0.5 | 1.12 | 1.13 |
TP | DT | FP | MP | A-IP | ER | MAPC | ||||
---|---|---|---|---|---|---|---|---|---|---|
TP | 1 | 5 | 7 | 6 | 8 | 8 | 1 | 1.3 × 104 | 3.89 | 35% |
DT | 1/5 | 1 | 7 | 6 | 6 | 6 | 1/4 | 7.6 × 101 | 1.86 | 17% |
FP | 1/7 | 1/7 | 1 | 1/2 | 3 | 3 | 1/6 | 1.5 × 10−2 | 0.55 | 5% |
MP | 1/6 | 1/6 | 2 | 1 | 3 | 3 | 1/2 | 1.0 × 10−1 | 0.72 | 6% |
A-IP | 1/8 | 1/6 | 1/3 | 1/3 | 1 | 6 | 1/7 | 1.9 × 10−3 | 0.41 | 4% |
ER | 1/8 | 1/6 | 1/3 | 1/3 | 1/6 | 1 | 1/7 | 5.5 × 10−5 | 0.25 | 2% |
MAPC | 1 | 4 | 6 | 5 | 7 | 7 | 1 | 5.9 × 103 | 3.46 | 31% |
SUM | 2.76 | 10.64 | 23.67 | 19.17 | 28.17 | 34.00 | 2.90 | - | 11.13 | 100% |
Solvent | Decomposition Point (°C) | Flash Point (°C) | Melting Point (°C) | Normal Auto-Ignition Point (°C) | Explosiveness Range (% vol.) | Vapor Pressure at 20 °C (mbar) |
---|---|---|---|---|---|---|
N-Butyl Acetate | no data available | 27 | −90 | 415 | 1.7–7.6 | 11.2 |
Isopentyl acetate | >700 | 33 | −78 | 360 | 1.0–10.0 | 6.0 |
DEC | >320 | 33 | −43 | 445 | 1.4–11.0 | 11.5 |
Water | not applicable | 41 | −63 | 390 | 1.9–15.3 | 23.4 |
DMF | >350 | 57 | −61 | 435 | 2.2–16.0 | 3.8 |
DMSO | >190 | 87 | 18 | 301 | 2.6–42.0 | 0.6 |
NMP | >350 | 91 | −24 | 251 | 1.3–9.5 | 0.32 |
CyreneTM | >200 | 108 | <−20 | 296 | no data available | 0.03 |
NFM | >400 | 118 | 20 | 345 | 1.2–8.2 | 0.03 |
PC | >200 | 116 | −49 | 430 | 4.7–21.0 | 0.04 |
Dipropylene Glycol | not relevant | 138 | −20 | 350 | 2.9–12.6 | <0.01 |
Syringol | no data available | 140 | 55 | no data available | no data available | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomes, J.P.; Silva, R.; Nunes, C.P.; Barbosa, D. Towards Sustainable Industrial Processes: A Preselection Method for Screening Green Solvents in the 1,3-Butadiene Extractive Distillation Process. Sustainability 2025, 17, 3285. https://doi.org/10.3390/su17083285
Gomes JP, Silva R, Nunes CP, Barbosa D. Towards Sustainable Industrial Processes: A Preselection Method for Screening Green Solvents in the 1,3-Butadiene Extractive Distillation Process. Sustainability. 2025; 17(8):3285. https://doi.org/10.3390/su17083285
Chicago/Turabian StyleGomes, João Pedro, Rodrigo Silva, Clemente Pedro Nunes, and Domingos Barbosa. 2025. "Towards Sustainable Industrial Processes: A Preselection Method for Screening Green Solvents in the 1,3-Butadiene Extractive Distillation Process" Sustainability 17, no. 8: 3285. https://doi.org/10.3390/su17083285
APA StyleGomes, J. P., Silva, R., Nunes, C. P., & Barbosa, D. (2025). Towards Sustainable Industrial Processes: A Preselection Method for Screening Green Solvents in the 1,3-Butadiene Extractive Distillation Process. Sustainability, 17(8), 3285. https://doi.org/10.3390/su17083285