Physicochemical Aspects Regarding the Sustainable Conversion of Carwash Slurry as Coverage Admixture for Landfills
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Particle Size Measurement
2.3. Physicochemical Investigations
2.4. Coverage Admixture Preparation
3. Results
3.1. Particle Size Distribution
3.2. Mineral Components Assessment
3.3. Micro- and Nanostructures and Their Elemental Composition
3.4. Organic Components Assessment
3.5. Coverage Admixture Viability
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AFM | Atomic Force Microscopy |
ASPs | Atmosphere Suspended Particles |
FTIR | Fourier-Transform Infrared Spectroscopy |
MOM | Mineralogical Optical Microscopy |
SEM | Scanning Electron Microscopy |
SD | Street Dust |
TVOCs | Total Volatile Organic Compounds |
PMs | Particulate Matters |
XRD | X-ray Diffraction |
References
- Chang, X.; Sun, L.; Yu, X.; Liu, Z.; Jia, G.; Wang, Y.; Zhu, X. Windbreak efficiency in controlling wind erosion and particulate matter concentrations from farmlands. Agriculture. Ecosyst. Environ. 2021, 308, 107269. [Google Scholar] [CrossRef]
- Ramirez Haberkon, N.B.; Aparicio, V.C.; De Gerónimo, E.; Mendez, M.J. Multi residues of pesticides in the particulate matter (PM10) emitted by rural soils of the semiarid pampas, Argentina. A potential source of air pollution. Environ. Pollut. 2024, 360, 124617. [Google Scholar] [CrossRef]
- Yang, Q.; Liu, G.; Falandysz, J.; Yang, L.; Zhao, C.; Chen, C.; Sun, Y.; Zheng, M.; Jiang, G. Atmospheric emissions of particulate matter-bound heavy metals from industrial sources. Sci. Total Environ. 2024, 947, 174467. [Google Scholar] [CrossRef]
- Fang, X.; Chang, R.; Zhang, Y.; Zuo, J.; Zou, Y.; Han, Y. Monitoring airborne particulate matter from building construction: A systematic review. J. Build. Eng. 2024, 86, 108708. [Google Scholar] [CrossRef]
- Zafra-Pérez, A.; Boente, C.; García-Díaz, M.; Gómez-Galán, J.A.; Sánchez de la Campa, A.; De la Rosa, D. Aerial monitoring of atmospheric particulate matter produced by open-pit mining using low-cost airborne sensors. Sci. Total Environ. 2023, 904, 166743. [Google Scholar] [CrossRef] [PubMed]
- Ansari, A.M.; Memon, L.A.; Selim, M.Y.E. Experimental study of particulate matter emission for a diesel engine fueled with nanoparticles and biofuel/diesel blends. Int. J. Thermofluids 2024, 23, 100738. [Google Scholar] [CrossRef]
- Zhang, W.; Jiang, L.; Chen, Z.; Meng, L.; Li, Z.; Fang, Y. Effect of ash-bridge deposition in asymmetric diesel particulate filter channels on the pressure drop and particulate matter trapping characteristics. Part. Sci. Technol. 2024, 42, 1395–1406. [Google Scholar] [CrossRef]
- Paltinean, A.G.; Petean, I.; Arghir, G.; Muntean, D.F.; Bobos, L.D.; Tomoaia-Cotisel, M. Atmospheric induced nanoparticles due to the urban street dust. Part. Sci. Technol. 2015, 34, 580–585. [Google Scholar] [CrossRef]
- Rusca, M.; Rusu, T.; Avram, S.E.; Prodan, D.; Paltinean, G.A.; Filip, M.R.; Ciotlaus, I.; Pascuta, P.; Rusu, T.A.; Petean, I. Physicochemical Assessment of the Road Vehicle Traffic Pollution Impact on the Urban Environment. Atmosphere 2023, 14, 862. [Google Scholar] [CrossRef]
- Wei, T.; Wijesiri, B.; Li, Y.; Goonetilleke, A. Particulate matter exchange between atmosphere and roads surfaces in urban areas. J. Environ. Sci. 2020, 98, 118–123. [Google Scholar] [CrossRef]
- Mcclellan, R.O. Lung cancer in rats from prolonged exposure to high concentrations of carbonaceous particles: Implications for human risk assessment. Part. Sci. Technol. 1996, 14, 89–122. [Google Scholar] [CrossRef]
- Xu, L.; Ma, W.; Huo, X.; Luo, J.; Li, R.; Zhu, X.; Kong, X.; Zhao, K.; Jin, Y.; Zhang, M.; et al. New insights into the function and mechanisms of piRNA PMLCPIR in promoting PM2.5-induced lung cancer. J. Adv. Res. 2024, in press. [Google Scholar] [CrossRef]
- Zhou, X.; Sampath, V.; Nadeau, K.C. Effect of air pollution on asthma. Ann. Allergy Asthma Immunol. 2024, 132, 426–432. [Google Scholar] [CrossRef]
- Seaton, A.; Legge, J.S.; Henderson, J.; Kerr, K.M. Accelerated silicosis in Scottish stonemasons. Lancet 1991, 337, 341–344. [Google Scholar] [CrossRef] [PubMed]
- Penchala, A.; Patra, A.K.; Santra, S.; Dubey, R.; Mishra, N.; Nazneen, A.; Pradhan, D.S. Assessment of vertical transport of PM in a surface iron ore mine due to in-pit mining operations. Measurement 2025, 240, 115580. [Google Scholar] [CrossRef]
- Child, H.; Berry, C.C. A novel 3D model for the study of functionalised-nanoparticle penetration into human tissue. Drug Discov. Today 2010, 15, 1086–1087. [Google Scholar] [CrossRef]
- Xie, Z.; Chen, W.; Wang, W.; Gu, Z.; Shen, Y. Particle-scale study on extracellular penetration of nanoparticles in tumor tissues. Mater. Today Phys. 2024, 44, 101428. [Google Scholar] [CrossRef]
- Kang, T.; Kim, H. An Experimental Study on the Component Analysis and Variation in Concentration of Tire and Road Wear Particles Collected from the Roadside. Sustainability 2023, 15, 12815. [Google Scholar] [CrossRef]
- Avram, S.E.; Tudoran, L.B.; Borodi, G.; Filip, M.R.; Petean, I. Urban Traffic’s Influence on Noise and Particulate Matter Pollution. Sustainability 2025, 17, 2077. [Google Scholar] [CrossRef]
- Devarangadi, M.; Shankar, U.M. Correlation studies on geotechnical properties of various industrial byproducts generated from thermal power plants, iron and steel industries as liners in a landfill—A detailed review. J. Clean. Prod. 2020, 261, 121207. [Google Scholar] [CrossRef]
- Avram, S.E.; Filip, M.R.; Barbu Tudoran, L.; Borodi, G.; Petean, I. Investigation of ferrous conglomerate particles found in carwash slurry and their environmental implications. Stud. UBB Chem. 2023, 68, 57–70. [Google Scholar] [CrossRef]
- Dai, H.; Li, H.; Qiu, W.; Deng, S.; Han, J.; Aminabhavi, T. Nondestructive analysis of plastic debris from micro to nano sizes: A state-of-the-art review on Raman spectroscopy-based techniques. TrAC Trends Anal. Chem. 2024, 176, 117750. [Google Scholar] [CrossRef]
- Eisen, A.; Pioro, E.P.; Goutman, S.A.; Kiernan, M.C. Nanoplastics and Neurodegeneration in ALS. Brain Sci. 2024, 14, 471. [Google Scholar] [CrossRef] [PubMed]
- Păltinean, G.A.; Petean, I.; Arghir, G.; Muntean, D.F.; Tomoaia-Cotişel, M. Silicates Fragmentation a Source of Atmosphere Dispersed Nano—Particulate Matter. Rev. Chim. 2016, 67, 1118–1123. [Google Scholar]
- Avram, S.E.; Birle, B.V.; Tudoran, L.B.; Borodi, G.; Petean, I. Investigation of Used Water Sediments from Ceramic Tile Fabrication. Water 2024, 16, 1027. [Google Scholar] [CrossRef]
- Amato, F.; Querol, X.; Johansson, C.; Nagl, C.; Alastuey, A. A review on the effectiveness of street sweeping, washing and dust suppressants as urban PM control methods. Sci. Total Environ. 2010, 408, 3070–3084. [Google Scholar] [CrossRef]
- Górka-Kostrubiec, B.; Świetlik, R.; Szumiata, T.; Dytłow, S.; Trojanowska, M. Integration of chemical fractionation, Mössbauer spectrometry, and magnetic methods for identification of Fe phases bonding heavy metals in street dust. J. Environ. Sci. 2023, 124, 875–891. [Google Scholar] [CrossRef]
- Larsen, O.; Postma, D. Kinetics of reductive bulk dissolution of lepidocrocite, ferrihydrite, and goethite. Geochim. Cosmochim. Acta 2001, 65, 1367–1379. [Google Scholar] [CrossRef]
- Karanasiou, A.; Moreno, T.; Amato, F.; Lumbreras, J.; Narros, A.; Borge, R.; Tobías, A.; Boldo, E.; Linares, C.; Pey, J.; et al. Road dust contribution to PM levels—Evaluation of the effectiveness of street washing activities by means of Positive Matrix Factorization. Atmos. Environ. 2011, 45, 2193–2201. [Google Scholar] [CrossRef]
- Kakavas, S.; Pandis, S.N. Effects of urban dust emissions on fine and coarse PM levels and composition. Atmos. Environ. 2021, 246, 118006. [Google Scholar] [CrossRef]
- Dippong, T.; Deac, I.G.; Petean, I.; Levei, E.A.; Cadar, O. Evolution of morphology, structure and magnetic behavior of CdxZn1−xFe2O4@SiO2 nanocomposites with Cd2+ content and heat treatment. Opt. Mater. 2025, 162, 116936. [Google Scholar] [CrossRef]
- Lettieri, M.; Giannotta, M.T. Investigations by Ft-Ir Spectroscopy on Residues in Pottery Cosmetic Vases from Archaeological Sites in the Mediterranean Basin. Int. J. Exp. Spectrosc. Tech. 2017, 2, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.M.; Qiao, X.C.; Yu, J.G. Influences of quartz and muscovite on the formation of mullite from kaolinite. Appl. Clay Sci. 2013, 80–81, 176–181. [Google Scholar] [CrossRef]
- Zheng, K.; Xie, X.; Gou, G.; Chen, X.; Huang, Y.; Gao, J. Comparative study on characteristics and microstructure of magnesium silicate hydrate utilizing quartz and silica fume as siliceous raw materials. Case Stud. Constr. Mater. 2023, 19, e02313. [Google Scholar] [CrossRef]
- Yang, Y.; Du, J.; Jing, C. Dynamic adsorption process of phthalate at goethite/aqueous interface: An ATR-FTIR study. Colloids Surf. A Physicochem. Eng. Asp. 2014, 441, 504–509. [Google Scholar] [CrossRef]
- Varrica, D.; Tamburo, E.; Vultaggio, M.; Di Carlo, I. ATR–FTIR Spectral Analysis and Soluble Components of PM10 And PM2.5 Particulate Matter over the Urban Area of Palermo (Italy) during Normal Days and Saharan Events. Int. J. Environ. Res. Public Health 2019, 16, 2507. [Google Scholar] [CrossRef]
- Avram, S.E.; Barbu Tudoran, L.; Cuc, S.; Borodi, G.; Birle, B.V.; Petean, I. Microstructural Investigations Regarding Sustainable Recycling of Ceramic Slurry Collected from Industrial Waste Waters. Sustainability 2024, 16, 1123. [Google Scholar] [CrossRef]
- Malek, K.; Wood, B.; Bambery, K. FTIR imaging of tissues: Techniques and methods of analysis. In Optical Spectroscopy and Computational Methods in Biology and Medicine; Springer Science & Business Media: Berlin, Germany, 2014; pp. 419–437. ISBN 978-94-007-7831-3. [Google Scholar]
- Bora, J.; Deka, P.; Bhuyan, P.; Sarma, K.P.; Hoque, R.R. Morphology and mineralogy of ambient particulate matter over mid-Brahmaputra Valley: Application of SEM–EDX, XRD, and FTIR techniques. SN Appl. Sci. 2021, 3, 137. [Google Scholar] [CrossRef]
- Usman, F.; Zeb, B.; Alam, K.; Huang, Z.; Shah, A.; Ahmad, I.; Ullah, S. In-Depth Analysis of Physicochemical Properties of Particulate Matter (PM10, PM2.5 and PM1) and Its Characterization through FTIR, XRD and SEM–EDX Techniques in the Foothills of the Hindu Kush Region of Northern Pakistan. Atmosphere 2022, 13, 124. [Google Scholar] [CrossRef]
- Kazembeigi, F.; Bayad, S.; Yousefi Nasab, A.; Doraghi, M.; Parseh, I. Techno-environmental study on the consequences of carwash wastewater and its management methods. Heliyon 2023, 9, e19764. [Google Scholar] [CrossRef]
- Hoseinzadeh, E.; Gholifam, A.; Faramarzi, M. Treatment of real carwash wastewater using high-efficiency and energy-saving electrocoagulation technique. Sustain. Chem. Pharm. 2024, 41, 101688. [Google Scholar] [CrossRef]
- Amancio, R.C.H.; Pacheco, S.P.; Moura, K.A.F.; Valle, B.L.; Alves, J.T.C.; Melo, F.F.; Silva, V.J.G.; Botelho, L.S.; Rocha, R.T.; Pelegrine, D.R.; et al. Influence of Optically Active Substances on Light Attenuation in a Tropical Eutrophic Urban Reservoir. Limnogical Rev. 2025, 25, 7. [Google Scholar] [CrossRef]
- Li, S.; Murava, R.T.; Zhang, Q.; Zhou, T.; Omoregie, A.I.; Rajasekar, A.; Ouahbi, T. Linking Antibiotic Residues and Antibiotic Resistance Genes to Water Quality Parameters in Urban Reservoirs: A Seasonal Perspective. Environment 2025, 12, 96. [Google Scholar] [CrossRef]
- Meng, M.; Yang, Y.; Song, L.; Peng, J.; Li, S.; Gao, Z.; Bu, Y.; Gao, J. Association between urinary phthalates and phthalate metabolites and cancer risk: A systematic review and meta-analysis. Heliyon 2024, 10, e29684. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Hu, Z.; Jin, Y.; Yang, M.; Zhang, Z.; Zhou, X.; Qiu, S.; Zou, X. Exploring the relationships between exposure levels of bisphenols and phthalates and prostate cancer occurrence. J. Hazard. Mater. 2024, 474, 134736. [Google Scholar] [CrossRef]
- Bouhamidi, Y.; Kaouah, F.; Nouri, L.; Boumaza, S.; Trari, M.; Bendjama, Z. Kinetic, thermodynamic, and isosteric heat of dibutyl and diethyl phthalate removal onto activated carbon from Albizzia julibrissin pods. Part. Sci. Technol. 2016, 36, 235–243. [Google Scholar] [CrossRef]
- Peng, Y.; Sui, Z.; Zhang, Y.; Wang, T.; Norris, P.; Pan, W.P. The effect of moisture on particulate matter measurements in an ultra-low emission power plant. Fuel 2019, 238, 430–439. [Google Scholar] [CrossRef]
- de Jesus, H.I.; Cassity-Duffey, K.; Dutta, B.; da Silva, A.L.B.R.; Coolong, T. Influence of Soil Type and Temperature on Nitrogen Mineralization from Organic Fertilizers. Nitrogen 2024, 5, 47–61. [Google Scholar] [CrossRef]
- Smart, K.E.; Singer, D.M. Surface Coal Mine Soils: Evidence for Chronosequence Development. Soil Syst. 2023, 7, 59. [Google Scholar] [CrossRef]
- Klokk, T. Effects of oil pollution on the germination and vegetative growth of five species of vascular plant. Oil Petrochem. Pollut. 1984, 2, 25–30. [Google Scholar] [CrossRef]
- Jing, C.; Wang, J.; Wu, Y.; Zhou, Y.; Zhu, H.; Zhang, Y.; Dong, S.; Li, X.; Zhao, J.; Cao, J.; et al. The Effect of Weed Control with Pre-Emergence Herbicides on the Yield Level of Mung Bean Yield. Plants 2025, 14, 275. [Google Scholar] [CrossRef]
- Braşovan, A.; Mandroc, V.; Câmpean, R.F.; Petean, I.; Codrea, V.; Arghir, G. Calcium and Magnesium Content in Brier (Rosa Canina L.) Fruits at The ”Campul lui Neag” Sterile Coal Dump. Analele Univ. Din Oradea Fasc. Biol. 2011, 18, 5–9. [Google Scholar]
- Cuo, M.; Xu, L.; Yuan, B.; Nie, Y.; Wei, J. Pastureland Soil Organic Carbon Storage Regulated by Pasture Species and Age Under Nitrogen and Water Addition in Northern China. Agronomy 2025, 15, 399. [Google Scholar] [CrossRef]
- Tripolskaja, L.; Kazlauskaite-Jadzevice, A.; Razukas, A.; Baksiene, E. Perennial Grasses on Stony Sandy Loam Arenosol: Summary of Results of Long-Term Experiment in Northern Europe Region (1995–2024). Plants 2025, 14, 166. [Google Scholar] [CrossRef]
- Kasikov, A.G.; Shchelokova, E.A.; Timoshchik, O.A.; Semushin, V.V. Deep Processing of Dump Slag from the Copper-Nickel Industry. Metals 2023, 13, 1265. [Google Scholar] [CrossRef]
- Gabasiane, T.S.; Danha, G.; Mamvura, T.A.; Mashifana, T.; Dzinomwa, G. Environmental and Socioeconomic Impact of Copper Slag—A Review. Crystals 2021, 11, 1504. [Google Scholar] [CrossRef]
- Buruiana, D.L.; Obreja, C.-D.; Herbei, E.E.; Ghisman, V. Re-Use of Silico-Manganese Slag. Sustainability 2021, 13, 11771. [Google Scholar] [CrossRef]
- Fernández-Caliani, J.C.; Álvarez-Lozano, J.; García-Navarro, E.; Fernández-Landero, S.; Cantero, C.; Giráldez, M.I. A Novel Technosol Formulation for Sustainable Landfill Top Covers Using Non-Hazardous Wastes. Appl. Sci. 2024, 14, 6166. [Google Scholar] [CrossRef]
- Cobos-Torres, J.-C.; Idrovo-Ortiz, L.-H.; Cobos-Mora, S.L.; Santillan, V. Renewable Energies and Biochar: A Green Alternative for Reducing Carbon Footprints Using Tree Species from the Southern Andean Region of Ecuador. Energies 2025, 18, 1027. [Google Scholar] [CrossRef]
- Atchadé, A.J.; Kanda, M.; Folega, F.; Diouf, A.A.; Agbahoungba, S.; Dourma, M.; Wala, K.; Akpagana, K. Urban Flora Structure and Carbon Storage Potential of Woody Trees in Different Land Use Units of Cotonou (West Africa). Urban Sci. 2023, 7, 106. [Google Scholar] [CrossRef]
Samples | Identified Minerals, Wt.% | ||||||
---|---|---|---|---|---|---|---|
Quartz | Calcite | Muscovite | Kaolinite | Goethite | Lepidocrocite | Total | |
Initial | 28 | 25 | 16 | 21 | 10 | - | 100 |
125–250 | 35 | 20 | 17 | 15 | 7 | 6 | 100 |
63–125 | 32 | 13 | 22 | 18 | 12 | 3 | 100 |
0–63 | 27 | 12 | 24 | 19 | 13 | 5 | 100 |
No. | Identified Compounds | RT | LRI | Initial % | 0–63 % | Class Type |
---|---|---|---|---|---|---|
1. | Toluene | 7.728 | 760 | 1.80 | 1.50 | aromatic hydrocarbon |
2. | Cyclotrisiloxane, hexamethyl | 7.887 | 782 | - | 1.75 | organosilicate |
3. | 2-Hexanone | 8.187 | 790 | 2.57 | 1.99 | ketone |
4. | 3-Hexanol | 8.281 | 791 | - | 0.76 | alcohol |
5. | Cyclopentanol,1-methyl | 8.327 | 796 | 3.70 | - | cycloalkane |
6. | Oxirane,hyl | 8.346 | 820 | - | 2.33 | cyclic ether |
7. | Oxirane,3-ethyl-2,2-dimethyl | 11.343 | 890 | 1.24 | 0.85 | cyclic ether |
8. | Methyl 3-isothiocyanatopropionate | 11.908 | 915 | 1.04 | 0.58 | ester |
9. | Ethane1,1,2,2-tetrachloro | 12.168 | 920 | 3.3 | - | halogen |
10. | Butyl angelate, 3-methyl | 13.402 | 1012 | 2.01 | 1.31 | alkene |
11. | Oxalic acid, 6-ethyloct-3-yl propyl ester | 14.847 | 1022 | 1.25 | 0.70 | ester |
12. | D-Limonene | 14.966 | 1030 | - | 1.16 | terpene |
13. | Pentanoic acid, 2-propenyl ester | 15.840 | 1080 | 2.04 | - | ester |
14. | Decane,3,7-dimethyl | 16.243 | 1127 | 0.93 | 0.48 | alkane |
15. | 4-Hexen-3-one, 5-methyl | 17.267 | 1080 | 3.88 | 1.60 | ketone |
16. | 1-Octene,3,7-dimethyl | 18.993 | 1090 | - | 0.77 | alkene |
17. | 2-Dodecene (E) | 19.198 | 1101 | - | 1.70 | alkene |
18. | Decane 2,3,5-trimethyl | 19.268 | 1102 | 3.05 | 2.29 | alkane |
19. | Undecane, 2,6-dimethyl | 19.540 | 1121 | 1.25 | 1.00 | alkane |
20. | Dodecane | 20.677 | 1200 | 0.98 | alkane | |
21. | Undecane-3-methyl | 20.881 | 1215 | 1.06 | 0.78 | alkane |
22. | Undecane-3,5-dimethyl | 21.135 | 1234 | 1.85 | 1.30 | alkane |
23. | 1-heptene-2,6-dimethyl | 21.792 | 1283 | - | 0.86 | alkene |
24. | 2–Tetradecene (E) | 21.994 | 1298 | - | 0.69 | alkene |
25. | Tridecane | 22.052 | 1300 | 1.82 | 1.38 | alkane |
26. | Dodecane-4,6-dimethyl | 22.443 | 1316 | 1.32 | 0.95 | alkane |
27. | Tetradecane | 24.691 | 1400 | 3.07 | 2.17 | acid |
28. | Dodecane,2-methyl,6-propyl | 24.801 | 1406 | 0.95 | 0.55 | alkane |
29. | 1-octanol-2butyl | 25.519 | 1434 | - | 0.65 | alcohol |
30. | 2-Methyl-1-undecanol | 25.700 | 1442 | - | 0.45 | alcohol |
31. | Tridecane, 6-propyl | 26.589 | 1477 | 2.34 | 2.26 | alkane |
32. | Dodecane,1-chloro | 27.072 | 1497 | - | 0.98 | halogen |
33. | 2-Pentadecene | 27.325 | 1507 | - | 6.06 | alkene |
34. | Dodecane,1-iodo | 27.731 | 1524 | 1.79 | 1.27 | halogen |
35. | Hexadecanal,2-methyl | 27.900 | 1531 | - | 2.06 | aldehyde |
36. | Octadecane-1-chloro | 27.970 | 1534 | - | 4.63 | halogen |
37. | Oxalic acid,allyl undecyl ester | 28.165 | 1543 | - | 1.43 | ester |
38. | 2,4-Di-tert-butylphenol | 28.324 | 1549 | 1.17 | 0.63 | aromatic alcohol |
39. | 1-Decanol-2-ethyl | 28.590 | 1560 | - | 0.53 | alcohol |
40. | 1-Dodecanol,2-ethyl | 28.724 | 1566 | - | 1.33 | alcohol |
41. | Hexadecane | 29.555 | 1600 | 1.60 | 2.02 | alkane |
42. | 1-Tetradecanol | 29.730 | 1609 | - | 2.84 | alcohol |
43. | Tetradecane, 1-iodo | 30.842 | 1658 | 1.17 | 0.64 | halogen |
44. | Hexadecane-1-iodo | 31.410 | 1684 | 2.14 | 1.41 | halogen |
45. | Decanedioicacid,dimethyl ester | 31.795 | 1701 | 1.56 | 1.56 | ester |
46. | Cyclotetradecane | 32.012 | 1711 | - | 1.39 | cycloalkane |
47. | Nonane-2-methyl-5-propyl | 32.403 | 1729 | 1.39 | 2.77 | alkane |
48. | Octadecane | 33.943 | 1800 | 1.26 | 2.24 | alkane |
49. | Octanal, 2-(phenylmethylene) | 34.258 | 1817 | - | 0.64 | aldehyde |
50. | 2-Bromo-dodecane | 35.730 | 1889 | 1.50 | 1.08 | halogen |
51. | Nonadecane | 35.978 | 1900 | 1.85 | 1.17 | alkane |
52. | Diisobutylphtalate | 36.311 | 1918 | 0.86 | 0.75 | phthalate |
53. | Octadecane-1-iodo | 36.607 | 1934 | 1.13 | 1.19 | halogen |
54. | Cyclopentane,1,3-dimethoxy | 36.787 | 1943 | - | 2.26 | cycloalkane |
55. | Eicosane | 37.924 | 2000 | 1.20 | 1.06 | alkane |
56. | Dibutylphtalate | 38.303 | 2021 | 7.72 | 6.13 | phthalate |
57. | 2-Bromotetradecane | 39.088 | 2064 | 1.23 | 0.61 | halogen |
58. | Hexadecane,2,6,10,14-tetramethyl | 39.638 | 2093 | 0.94 | 0.75 | alkane |
59. | Heneicosane | 39.791 | 2100 | 2.03 | 1.36 | alkane |
60. | 1,3-Propanediol,ethyl,hexadecyl ether | 40.435 | 2138 | 0.67 | 1.27 | ether |
61. | Docosane | 41.572 | 2200 | 1.35 | 0.94 | alkane |
62. | Heneicosane, 10-methyl | 43.118 | 2292 | 1.92 | - | alkane |
63. | Tricosane | 43.289 | 2300 | 2.98 | 1.50 | alkane |
64. | Tricosane, 2-methyl | 44.074 | 2349 | 1.28 | - | alkane |
65. | Tetracosane | 44.930 | 2400 | 2.14 | 1.42 | alkane |
66. | Myristoyl chloride | 45.043 | 2409 | 1.45 | - | halogen |
67. | 1,3-Dimethyl barbituric acid | 46.219 | 2483 | - | 1.02 | acid |
68. | Pentacosane | 46.518 | 2500 | 1.47 | 1.47 | alkane |
69. | 1,15 Pentadecanedioic acid | 46.570 | 2505 | 0.93 | - | acid |
70. | Bis(2-ethylhexyl)phtalate | 47.731 | 2581 | 6.82 | 2.71 | phthalate |
71. | Hexacosane | 48.037 | 2600 | 0.92 | 1.06 | alkane |
72. | Heptacosane | 49.510 | 2700 | 1.38 | 0.86 | alkane |
73. | 3-Methylindolizine | 49.681 | 2714 | 1.48 | 0.57 | heterocycle |
74. | Bis(2-ethylhexyl)isophtalate | 50.952 | 2802 | 4.02 | 1.05 | phthalate |
75. | n-Dodecylthioglycolate | 51.141 | 2825 | - | 0.80 | ester |
Total | 99.82 | 99.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avram, S.E.; Tudoran, L.B.; Borodi, G.; Filip, M.R.; Ciotlaus, I.; Petean, I. Physicochemical Aspects Regarding the Sustainable Conversion of Carwash Slurry as Coverage Admixture for Landfills. Sustainability 2025, 17, 2906. https://doi.org/10.3390/su17072906
Avram SE, Tudoran LB, Borodi G, Filip MR, Ciotlaus I, Petean I. Physicochemical Aspects Regarding the Sustainable Conversion of Carwash Slurry as Coverage Admixture for Landfills. Sustainability. 2025; 17(7):2906. https://doi.org/10.3390/su17072906
Chicago/Turabian StyleAvram, Simona Elena, Lucian Barbu Tudoran, Gheorghe Borodi, Miuta Rafila Filip, Irina Ciotlaus, and Ioan Petean. 2025. "Physicochemical Aspects Regarding the Sustainable Conversion of Carwash Slurry as Coverage Admixture for Landfills" Sustainability 17, no. 7: 2906. https://doi.org/10.3390/su17072906
APA StyleAvram, S. E., Tudoran, L. B., Borodi, G., Filip, M. R., Ciotlaus, I., & Petean, I. (2025). Physicochemical Aspects Regarding the Sustainable Conversion of Carwash Slurry as Coverage Admixture for Landfills. Sustainability, 17(7), 2906. https://doi.org/10.3390/su17072906