Defining CO2 Geological Storage Capacity in Unmineable Coal Seams Through Adsorption Data in 3D: Case Study of the Chico Lomã Deposit, Southern Brazil
Abstract
:1. Introduction
2. Geological Setting
2.1. Rio Bonito Formation
2.2. Chico Lomã Coal Deposit
2.3. CO2 Adsorption in Coal Seams
3. Methodology
3.1. Drillhole Database and Digital Terrain Model
3.2. Defining the Depth of the Coal-Bearing Zone for CO2 Storage
3.3. Clipping the Coal-Bearing Zone Model into the Interest Depth
3.4. CO2 Storage Capacity Calculation
4. Results
5. Discussion
6. Concluding Remarks
- –
- The innovative methodology proposed, which combines the most advanced 3D implicit modeling techniques and coal seam sorption isotherms analytical data, proves to be an efficient alternative for evaluating this type of geological reservoir in CO2 storage studies, offering a new alternative that could be applied not only to other coal deposits in this southern Brazil province but also to other unmineable coal deposits around the world.
- –
- The coal seams of the Chico Lomã deposit exhibit thicknesses, volumes, lateral continuity, and depths compatible with the requirements considered worldwide for the geological storage of CO2 in unmined coal deposits.
- –
- The theoretical total CO2 storage capacity of 47.8 Gt achieved in this study is compatible with and could mitigate CO2 emissions from local thermoelectric power plants, while still providing a surplus for storing other potential stationary industrial sources in the surrounding areas for more than 500 years.
- –
- Given the great geological heterogeneity within these layers, future studies are recommended to include a greater number of detailed adsorption isotherm analyses for each coal seam, as well as more drillholes reaching the seams at greater depths, to provide more realistic data.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 3–32. [Google Scholar]
- IPCC. Intergovernmental Panel on Climate Change Special Report on Carbon Dioxide Capture and Storage; Intergovernmental Panel on Climate Change: Cambridge, UK; New York, NY, USA, 2005; p. 442. [Google Scholar]
- Stephens, J.C. Growing interest in carbon capture and storage (CCS) for climate change mitigation. Sustain. Sci. Pract. Policy 2006, 2, 4–13. [Google Scholar] [CrossRef]
- IEA. Net Zero by 2050: A Roadmap for the Global Energy Sector. Available online: https://www.iea.org/events/net-zero-by-2050-a-roadmap-for-the-global-energy-system (accessed on 25 May 2024).
- Bose, D.; Bhattacharya, R.; Kaur, T.; Pandya, R.; Sarkar, A.; Ray, A.; Mondal, S.; Mondal, A.; Ghosh, P.; Chemudupati, R.I. Innovative approaches for carbon capture and storage as crucial measures for emission reduction within industrial sectors. Carbon Capture Sci. Technol. 2024, 12, 100238. [Google Scholar] [CrossRef]
- Rodrigues, C.F.A.; Dinis, M.A.P.; Lemos de Sousa, M.J. Review of European energy policies regarding the recent “carbon capture, utilization and storage” technologies scenario and the role of coal seams. Environ. Earth Sci. 2015, 74, 2553–2561. [Google Scholar] [CrossRef]
- ISO 11760:2005; Classification of Coals. ISO: Geneva, Switzerland, 2005.
- IEA. Tracking Clean Energy Progress 2023; International Energy Agency: Paris, France, 2023. [Google Scholar]
- Cachola, C.d.S.; Ciotta, M.; Azevedo dos Santos, A.; Peyerl, D. Deploying of the carbon capture technologies for CO2 emission mitigation in the industrial sectors. Carbon Capture Sci. Technol. 2023, 7, 100102. [Google Scholar] [CrossRef]
- Kong, H.; Sun, Y.; Li, Z.; Zheng, H.; Wang, J.; Wang, H. The development path of direct coal liquefaction system under carbon neutrality target: Coupling green hydrogen or CCUS technology. Appl. Energy 2023, 347, 121451. [Google Scholar] [CrossRef]
- Lima, P.R.; Pereira, A.A.M.; Chaves, G.d.L.D.; Meneguelo, A.P. Environmental awareness and public perception on carbon capture and storage (CCS) in Brazil. Int. J. Greenh. Gas Control 2021, 111, 103467. [Google Scholar] [CrossRef]
- Allah, F.U.M.; Marques, A.d.S.; Carvalho, M. Current status, challenges and future prospects of carbon capture and storage (CCS) for thermal power plants in Brazil. Int. J. Greenh. Gas Control 2024, 136, 104198. [Google Scholar] [CrossRef]
- Machado, P.G.; Hawkes, A.; Ribeiro, C.d.O. What is the future potential of CCS in Brazil? An expert elicitation study on the role of CCS in the country. Int. J. Greenh. Gas Control 2021, 112, 103503. [Google Scholar] [CrossRef]
- Moore, C.C.S.; Antunes, C.H.; Kulay, L. Economic, Environmental and Energy analysis of carbon capture systems coupled in coal power plants for the reduction of CO2 emissions in Brazil. Int. J. Greenh. Gas Control 2022, 114, 103606. [Google Scholar] [CrossRef]
- Abraham-A, R.M.; Tassinari, C.C.G. CO2 storage algorithms involving the hybrid geological reservoir of the Irati Formation, Parana Basin. Int. J. Greenh. Gas Control 2021, 112, 103504. [Google Scholar] [CrossRef]
- de Oliveira, S.B.; Tassinari, C.C.G.; Abraham-A, R.M.; Torresi, I. 3D implicit modeling applied to the evaluation of CO2 geological storage in the shales of the Irati Formation, Paraná Basin, Southeastern Brazil. Greenh. Gases Sci. Technol. 2021, 11, 1024–1042. [Google Scholar] [CrossRef]
- de Oliveira, S.B.; Rocha, H.V.; Tassinari, C.C.G. 3D geochemical characterization of organic-rich shales of the Irati Formation, Paraná Sedimentary Basin: New perspective for CO2 geological storage in southeastern Brazil. Int. J. Greenh. Gas Control 2022, 114, 103563. [Google Scholar] [CrossRef]
- Rocha, H.d.V.; Sant’Anna, L.G.; Musarra, R.M.L.M.; Tassinari, C.C.G.; San Martín Cañas, S. CO2 Geological Storage Through Adsorption in Organic-Rich Shales: A Case Study of Irati Formation Shales from the Paraná Basin, Brazil. In Perspectives to CO2 Geological Storage and Greenhouse Gas Negative Emissions in South-Southeastern Brazil: Paraná and Santos Sedimentary Basins, 1st ed.; Musarra, R.M.L.M., Tassinari, C.C.G., San Martín Cañas, S., Eds.; Blucher Open Access: São Paulo, Brazil, 2022; pp. 73–94. [Google Scholar]
- Abraham-A, R.M.; Tassinari, C.C.G. Carbon dioxide storage efficiency involving the complex reservoir units associated with Irati and Rio Bonito Formations, Paraná Basin, Brazil. AAPG Bull. 2023, 107, 357–386. [Google Scholar] [CrossRef]
- Rocha, H.V.; Sant’Anna, L.G.; Rodrigues, C.F.A.; Mendes, M.; Pereira, Z.; Lopes, G.; Fernandes, P.; Pereira, E.; Tassinari, C.C.G.; Lemos de Sousa, M.J. The paleoenvironmental and thermal histories of the Permian Irati Formation shale in the Paraná Basin, Brazil: An integrated approach based on mineralogical and organic imprints. Mar. Pet. Geol. 2023, 154, 106328. [Google Scholar] [CrossRef]
- Abraham-A, R.M.; San Martín Cañas, S.; Miranda, I.F.S.; Tassinari, C.C.G. Assessment of CO2 storage prospect based on physical properties of Rio Bonito Formation rock units. Energy Geosci. 2023, 5, 100163. [Google Scholar] [CrossRef]
- de Oliveira, S.B.; Weber, N.; Yeates, C.; Tassinari, C. Geological screening for onshore CO2 storage in the Rio Bonito Formation, Paraná Basin, Brazil. J. Maps 2023, 19, 2171817. [Google Scholar] [CrossRef]
- Abraham-A, R.M.; Rocha, H.V.; de Oliveira, S.B.; Tassinarri, C.C.G.; da Silva, O.C. Hydrocarbon indication in Rio Bonito Formation sandstone: Implication for CO2 storage in São Paulo, Brazil. Energy Geosci. 2024, 5, 100168. [Google Scholar] [CrossRef]
- Abraham-A, R.M.; Tassinari, C.C.G.; Taioli, F.; Rocha, H.V.; da Silva, O.C. Reservoir quality evaluation as a measure to forecast hydrocarbon and CO2 storage prospects in Irati and Rio Bonito Formations, Paraná Basin. Results Geophys. Sci. 2023, 14, 100059. [Google Scholar] [CrossRef]
- Ketzer, J.M.; Iglesias, R.; Einloft, S.; Dullius, J.; Ligabue, R.; de Lima, V. Water–rock–CO2 interactions in saline aquifers aimed for carbon dioxide storage: Experimental and numerical modeling studies of the Rio Bonito Formation (Permian), southern Brazil. Appl. Geochem. 2009, 24, 760–767. [Google Scholar] [CrossRef]
- Lima, V.d.; Einloft, S.; Ketzer, J.M.; Jullien, M.; Bildstein, O.; Petronin, J.-C. CO2 Geological storage in saline aquifers: Paraná Basin caprock and reservoir chemical reactivity. Energy Procedia 2011, 4, 5377–5384. [Google Scholar] [CrossRef]
- Weber, N.; de Oliveira, S.B.; Cavallari, A.; Morbach, I.; Tassinari, C.C.G.; Meneghini, J. Assessing the potential for CO2 storage in saline aquifers in Brazil: Challenges and Opportunities. Greenh. Gases Sci. Technol. 2024, 14, 319–329. [Google Scholar] [CrossRef]
- Weniger, P.; Kalkreuth, W.; Busch, A.; Krooss, B.M. High-pressure methane and carbon dioxide sorption on coal and shale samples from the Paraná Basin, Brazil. Int. J. Coal Geol. 2010, 84, 190–205. [Google Scholar] [CrossRef]
- Kalkreuth, W.; Holz, M.; Levandowski, J.; Kern, M.; Casagrande, J.; Weniger, P.; Krooss, B. The Coalbed Methane (CBM) Potential and CO2 Storage Capacity of the Santa Terezinha Coalfield, Paraná Basin, Brazil—3D Modelling, and Coal and Carbonaceous Shale Characteristics and Related Desorption and Adsorption Capacities in Samples from Exploration Borehole CBM001-ST-RS. Energy Explor. Exploit. 2013, 31, 485–527. [Google Scholar] [CrossRef]
- Santarosa, C.S.; Crandall, D.; Haljasmaa, I.V.; Hur, T.-B.; Fazio, J.J.; Warzinski, R.P.; Heemann, R.; Ketzer, J.M.M.; Romanov, V.N. CO2 sequestration potential of Charqueadas coal field in Brazil. Int. J. Coal Geol. 2013, 106, 25–34. [Google Scholar] [CrossRef]
- Pelissari, M.R.; Cañas, S.S.M.; Barbosa, M.O.; Tassinari, C.C.G. Decarbonizing coal-fired power plants: Carbon capture and storage applied to a thermoelectric complex in Brazil. Results Eng. 2023, 19, 101249. [Google Scholar] [CrossRef]
- Weiler, J.; Tassinari, C.C.G.; De Aquino, T.F.; Bonetti, B.; Viola, V.O. Using mining waste for CO2 sequestration: Exploring opportunities through mineral carbonation, nature-based solutions, and CCUS. Int. J. Min. Reclam. Environ. 2024, 38, 425–441. [Google Scholar] [CrossRef]
- de Oliveira, S.B.; Costa, J.F.C.L.; Ciotta, M. Use of 3D modelling in the CO2 geological storage, possible applications for Paraná and Santos Basins. In Perspectives to CO2 Geological Storage and Greenhouse Gas Negative Emissions in South-Southeastern Brazil: Paraná and Santos Sedimentary Basins; Musarra, R.M.L.M., Tassinari, C.C.G., San Martín Cañas, S., Eds.; Blucher: São Paulo, Brazil, 2022; pp. 95–130. [Google Scholar]
- Kaufmann, O.; Martin, T. 3D geological modelling from boreholes, cross-sections and geological maps, application over former natural gas storages in coal mines. Comput. Geosci. 2008, 34, 278–290. [Google Scholar] [CrossRef]
- Claprood, M.; Gloaguen, E.; Giroux, B.; Konstantinovskaya, E.; Malo, M.; Duchesne, M.J. Workflow using sparse vintage data for building a first geological and reservoir model for CO2 geological storage in deep saline aquifer. A case study in the St. Lawrence Platform, Canada. Greenh. Gases Sci. Technol. 2012, 2, 260–278. [Google Scholar] [CrossRef]
- Alcalde, J.; Marzán, I.; Saura, E.; Martí, D.; Ayarza, P.; Juhlin, C.; Pérez-Estaún, A.; Carbonell, R. 3D geological characterization of the Hontomín CO2 storage site, Spain: Multidisciplinary approach from seismic, well-log and regional data. Tectonophysics 2014, 627, 6–25. [Google Scholar] [CrossRef]
- Gamboa, D.; Williams, J.D.O.; Bentham, M.; Schofield, D.I.; Mitchell, A.C. Application of three-dimensional fault stress models for assessment of fault stability for CO2 storage sites. Int. J. Greenh. Gas Control 2019, 90, 102820. [Google Scholar] [CrossRef]
- Vo Thanh, H.; Sugai, Y.; Nguele, R.; Sasaki, K. Integrated workflow in 3D geological model construction for evaluation of CO2 storage capacity of a fractured basement reservoir in Cuu Long Basin, Vietnam. Int. J. Greenh. Gas Control 2019, 90, 102826. [Google Scholar] [CrossRef]
- AlRassas, A.M.; Ren, S.; Sun, R.; Thanh, H.V.; Guan, Z. CO2 storage capacity estimation under geological uncertainty using 3-D geological modeling of unconventional reservoir rocks in Shahejie Formation, block Nv32, China. J. Pet. Explor. Prod. Technol. 2021, 11, 2327–2345. [Google Scholar] [CrossRef]
- Franke, R. Scattered data interpolation: Tests of some methods. Math. Comput. 1982, 38, 181–200. [Google Scholar]
- Cowan, E.J.; Beatson, R.K.; Fright, W.R.; McLennan, T.J.; Mitchell, T.J. Rapid geological modelling. In Proceedings of the Applied Structural Geology for Mineral Exploration and Mining, International Symposium, Kalgoorlie, Australia, 23–25 September 2002; pp. 23–25. [Google Scholar]
- Cowan, E.J.; Beatson, R.K.; Ross, H.J.; Fright, W.R.; McLennan, T.J.; Evans, T.R.; Carr, J.C.; Lane, R.G.; Bright, D.V.; Gillman, A.J. Practical implicit geological modelling. In Proceedings of the Fifth International Mining Geology Conference, Bendigo, VIC, Australia, 17–19 November 2003; pp. 89–99. [Google Scholar]
- Van Bergen, F.; Pagnier, H.J.M.; Kroos, B.M.; Van der Meer, L.G.H. CO2-sequestration in the Netherlands: Inventory of the potential for the combination of subsurface carbon dioxide disposal with enhanced coalbed methane production. In Proceedings of the 5th International Conference on Greenhouse Gas Control Technologies, Cairns, Australia, 13–16 August 2000; pp. 555–560. [Google Scholar]
- Hendriks, C.; Graus, W.; van Bergen, F. Global Carbon Dioxide Storage Potential and Costs; Ecofys: Utrecht, The Netherlands, 2004; 64p. [Google Scholar]
- White, C.M.; Smith, D.H.; Jones, K.L.; Goodman, A.L.; Jikich, S.A.; LaCount, R.B.; DuBose, S.B.; Ozdemir, E.; Morsi, B.I.; Schroeder, K.T. Sequestration of Carbon Dioxide in Coal with Enhanced Coalbed Methane Recovery—A Review. Energy Fuel. 2005, 19, 659–724. [Google Scholar] [CrossRef]
- Goodman, A.; Hakala, A.; Bromhal, G.; Deel, D.; Rodosta, T.; Frailey, S.; Small, M.; Allen, D.; Romanov, V.; Fazio, J.; et al. U.S. DOE methodology for the development of geologic storage potential for carbon dioxide at the national and regional scale. Int. J. Greenh. Gas Control 2011, 5, 952–965. [Google Scholar] [CrossRef]
- De Silva, P.N.K.; Ranjith, P.G.; Choi, S.K. A study of methodologies for CO2 storage capacity estimation of coal. Fuel 2012, 91, 1–15. [Google Scholar] [CrossRef]
- Liu, S.; Liu, T.; Zheng, S.; Wang, R.; Sang, S. Evaluation of carbon dioxide geological sequestration potential in coal mining area. Int. J. Greenh. Gas Control 2023, 122, 103814. [Google Scholar] [CrossRef]
- Han, S.; Wang, S.; Guo, C.; Sang, S.; Xu, A.; Gao, W.; Zhou, P. Distribution of the adsorbed density of supercritical CO2 onto the anthracite and its implication for CO2 geologic storage in deep coal. Geoenergy Sci. Eng. 2024, 234, 212624. [Google Scholar] [CrossRef]
- Milani, E.J.; Faccini, U.F.; Scherer, C.M.; Araújo, L.M.d.; Cupertino, J.A. Sequences and stratigraphic hierarchy of the Paraná Basin (Ordovician to Cretaceous), southern Brazil. Bol. IG-USP 1998, 29, 125–173. [Google Scholar] [CrossRef]
- Thomaz Filho, A.; Mizusaki, A.M.P.; Antonioli, L. Magmatism and petroleum exploration in the Brazilian Paleozoic basins. Mar. Pet. Geol. 2008, 25, 143–151. [Google Scholar] [CrossRef]
- Holz, M.; França, A.B.; Souza, P.A.; Iannuzzi, R.; Rohn, R. A stratigraphic chart of the Late Carboniferous/Permian succession of the eastern border of the Paraná Basin, Brazil, South America. J. S. Am. Earth Sci. 2010, 29, 381–399. [Google Scholar] [CrossRef]
- Gomes, A.J.P.; Cruz, P.R.; Borges, L.P. Recursos Minerais Energéticos: Carvão e Urânio; CPRM: Brasilia, Brazil, 2003; pp. 577–601. [Google Scholar]
- Araújo, L.L.; Vieira Júnior, H.T.; Wosniak, R. Avaliação dos Recursos Minerais do Brasil, Reavaliação do Patrimônio Mineral, Área Torres-Gravataí (Carvão); CPRM: Porto Alegre, Brazil, 2019; p. 356. [Google Scholar]
- Kalkreuth, W.; Levandowski, J.; Weniger, P.; Krooss, B.; Prissang, R.; da Rosa, A.L. Coal characterization and coalbed methane potential of the Chico-Lomã Coalfield, Paraná Basin, Brazil—Results from exploration borehole CBM001-CL-RS. Energy Explor. Exploit. 2020, 38, 1589–1630. [Google Scholar] [CrossRef]
- Berrocal, J.; Fernandes, C.; Bassini, A.; Barbosa, J.R. Earthquake hazard assessment in southeastern Brazil. Geofísica Int. 1996, 35, 257–272. [Google Scholar]
- IEA-GHG. IEA Greenhouse Gas R&D Programme: CCS Site Characterisation Criteria; IEA-GHG: Cheltenham, UK, 2009; p. 112. [Google Scholar]
- CPRM. Projeto Torres-Gravataí: Bloco Chico Lomã, Setor rio Gravataí. Relatório Final de Pesquisa. Áreas Q-1, Q-4, Q-6 e Q-7; CPRM—Companhia de Pesquisa de Recursos Minerais: Porto Alegre, Brazil, 1987. [Google Scholar]
- Bizzi, L.A.; Schobbenhaus, C.; Vidotti, R.M.; Gonçalves, J.H. Geologia, Tectônica e Recursos Minerais do Brasil: Texto, Mapas e SIG; CPRM: Brasilia, Brazil, 2003. [Google Scholar]
- Bachu, S.; Bonijoly, D.; Bradshaw, J.; Burruss, R.; Holloway, S.; Christensen, N.P.; Mathiassen, O.M. CO2 storage capacity estimation: Methodology and gaps. Int. J. Greenh. Gas Control 2007, 1, 430–443. [Google Scholar] [CrossRef]
- Rasool, M.H.; Ahmad, M.; Ayoub, M. Selecting Geological Formations for CO2 Storage: A Comparative Rating System. Sustainability 2023, 15, 6599. [Google Scholar] [CrossRef]
- Rodrigues, C.F.; Lemos de Sousa, M.J. The measurement of coal porosity with different gases. Int. J. Coal Geol. 2002, 48, 245–251. [Google Scholar] [CrossRef]
- Almeida, J.R.L.; Vasconcellos Rocha, H.; Medeiros Costa, H.; Santos, E.M.; Rodrigues, C.F.; Sousa, M.J.L. Analysis of civil liability regarding CCS: The Brazilian case. Mod. Environ. Sci. Eng. 2017, 3, 382–395. [Google Scholar] [CrossRef]
- Rodrigues, C.; Pinheiro, H.; De Sousa, M.L. Clean Energy Transition Challenge: The Contributions of Geology. In Transitioning to Affordable and Clean Energy; Constable, E.C., Ed.; MDPI: Basel, Switzerland, 2022; pp. 47–94. [Google Scholar]
- Xu, H.; Sang, S.; Yang, J.; Liu, H. CO2 storage capacity of anthracite coal in deep burial depth conditions and its potential uncertainty analysis: A case study of the No. 3 coal seam in the Zhengzhuang Block in Qinshui Basin, China. Geosci. J. 2021, 25, 715–729. [Google Scholar] [CrossRef]
- Metz, B.; Davidson, O.; De Coninck, H.C.; Loos, M.; Meyer, L. IPCC Special Report on Carbon Dioxide Capture and Storage; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Hosseinzadeh, S.; Haghighi, M.; Salmachi, A.; Shokrollahi, A. Carbon dioxide storage within coal reservoirs: A comprehensive review. Geoenergy Sci. Eng. 2024, 241, 213198. [Google Scholar] [CrossRef]
- van der Meer, L.G.H. The conditions limiting CO2 storage in aquifers. Energy Convers. Manag. 1993, 34, 959–966. [Google Scholar] [CrossRef]
- Wu, M.; Qin, Y.; Zhang, Y.; Zhu, S.; Zhang, G.; Lan, F.; Song, X.; Feng, L.; Qin, Y. Influence Factors and Feasibility Evaluation on Geological Sequestration of CO2 in Coal Seams: A Review. ACS Omega 2023, 8, 16561–16569. [Google Scholar] [CrossRef] [PubMed]
- Beatson, R.K.; Cherrie, J.B.; Mouat, C.T. Fast fitting of radial basis functions: Methods based on preconditioned GMRES iteration. Adv. Comput. Math. 1999, 11, 253–270. [Google Scholar] [CrossRef]
- Carr, J.C.; Beatson, R.K.; Cherrie, J.B.; Mitchell, T.J.; Fright, W.R.; McCallum, B.C.; Evans, T.R. Reconstruction and representation of 3D objects with radial basis functions. In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 2001, Los Angeles, CA, USA, 12–17 August 2001; pp. 67–76. [Google Scholar]
- de Oliveira, S.B.; Torresi, I.; Rossi, D.A.L. 3D structural control and spatial distribution of Zn-Pb-Cu grades in the Palmeirópolis VMS deposit, Brazil. Appl. Earth Sci. 2022, 131, 69–85. [Google Scholar] [CrossRef]
- de Oliveira, S.B.; Bertossi, L.G. 3D structural and geological modeling of the Kwatebala Cu–Co deposit, Tenke-Fungurume district, Democratic Republic of Congo. J. Afr. Earth Sci. 2023, 199, 104825. [Google Scholar] [CrossRef]
- Billings, S.D.; Beatson, R.K.; Newsam, G.N. Interpolation of geophysical data using continuous global surfaces. Geophysisc 2002, 67, 1810–1822. [Google Scholar] [CrossRef]
- Gomes, A.J.L. Avaliação de Recursos Geotermais da Bacia do Paraná; Observatório Nacional: Rio de Janeiro, Brazil, 2009. [Google Scholar]
- Pini, R.; Ottiger, S.; Burlini, L.; Storti, G.; Mazzotti, M. Sorption of carbon dioxide, methane and nitrogen in dry coals at high pressure and moderate temperature. Int. J. Greenh. Gas Control 2010, 4, 90–101. [Google Scholar] [CrossRef]
- Yang, R.T. Gas Separation by Adsorption Processes; Butterworth-Heinemann: Stoneham, MA, USA, 1997; Volume 1. [Google Scholar]
- Busch, A.; Gensterblum, Y.; Krooss, B.M.; Littke, R. Methane and carbon dioxide adsorption–diffusion experiments on coal: Upscaling and modeling. Int. J. Coal Geol. 2004, 60, 151–168. [Google Scholar] [CrossRef]
- Zhang, Y.; Xing, W.; Liu, S.; Liu, Y.; Yang, M.; Zhao, J.; Song, Y. Pure methane, carbon dioxide, and nitrogen adsorption on anthracite from China over a wide range of pressures and temperatures: Experiments and modeling. RSC Adv. 2015, 5, 52612–52623. [Google Scholar] [CrossRef]
- Dubinin, M.M. Progress in Surface and Membrane Science; Academic Press: New York, NY, USA, 1975. [Google Scholar]
- Devore, J.L. Probability and Statistic for Engineering and the Sciences; Brooks/Cole-Thomson Learning: Belmont, CA, USA, 2004. [Google Scholar]
- Ray, S.; Dey, K. Feasibility of CO2 Sequestration as a Closure Option for Underground Coal Mine. J. Inst. Eng. (India) Ser. D 2018, 99, 57–62. [Google Scholar] [CrossRef]
- Mazzotti, M.; Pini, R.; Storti, G.; Burlini, L. 5—Carbon dioxide (CO2) sequestration in unmineable coal seams and use for enhanced coalbed methane recovery (ECBM). In Developments and Innovation in Carbon Dioxide (CO2) Capture and Storage Technology; Maroto-Valer, M.M., Ed.; Woodhead Publishing: Cambridge, UK, 2010; Volume 2, pp. 127–165. [Google Scholar]
- Guo, Z.; Cao, Y.; Zhang, Z.; Dong, S. Geological Controls on the Gas Content and Permeability of Coal Reservoirs in the Daning Block, Southern Qinshui Basin. ACS Omega 2022, 7, 17063–17074. [Google Scholar] [CrossRef]
- Safaei-Farouji, M.; Misch, D.; Sachsenhofer, R.F. A review of influencing factors and study methods of carbon capture and storage (CCS) potential in coals. Int. J. Coal Geol. 2023, 277, 104351. [Google Scholar] [CrossRef]
- Unver, B. Fundamentals of 3D modelling and resource estimation in coal mining. J. Min. Environ. 2018, 9, 623–639. [Google Scholar] [CrossRef]
- Burger, H.; Prissang, R.; Holz, M.; Kalkreuth, W. 3D modeling of the Santa Terezinha coalfield, Brazil—Implications for estimation of the CBM potential. In Proceedings of the IAMG 2006—11th International Congress for Mathematical Geology: Quantitative Geology from Multiple Sources, Liege, Belgium, 3–8 September 2006. [Google Scholar]
- Reid, R.J.; Cowan, E.J. Towards quantifying uncertainties in geological models for mineral resource estimation through outside-in deposit-scale structural geological analysis. Aust. J. Earth Sci. 2023, 70, 990–1009. [Google Scholar] [CrossRef]
- Keating, E.H.; Hakala, J.A.; Viswanathan, H.; Carey, J.W.; Pawar, R.; Guthrie, G.D.; Fessenden-Rahn, J. CO2 leakage impacts on shallow groundwater: Field-scale reactive-transport simulations informed by observations at a natural analog site. Appl. Geochem. 2013, 30, 136–147. [Google Scholar] [CrossRef]
- Miocic, J.M.; Gilfillan, S.M.V.; Roberts, J.J.; Edlmann, K.; McDermott, C.I.; Haszeldine, R.S. Controls on CO2 storage security in natural reservoirs and implications for CO2 storage site selection. Int. J. Greenh. Gas Control 2016, 51, 118–125. [Google Scholar] [CrossRef]
- Roberts, J.J.; Wilkinson, M.; Naylor, M.; Shipton, Z.K.; Wood, R.A.; Haszeldine, R.S. Natural CO2 Sites in Italy Show the Importance of Overburden Geopressure, Fractures and Faults for CO2 Storage Performance and Risk Management; Geomechanics and Geology; Geological Society: London, UK, 2017; Volume 458, pp. 181–211. [Google Scholar] [CrossRef]
- Miocic, J.M.; Gilfillan, S.M.V.; Frank, N.; Schroeder-Ritzrau, A.; Burnside, N.M.; Haszeldine, R.S. 420,000 year assessment of fault leakage rates shows geological carbon storage is secure. Sci. Rep. 2019, 9, 769. [Google Scholar] [CrossRef]
- Alcalde, J.; Flude, S.; Wilkinson, M.; Johnson, G.; Edlmann, K.; Bond, C.E.; Scott, V.; Gilfillan, S.M.V.; Ogaya, X.; Haszeldine, R.S. Estimating geological CO2 storage security to deliver on climate mitigation. Nat. Commun. 2018, 9, 2201. [Google Scholar] [CrossRef]
- Roberts, J.J.; Stalker, L. What have we learnt about CO2 leakage from CO2 release field experiments, and what are the gaps for the future? Earth-Sci. Rev. 2020, 209, 102939. [Google Scholar] [CrossRef]
- Perera, M.S.A.; Ranjith, P.G.; Viete, D.R.; Choi, S.K. The Effects of Injection and Production Well Arrangement on Carbon Dioxide Sequestration in Deep, Unmineable Coal Seams: A Numerical Study. Int. J. Coal Prep. Util. 2012, 32, 211–224. [Google Scholar] [CrossRef]
- Ekneligoda, T.C.; Marshall, A.M. A coupled thermal-mechanical numerical model of underground coal gasification (UCG) including spontaneous coal combustion and its effects. Int. J. Coal Geol. 2018, 199, 31–38. [Google Scholar] [CrossRef]
- Pratama, E.; Ismail, M.S.; Ridha, S. Identification of coal seams suitability for carbon dioxide sequestration with enhanced coalbed methane recovery: A case study in South Sumatera Basin, Indonesia. Clean Technol. Environ. Policy 2018, 20, 581–587. [Google Scholar] [CrossRef]
- Asif, M.; Junussov, M.; Longinos, S.; Hazlett, R.; Satibekova, S. CO2 storage capacity of coal seams: A screening and geological review of carboniferous coal formations of Kazakhstan. Int. J. Coal Sci. Technol. 2025, 12, 18. [Google Scholar] [CrossRef]
- Kalkreuth, W.; Sherwood, N.; Cioccari, G.; Corrêa da Silva, Z.; Silva, M.; Zhong, N.; Zufa, L. The application of FAMM (Fluorescence Alteration of Multiple Macerals) analyses for evaluating rank of Paraná Basin coals, Brazil. Int. J. Coal Geol. 2004, 57, 167–185. [Google Scholar] [CrossRef]
- Araújo, C.V.; Corrêa da Silva, Z.C.; Rodrigues, R. Petrographic and geochemical study of coals from the Santa Terezinha Coalfield, Rio Grande do Sul, Brazil. Rev. Lat. Am. Geoquimica Org. 1995, 1, 28–45. [Google Scholar]
- Santos, R.V.; Dantas, E.L.; Oliveira, C.G.d.; Alvarenga, C.J.S.d.; Anjos, C.W.D.d.; Guimarães, E.M.; Oliveira, F.B. Geochemical and thermal effects of a basic sill on black shales and limestones of the Permian Irati Formation. J. S. Am. Earth Sci. 2009, 28, 14–24. [Google Scholar] [CrossRef]
- Spacapan, J.B.; Palma, J.O.; Galland, O.; Manceda, R.; Rocha, E.; D’Odorico, A.; Leanza, H.A. Thermal impact of igneous sill-complexes on organic-rich formations and implications for petroleum systems: A case study in the northern Neuquén Basin, Argentina. Mar. Pet. Geol. 2018, 91, 519–531. [Google Scholar] [CrossRef]
- Bicca, M.M.; Kalkreuth, W.; Rosa, A.L.; Simão, G.; Levandowski, J.; Silva, T.F.; Anzolin, H.M. Effect of diabase intrusion on the CBM-bearing coalfields of southern Brazil: A review. J. S. Am. Earth Sci. 2022, 119, 104041. [Google Scholar] [CrossRef]
- Araújo, L.L.d.; Barbosa Curto Ma, J.; Yokoyama, E. Serra Geral Group plumbing system and 3D geological framework in Morungava region, southern Paraná–Etendeka LIP (Brazil): Combining 3D geologic and magnetic models. J. S. Am. Earth Sci. 2023, 132, 104660. [Google Scholar] [CrossRef]
- Araújo, L.L.d.; Curto Ma, J.B.; Yokoyama, E.; Victoria, A.M. Serra Geral Group plumbing system and 3D geological framework in Morungava region, southern Paraná-Etendeka LIP (Brazil): Evidence from borehole, geochemical, and petrophysical data. J. S. Am. Earth Sci. 2024, 133, 104678. [Google Scholar] [CrossRef]
- ANEEL-SIGEL. Banco de dados do Sistema de Informações de Geração da ANEEL. Available online: https://sigel.aneel.gov.br/portal/home/ (accessed on 13 May 2023).
- Eggleston, H.S.; Buendia, L.; Miwa, K.; Ngara, T.; Tanabe, K. IPCC Guidelines for National Greenhouse Gas Inventories; IGES: Tokyo, Japan, 2006. [Google Scholar]
Deposit | Calorific Value (kcal/kg) | Carbon (%) | Ash (%) | Sulfur (%) |
---|---|---|---|---|
Santa Terezinha | 3800–4300 | 28.0–30.0 | 41.0–52.5 | 0.5–1.9 |
Chico Lomã | 3700–4500 | 27.5–30.5 | 40.0–56.2 | 0.6–2.0 |
Parameter | Values | Source |
---|---|---|
2320 million m3 | This study | |
12.50 m3/t and 14.55 m3/t | [28] | |
1.87 kg/m3 | [60] | |
21% to 48% | [46] | |
2.05 kg/m3 | [55] |
P10 (21%) | P50 (37%) | P90 (48%) |
---|---|---|
27.2 Gt | 47.8 Gt | 62.2 Gt |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Oliveira, S.B.; Rocha, H.V.; Rodrigues, C.F.A.; Lemos de Sousa, M.J.; Tassinari, C.C.G. Defining CO2 Geological Storage Capacity in Unmineable Coal Seams Through Adsorption Data in 3D: Case Study of the Chico Lomã Deposit, Southern Brazil. Sustainability 2025, 17, 2856. https://doi.org/10.3390/su17072856
de Oliveira SB, Rocha HV, Rodrigues CFA, Lemos de Sousa MJ, Tassinari CCG. Defining CO2 Geological Storage Capacity in Unmineable Coal Seams Through Adsorption Data in 3D: Case Study of the Chico Lomã Deposit, Southern Brazil. Sustainability. 2025; 17(7):2856. https://doi.org/10.3390/su17072856
Chicago/Turabian Stylede Oliveira, Saulo B., Haline V. Rocha, Cristina F. A. Rodrigues, Manuel J. Lemos de Sousa, and Colombo C. G. Tassinari. 2025. "Defining CO2 Geological Storage Capacity in Unmineable Coal Seams Through Adsorption Data in 3D: Case Study of the Chico Lomã Deposit, Southern Brazil" Sustainability 17, no. 7: 2856. https://doi.org/10.3390/su17072856
APA Stylede Oliveira, S. B., Rocha, H. V., Rodrigues, C. F. A., Lemos de Sousa, M. J., & Tassinari, C. C. G. (2025). Defining CO2 Geological Storage Capacity in Unmineable Coal Seams Through Adsorption Data in 3D: Case Study of the Chico Lomã Deposit, Southern Brazil. Sustainability, 17(7), 2856. https://doi.org/10.3390/su17072856