A Geographic Information System-Based Integrated Multi-Criteria Decision-Support System for the Selection of Wind Farm Sites: The Case of Djibouti
Abstract
:1. Introduction
2. Literature Review
2.1. On-Land Wind Farm Site Selection Criteria
2.2. On-Land Wind Farm Site Selection Research Methods
3. Research Methodology
- (i)
- Analysis of existing literature regarding the selection of suitable sites for wind farms: A thorough examination of current research was performed to collect data on the criteria influencing the selection of wind farm sites and the methodologies employed during the selection process.
- (ii)
- Determination of criteria for selecting suitable sites for wind farms: In order to determine the most suitable sites for wind farm installation, seven essential criteria were identified: wind velocity, changes in wind direction, ground slope, distance to urban areas, distance to road network, distance to energy transmission networks, and land use. The seven criteria offer a thorough framework for evaluating the suitability of sites for wind farm installation.
- (iii)
- Acquisition of data from the study area in accordance with the specified criteria: A variety of sources, including meteorological databases, GIS, and national databases, were utilized to acquire pertinent data from the study area for the identified criteria. The accuracy and credibility of the data are essential to the quality of the results of the study. Consequently, all relevant data were diligently acquired and verified for accuracy prior to their integration into the GIS.
- (iv)
- Determining the relative importance of the criteria by the CRITIC method: The CRITIC method was implemented to objectively ascertain the relative importance of each of the identified criteria. This method allows decision makers to comprehend the importance of the criteria employed in wind farm site selection by considering both “contrast intensity” and “correlation between criteria”, eliminating the necessity for any subjective judgment.
- (v)
- Application of the CoCoSo method to rank alternative sites for wind farms within the designated study area: The CoCoSo method was utilized on the data matrix, incorporating the relative importance of the criteria derived from the CRITIC method to prioritize the alternative sites for the wind farm. This method enables decision makers to pinpoint the most suitable sites for wind farms by providing a balanced compromise among all pertinent criteria.
- (vi)
- Application of the MAIRCA method to validate the results of the CoCoSo method through comparative analysis: To enhance the reliability of the results derived from the CoCoSo method, validation was conducted using the MAIRCA method. This comparative analysis provides a more nuanced comprehension of the decision-making process and identifies any inconsistencies, if present.
- (vii)
- Examination of the limitations of the study and provision of suggestions for future research: The limitations of this study are addressed, and suggestions for future research are provided to enhance transparency, guide further research, and augment the real-world importance of research findings.
3.1. CRITIC Method
3.2. CoCoSo Method
3.3. MAIRCA Method
4. Implementation of the Proposed Decision-Support System: The Case of Djibouti
4.1. Determination of Criteria for the Selection of Appropriate Sites for Wind Farms
4.2. Acquisition of Data from the Study Area for Seven Criteria
4.3. Application of the CRITIC Method to Determine the Relative Importance of the Seven Criteria
4.4. Application of the CoCoSo Method to Rank Potential Alternative Sites for Wind Farms
- Favorable wind speed (7.80 m/s);
- Low wind direction change (80.89°);
- Slightly sloped the ground (2.03%);
- Distance from urban areas (61.93 km);
- Proximity to road networks (83.44 km);
- Proximity to energy transmission networks (126.35 km);
- Barren vegetation in land use (5: bare land).
4.5. Application of the MAIRCA Method to Validate the Results of the CoCoSo Method
5. Discussion
5.1. Assessment of the Relative Importance of the Seven Criteria
5.2. Accuracy of the GIS-Based Integrated Multi-Criteria Decision-Support System
5.3. Implication of the GIS-Based Integrated Multi-Criteria Decision-Support System
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahlers, T.; Kohli, H.S.; Sood, A. Africa 2050: Realizing the Continent’s Full Potential. Glob. J. Emerg. Mark. Econ. 2013, 5, 153–213. [Google Scholar] [CrossRef]
- Bouraima, M.B.; Ayyildiz, E.; Badi, I.; Murat, M.; Es, H.A.; Pamucar, D. A decision support system for assessing the barriers and policies for wind energy deployment. Renew. Sustain. Energy Rev. 2024, 200, 114571. [Google Scholar] [CrossRef]
- African Development Bank Group. Djibouti Country Strategy Paper (Csp) 2016–2020. February 2016. Available online: https://www.afdb.org/fileadmin/uploads/afdb/Documents/Project-and-Operations/Djibouti__Country_Strategy_Paper__CSP__2016-2020.pdf (accessed on 10 January 2024).
- Pillot, B.; Muselli, M.; Poggi, P.; Haurant, P.; Hared, I. Solar energy potential atlas for planning energy system off-grid electrification in the Republic of Djibouti. Energy Convers. Manag. 2013, 69, 131–147. [Google Scholar] [CrossRef]
- Dabar, O.A.; Awaleh, M.O.; Kirk-Davidoff, D.; Olauson, J.; Söder, L.; Awaleh, S.I. Wind resource assessment and economic analysis for electricity generation in three locations of the Republic of Djibouti. Energy 2019, 185, 884–894. [Google Scholar] [CrossRef]
- Helimax Énergie Inc. Étude Stratégique de Déploiement de l’Énergie Éolienne en Afrique. March 2004. Available online: https://www.webmanagercenter.com/telecharge/etude04112004.pdf (accessed on 19 September 2024).
- Idriss, A.I.; Ahmed, R.A.; Omar, A.I.; Said, R.K.; Akinci, T.C. Wind energy potential and micro-turbine performance analysis in Djibouti-city, Djibouti. Eng. Sci. Technol. Int. J. 2020, 23, 65–70. [Google Scholar] [CrossRef]
- Dabar, O.A.; Awaleh, M.O.; Waberi, M.M.; Adan, A.B.I. Wind resource assessment and techno-economic analysis of wind energy and green hydrogen production in the Republic of Djibouti. Energy Rep. 2022, 8, 8996–9016. [Google Scholar] [CrossRef]
- Abdi, A.P.; Damci, A.; Kirca, O.; Turkoglu, H.; Arditi, D.; Demirkesen, S.; Korkmaz, M.; Arslan, A.E. A Spatial Decision-Support System for Wind Farm Site Selection in Djibouti. Sustainability 2024, 16, 9635. [Google Scholar] [CrossRef]
- Placide, G.; Lollchund, M.R. Wind farm site selection using GIS-based mathematical modeling and fuzzy logic tools: A case study of Burundi. Front. Energy Res. 2024, 12, 1353388. [Google Scholar] [CrossRef]
- Yaman, A. A GIS-based multi-criteria decision-making approach (GIS-MCDM) for determination of the most appropriate site selection of onshore wind farm in Adana, Turkey. Clean Technol. Environ. Policy 2024, 26, 4231–4254. [Google Scholar] [CrossRef]
- Lee, A.H.I.; Chen, H.H.; Kang, H.-Y. Multi-criteria decision making on strategic selection of wind farms. Renew. Energy 2009, 34, 120–126. [Google Scholar] [CrossRef]
- Chowdhury, S.; Zhang, J.; Messac, A.; Castillo, L. Optimizing the arrangement and the selection of turbines for wind farms subject to varying wind conditions. Renew. Energy 2013, 52, 273–282. [Google Scholar] [CrossRef]
- Fadoul, F.F.; Hassan, A.A.; Çağlar, R. Assessing the Feasibility of Integrating Renewable Energy: Decision Tree Analysis for Parameter Evaluation and LSTM Forecasting for Solar and Wind Power Generation in a Campus Microgrid. IEEE Access 2023, 11, 124690–124708. [Google Scholar] [CrossRef]
- Pillot, B.; Muselli, M.; Poggi, P.; Haurant, P.; Hared, I. The first disaggregated solar atlas of Djibouti: A decision-making tool for solar systems integration in the energy scheme. Renew. Energy 2013, 57, 57–69. [Google Scholar] [CrossRef]
- Höfer, T.; Sunak, Y.; Siddique, H.; Madlener, R. Wind farm siting using a spatial Analytic Hierarchy Process approach: A case study of the Städteregion Aachen. Appl. Energy 2016, 163, 222–243. [Google Scholar] [CrossRef]
- Gregory, R.; Failing, L.; Harstone, M.; Long, G.; McDaniels, T.; Ohlson, D. Structured Decision Making: A Practical Guide to Environmental Management Choices; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Majumder, M. Multi criteria decision making. In Impact of Urbanization on Water Shortage in Face of Climatic Aberrations; Springer: Berlin/Heidelberg, Germany, 2015; pp. 35–47. [Google Scholar]
- Marttunen, M.; Lienert, J.; Belton, V. Structuring problems for Multi-Criteria Decision Analysis in practice: A literature review of method combinations. Eur. J. Oper. Res. 2017, 263, 1–17. [Google Scholar] [CrossRef]
- Munier, N.; Hontoria, E.; Munier, N.; Hontoria, E. Shortcomings of the AHP Method. In Uses and Limitations of the AHP Method: A Non-Mathematical and Rational Analysis; Springer: Cham, Switzerland, 2021; pp. 41–90. [Google Scholar]
- Demir, G.; Riaz, M.; Deveci, M. Wind farm site selection using geographic information system and fuzzy decision making model. Expert Syst. Appl. 2024, 255, 124772. [Google Scholar] [CrossRef]
- Van Haaren, R.; Fthenakis, V. GIS-based wind farm site selection using spatial multi-criteria analysis (SMCA): Evaluating the case for New York State. Renew. Sustain. Energy Rev. 2011, 15, 3332–3340. [Google Scholar] [CrossRef]
- Sánchez-Lozano, J.M.; García-Cascales, M.S.; Lamata, M.T. GIS-based onshore wind farm site selection using Fuzzy Multi-Criteria Decision Making methods. Evaluating the case of Southeastern Spain. Appl. Energy 2016, 171, 86–102. [Google Scholar] [CrossRef]
- Yildiz, S.S. Spatial multi-criteria decision making approach for wind farm site selection: A case study in Balıkesir, Turkey. Renew. Sustain. Energy Rev. 2024, 192, 114158. [Google Scholar] [CrossRef]
- Konstantinos, I.; Georgios, T.; Garyfalos, A. A Decision Support System methodology for selecting wind farm installation locations using AHP and TOPSIS: Case study in Eastern Macedonia and Thrace region, Greece. Energy Policy 2019, 132, 232–246. [Google Scholar] [CrossRef]
- Szurek, M.; Blachowski, J.; Nowacka, A. GIS-based method for wind farm location multi-criteria analysis. Min. Sci. 2014, 21, 65–81. [Google Scholar]
- Rediske, G.; Burin, H.P.; Rigo, P.D.; Rosa, C.B.; Michels, L.; Siluk, J.C.M. Wind power plant site selection: A systematic review. Renew. Sustain. Energy Rev. 2021, 148, 111293. [Google Scholar] [CrossRef]
- Spyridonidou, S.; Vagiona, D.G. Systematic review of site-selection processes in onshore and offshore wind energy research. Energies 2020, 13, 5906. [Google Scholar] [CrossRef]
- Watson, J.J.W.; Hudson, M.D. Regional Scale wind farm and solar farm suitability assessment using GIS-assisted multi-criteria evaluation. Landsc. Urban Plan. 2015, 138, 20–31. [Google Scholar] [CrossRef]
- Gigović, L.; Pamučar, D.; Božanić, D.; Ljubojević, S. Application of the GIS-DANP-MABAC multi-criteria model for selecting the location of wind farms: A case study of Vojvodina, Serbia. Renew. Energy 2017, 103, 501–521. [Google Scholar] [CrossRef]
- Villacreses, G.; Gaona, G.; Martínez-Gómez, J.; Jijón, D.J. Wind farms suitability location using geographical information system (GIS), based on multi-criteria decision making (MCDM) methods: The case of continental Ecuador. Renew. Energy 2017, 109, 275–286. [Google Scholar] [CrossRef]
- Ayodele, T.R.; Ogunjuyigbe, A.S.O.; Odigie, O.; Munda, J.L. A multi-criteria GIS based model for wind farm site selection using interval type-2 fuzzy analytic hierarchy process: The case study of Nigeria. Appl. Energy 2018, 228, 1853–1869. [Google Scholar] [CrossRef]
- Ifkirne, M.; El Bouhi, H.; Acharki, S.; Pham, Q.B.; Farah, A.; Linh, N.T.T. Multi-Criteria GIS-Based Analysis for Mapping Suitable Sites for Onshore Wind Farms in Southeast France. Land 2022, 11, 1839. [Google Scholar] [CrossRef]
- Yousefi, H.; Motlagh, S.G.; Montazeri, M. Multi-Criteria Decision-Making System for Wind Farm Site-Selection Using Geographic Information System (GIS): Case Study of Semnan Province, Iran. Sustainability 2022, 14, 7640. [Google Scholar] [CrossRef]
- Zalhaf, A.S.; Elboshy, B.; Kotb, K.M.; Han, Y.; Almaliki, A.H.; Aly, R.M.H.; Elkadeem, M.R. A high-resolution wind farms suitability mapping using gis and fuzzy ahp approach: A national-level case study in Sudan. Sustainability 2022, 14, 358. [Google Scholar] [CrossRef]
- Shao, M.; Han, Z.; Sun, J.; Xiao, C.; Zhang, S.; Zhao, Y. A review of multi-criteria decision making applications for renewable energy site selection. Renew. Energy 2020, 157, 377–403. [Google Scholar] [CrossRef]
- Atici, K.B.; Simsek, A.B.; Ulucan, A.; Tosun, M.U. A GIS-based Multiple Criteria Decision Analysis approach for wind power plant site selection. Util. Policy 2015, 37, 86–96. [Google Scholar] [CrossRef]
- Değirmenci, S.; Bingöl, F.; Sofuoglu, S.C. MCDM analysis of wind energy in Turkey: Decision making based on environmental impact. Environ. Sci. Pollut. Res. 2018, 25, 19753–19766. [Google Scholar] [CrossRef]
- Asadi, M.; Pourhossein, K. Wind and solar farms site selection using geographical information system (GIS), based on multi criteria decision making (MCDM) ) methods: A case-study for East-Azerbaijan. In Proceedings of the 2019 Iranian Conference on Renewable Energy & Distributed Generation (ICREDG), Tehran, Iran, 11–12 June 2019; pp. 1–6. [Google Scholar]
- Al-Yahyai, S.; Charabi, Y.; Gastli, A.; Al-Badi, A. Wind farm land suitability indexing using multi-criteria analysis. Renew. Energy 2012, 44, 80–87. [Google Scholar] [CrossRef]
- Gorsevski, P.V.; Cathcart, S.C.; Mirzaei, G.; Jamali, M.M.; Ye, X.; Gomezdelcampo, E. A group-based spatial decision support system for wind farm site selection in Northwest Ohio. Energy Policy 2013, 55, 374–385. [Google Scholar] [CrossRef]
- Josimović, B.; Srnić, D.; Manić, B.; Knežević, I. Multi-Criteria Evaluation of Spatial Aspects in the Selection of Wind Farm Locations: Integrating the GIS and PROMETHEE Methods. Appl. Sci. 2023, 13, 5332. [Google Scholar] [CrossRef]
- Baseer, M.A.; Rehman, S.; Meyer, J.P.; Alam, M.M. GIS-based site suitability analysis for wind farm development in Saudi Arabia. Energy 2017, 141, 1166–1176. [Google Scholar] [CrossRef]
- Karamountzou, S.; Vagiona, D.G. Suitability and Sustainability Assessment of Existing Onshore Wind Farms in Greece. Sustainability 2023, 15, 2095. [Google Scholar] [CrossRef]
- Tegou, L.I.; Polatidis, H.; Haralambopoulos, D.A. Environmental management framework for wind farm siting: Methodology and case study. J. Environ. Manag. 2010, 91, 2134–2147. [Google Scholar] [CrossRef]
- Aydin, N.Y.; Kentel, E.; Duzgun, S. GIS-based environmental assessment of wind energy systems for spatial planning: A case study from Western Turkey. Renew. Sustain. Energy Rev. 2010, 14, 364–373. [Google Scholar] [CrossRef]
- Georgiou, A.; Polatidis, H.; Haralambopoulos, D. Wind Energy Resource Assessment and Development: Decision Analysis for Site Evaluation and Application. Energy Sources Part A Recovery Util. Environ. Eff. 2012, 34, 1759–1767. [Google Scholar] [CrossRef]
- Sánchez-Lozano, J.M.; García-Cascales, M.S.; Lamata, M.T. Identification and selection of potential sites for onshore wind farms development in Region of Murcia, Spain. Energy 2014, 73, 311–324. [Google Scholar] [CrossRef]
- Latinopoulos, D.; Kechagia, K. A GIS-based multi-criteria evaluation for wind farm site selection. A regional scale application in Greece. Renew. Energy 2015, 78, 550–560. [Google Scholar] [CrossRef]
- Ali, S.; Lee, S.M.; Jang, C.M. Determination of the most optimal on-shore wind farm site location using a GIS-MCDM methodology: Evaluating the case of South Korea. Energies 2017, 10, 2072. [Google Scholar] [CrossRef]
- Pamucar, D.S.; Tarle, S.P.; Parezanovic, T. New hybrid multi-criteria decision-making DEMATELMAIRCA model: Sustainable selection of a location for the development of multimodal logistics centre. Econ. Res.-Ekon. Istraživanja 2018, 31, 1641–1665. [Google Scholar] [CrossRef]
- Xu, Y.; Li, Y.; Zheng, L.; Cui, L.; Li, S.; Li, W.; Cai, Y. Site selection of wind farms using GIS and multi-criteria decision making method in Wafangdian, China. Energy 2020, 207, 118222. [Google Scholar] [CrossRef]
- Moradi, S.; Yousefi, H.; Noorollahi, Y.; Rosso, D. Multi-criteria decision support system for wind farm site selection and sensitivity analysis: Case study of Alborz Province, Iran. Energy Strategy Rev. 2020, 29, 100478. [Google Scholar] [CrossRef]
- Nasery, S.; Matci, D.K.; Avdan, U. GIS-based wind farm suitability assessment using fuzzy AHP multi-criteria approach: The case of Herat, Afghanistan. Arab. J. Geosci. 2021, 14, 1091. [Google Scholar] [CrossRef]
- Feloni, E.; Karandinaki, E. GIS-based MCDM Approach for Wind Farm Site Selection—A Case Study. J. Energy Power Technol. 2021, 3, 039. [Google Scholar] [CrossRef]
- Saraswat, S.K.; Digalwar, A.K.; Yadav, S.S.; Kumar, G. MCDM and GIS based modelling technique for assessment of solar and wind farm locations in India. Renew. Energy 2021, 169, 865–884. [Google Scholar] [CrossRef]
- Yegizaw, E.S.; Mengistu, D.A. Multi-criteria decision analysis for wind farm location selection in Bahir Dar City and its surroundings, Northwestern Ethiopia. Environ. Monit. Assess. 2023, 195, 559. [Google Scholar] [CrossRef] [PubMed]
- Demir, A.; Dinçer, A.E.; Çiftçi, C.; Gülçimen, S.; Uzal, N.; Yılmaz, K. Wind farm site selection using GIS-based multicriteria analysis with Life cycle assessment integration. Earth Sci. Inf. 2024, 17, 1591–1608. [Google Scholar] [CrossRef]
- Pennell, W.T.; Barchet, W.R.; Elliott, D.L.; Wendell, L.L.; Hiester, T.R. Meteorological aspects of wind energy: Assessing the resource and selecting the sites. J. Wind Eng. Ind. Aerodyn. 1980, 5, 223–246. [Google Scholar] [CrossRef]
- Mosetti, G.; Poloni, C.; Diviacco, B. Optimization of wind turbine positioning in large windfarms by means of a genetic algorithm. J. Wind Eng. Ind. Aerodyn. 1994, 51, 105–116. [Google Scholar] [CrossRef]
- Traci, R.M.; Phillips, G.T.; Patnaik, P.C. Developing a Site Selection Methodology for Wind Energy Conversion Systems. Final Report, 15 June 1977–15 September 1978; Science Applications, Inc.: La Jolla, CA, USA, 1978. [Google Scholar] [CrossRef]
- Kirchhoff, R.H.; Kaminsky, F.C. Implementation of a Siting Methodology for Utility Size Wecs in Western Massachusetts and Northwestern Connecticut. In Proceedings of the 2nd Terrestrial Energy Systems Conference, Colorado Springs, CO, USA, 1–3 December 1981. [Google Scholar] [CrossRef]
- Landberg, L. Short-term prediction of the power production from wind farms. J. Wind Eng. Ind. Aerodyn. 1999, 80, 207–220. [Google Scholar] [CrossRef]
- Druyan, L.M. Review article wind climate studies for wecs siting. J. Climatol. 1985, 5, 95–105. [Google Scholar] [CrossRef]
- Baban, S.M.J.; Parry, T. Developing and Applying a GIS-Assisted Approach to Locating Wind Farms in the UK. Renew. Energy 2001, 24, 59–71. [Google Scholar] [CrossRef]
- Zyoud, S.H.; Fuchs-Hanusch, D. A bibliometric-based survey on AHP and TOPSIS techniques. Expert Syst. Appl. 2017, 78, 158–181. [Google Scholar] [CrossRef]
- Chamanehpour, E. Site Selection of Wind Power Plant Using Multi-Criteria Decision-Making Methods in GIS: A Case Study. 2017. Available online: www.iaees.org (accessed on 25 February 2025).
- Badi, I.; Pamučar, D.; Stević, Ž.; Muhammad, L.J. Wind farm site selection using BWM-AHP-MARCOS method: A case study of Libya. Sci. Afr. 2023, 19, e01511. [Google Scholar] [CrossRef]
- Solangi, Y.A.; Tan, Q.; Khan, M.W.A.; Mirjat, N.H.; Ahmed, I. The Selection of Wind Power Project Location in the Southeastern Corridor of Pakistan: A Factor Analysis, AHP, and Fuzzy-TOPSIS Application. Energies 2018, 11, 1940. [Google Scholar] [CrossRef]
- Rehman, A.U.; Abidi, M.H.; Umer, U.; Usmani, Y.S. Multi-Criteria Decision-Making Approach for Selecting Wind Energy Power Plant Locations. Sustainability 2019, 11, 6112. [Google Scholar] [CrossRef]
- Mi, X.; Liao, H. Renewable energy investments by a combined compromise solution method with stochastic information. J. Clean. Prod. 2020, 276, 123351. [Google Scholar] [CrossRef]
- Das, P.P.; Chakraborty, S. A comparative assessment of multicriteria parametric optimization methods for plasma arc cutting processes. Decis. Anal. J. 2023, 6, 100190. [Google Scholar] [CrossRef]
- Pamucar, D.; Vasin, L.; Lukovac, V. Selection of Railway Level Crossings for Investing in Security Equipment Using Hybrid DEMATEL-MARIC Model: Application of a new method of multi-criteria decision-making. In Proceedings of the XVI International Scientific-Expert Conference on Railways, Niš, Serbia, 9–10 November 2014. [Google Scholar] [CrossRef]
- Lai, H.; Liao, H.; Wen, Z.; Zavadskas, E.K.; Al-Barakati, A. An improved CoCoSo method with a maximum variance optimization model for cloud service provider selection. Eng. Econ. 2020, 31, 411–424. [Google Scholar] [CrossRef]
- Ecer, F.; Pamucar, D. Sustainable supplier selection: A novel integrated fuzzy best worst method (F-BWM) and fuzzy CoCoSo with Bonferroni (CoCoSo’B) multi-criteria model. J. Clean. Prod. 2020, 266, 121981. [Google Scholar] [CrossRef]
- Deveci, M.; Pamucar, D.; Cali, U.; Kantar, E.; Kölle, K.; Tande, J.O. Hybrid q-Rung Orthopair Fuzzy Sets Based CoCoSo Model for Floating Offshore Wind Farm Site Selection in Norway. CSEE J. Power Energy Syst. 2022, 8, 1261–1280. [Google Scholar] [CrossRef]
- Rong, Y.; Yu, L. Decision Support System for Prioritization of Offshore Wind Farm Site by Utilizing Picture Fuzzy Combined Compromise Solution Group Decision Method. Entropy 2023, 25, 1081. [Google Scholar] [CrossRef]
- Diakoulaki, D.; Mavrotas, G.; Papayannakis, L. Determining Objective Weights in Multiple Criteria Problems: The Critic Method. Comput. Oper. Res. 1995, 22, 763–770. [Google Scholar] [CrossRef]
- Roszkowska, E. Rank Ordering Criteria Weighting Methods—A Comparative Overview. Optimum. Econ. Stud. 2013, 65, 14–33. [Google Scholar] [CrossRef]
- Stojanović, I.; Puška, A.; Selaković, M. A Multi-Criteria Approach to the Comparative Analysis of the Global Innovation Index on the Example of the Western Balkan Countries. Economics-Innov. Econ. Res. J. 2022, 10, 9–26. [Google Scholar] [CrossRef]
- Yazdani, M.; Zarate, P.; Zavadskas, E.K.; Turskis, Z. A combined compromise solution (CoCoSo) method for multi-criteria decision-making problems. Manag. Decis. 2019, 57, 2501–2519. [Google Scholar] [CrossRef]
- Mishra, A.R.; Rani, P.; Saha, A.; Hezam, I.M.; Pamucar, D.; Marinović, M. Assessing the Adaptation of Internet of Things (IoT) Barriers for Smart Cities’ Waste Management Using Fermatean Fuzzy Combined Compromise Solution Approach. IEEE Access 2022, 10, 37109–37130. [Google Scholar] [CrossRef]
- Zhang, H.; Wei, G. Location selection of electric vehicles charging stations by using the spherical fuzzy CPT–CoCoSo and D-CRITIC method. Comput. Appl. Math. 2023, 42, 60. [Google Scholar] [CrossRef]
- Zolfani, S.H.; Ecer, F.; Pamučar, D.; Raslanas, S. Neighborhood selection for a newcomer via a novel BWM-based revised MAIRCA integrated model: A case from the Coquimbo-La Serena conurbation, Chile. Int. J. Strateg. Prop. Manag. 2020, 24, 102–118. [Google Scholar] [CrossRef]
- Gökgöz, F.; Yalçın, E. Analyzing the champions league teams via decision models. Team Perform. Manag. Int. J. 2023, 29, 15–44. [Google Scholar] [CrossRef]
- Adar, T.; Delice, E.K. New integrated approaches based on MC-HFLTS for healthcare waste treatment technology selection. J. Enterp. Inf. Manag. 2019, 32, 688–711. [Google Scholar] [CrossRef]
- Rodman, L.C.; Meentemeyer, R.K. A geographic analysis of wind turbine placement in Northern California. Energy Policy 2006, 34, 2137–2149. [Google Scholar] [CrossRef]
- Joffre, S.M.; Laurila, T. Standard deviations of wind speed and direction from observations over a smooth surface. J. Appl. Meteorol. Clim. 1988, 27, 550–561. Available online: https://journals.ametsoc.org/view/journals/apme/27/5/1520-0450_1988_027_0550_sdowsa_2_0_co_2.xml (accessed on 25 February 2025). [CrossRef]
- Hoogwijk, M.; de Vries, B.; Turkenburg, W. Assessment of the global and regional geographical, technical and economic potential of onshore wind energy. Energy Econ. 2004, 26, 889–919. [Google Scholar] [CrossRef]
- Obane, H.; Nagai, Y.; Asano, K. Assessing land use and potential conflict in solar and onshore wind energy in Japan. Renew. Energy 2020, 160, 842–851. [Google Scholar] [CrossRef]
- Huang, C.; Yan, J.; Zhang, D.; Zhong, Y. Analysis of the effect of slope on the power characteristics of wind turbines in hillside terrain. Energy Rep. 2022, 8, 352–361. [Google Scholar] [CrossRef]
- Maizi, M.; Mohamed, M.H.; Dizene, R.; Mihoubi, M.C. Noise reduction of a horizontal wind turbine using different blade shapes. Renew. Energy 2018, 117, 242–256. [Google Scholar] [CrossRef]
- Grau, L.; Jung, C.; Schindler, D. Sounding out the repowering potential of wind energy—A scenario-based assessment from Germany. J. Clean. Prod. 2021, 293, 126094. [Google Scholar] [CrossRef]
- Alamir, M.A.; Hansen, K.L.; Catcheside, P. Penalties applied to wind farm noise: Current allowable limits, influencing factors, and their development. J. Clean. Prod. 2021, 295, 126393. [Google Scholar] [CrossRef]
- Ramírez-Rosado, I.J.; García-Garrido, E.; Fernández-Jiménez, L.A.; Zorzano-Santamaría, P.J.; Monteiro, C.; Miranda, V. Promotion of new wind farms based on a decision support system. Renew. Energy 2008, 33, 558–566. [Google Scholar] [CrossRef]
- Hansen, H.S. GIS-based multi-criteria analysis of wind farm development. In ScanGIS 2005: Proceedings of the 10th Scandinavian Research Conference on Geographical Information Science, Stockholm, Sweden, 13–15 June 2005; Department of Planning and Environment: Stockholm, Sweden, 2005; pp. 75–87. [Google Scholar]
- Janke, J.R. Multicriteria GIS modeling of wind and solar farms in Colorado. Renew. Energy 2010, 35, 2228–2234. [Google Scholar] [CrossRef]
- Pamucar, D.S.; Božanic, D.; Randelovic, A. Multi-criteria decision making: An example of sensitivity analysis. Serbian J. Manag. 2017, 12, 1–27. [Google Scholar] [CrossRef]
- Li, L.L.; Ma, W.; Duan, X.; Wang, S.; Wang, Q.; Gu, H.; Wang, J. Effects of Wind Farm Construction on Soil Nutrients and Vegetation: A Case Study of Linxiang Wind Farm in Hunan Province. Sustainability 2024, 16, 6350. [Google Scholar] [CrossRef]
- Dupont, E.; Koppelaar, R.; Jeanmart, H. Global available wind energy with physical and energy return on investment constraints. Appl. Energy 2018, 209, 322–338. [Google Scholar] [CrossRef]
- Benti, N.E.; Alemu, Y.B.; Balta, M.M.; Gunta, S.; Chaka, M.D.; Semie, A.G.; Mekonnen, Y.S.; Yohannes, H. Site suitability assessment for the development of wind power plant in Wolaita area, Southern Ethiopia: An AHP-GIS model. Sci. Rep. 2023, 13, 19811. [Google Scholar] [CrossRef]
- Hoang, T.N.; Ly, T.T.B.; Do, H.T.T. A hybrid approach of wind farm site selection using Group Best-Worst Method and GIS-Based Fuzzy Logic Relations. A case study in Vietnam. Environ. Qual. Manag. 2022, 32, 251–267. [Google Scholar] [CrossRef]
- Maklad, M.A.; Tawfeek, H.; El-Fiky, G.S. A Literature Review of the Use of GIS-Based Multi-Criteria AHP Technique for Optimal Siting of Wind Energy Sources. Egypt. Int. J. Eng. Sci. Technol. 2022, 40, 53–60. [Google Scholar] [CrossRef]
- Lotfi, F.H.; Allahviranloo, T.; Pedrycz, W.; Shahriari, M.; Sharafi, H.; GhalehJough, S.R. The Criteria Importance Through Inter-Criteria Correlation (CRITIC) in Uncertainty Environment. In Fuzzy Decision Analysis: Multi Attribute Decision Making Approach; Springer: Cham, Switzerland, 2023; pp. 309–324. [Google Scholar]
- Bennui, A.; Phukpattaranont, P.; Chetpattananondh, K. Site Selection for Large Wind Turbine Using GIS. 2007. Available online: https://www.researchgate.net/publication/313578739 (accessed on 25 February 2025).
- Ammari, H.D.; Al-Maaitah, A. Assessment of wind-generation potentiality in Jordan using the site effectiveness approach. Energy 2003, 28, 1579–1592. [Google Scholar] [CrossRef]
- Cunden, T.S.M.; Doorga, J.; Lollchund, M.R.; Rughooputh, S.D.D.V. Multi-level constraints wind farms siting for a complex terrain in a tropical region using MCDM approach coupled with GIS. Energy 2020, 211, 118533. [Google Scholar] [CrossRef]
- Chapman, K. Terrain and Topography of Djibouti: Mountains, Valleys, and Plains. Earth Site Education. Available online: https://www.earth-site.co.uk/Education/terrain-and-topography-of-djibouti-mountains-valleys-and-plains/#google_vignette (accessed on 15 September 2024).
- Pandit, S.; Shimada, S.; Dube, T. Comprehensive analysis of land use and cover dynamics in djibouti using machine learning technique: A multi-temporal assessment from 1990 to 2023. Environ. Chall. 2024, 15, 100920. [Google Scholar] [CrossRef]
Researcher(s) | Year | Country | MCDM Method(s) | Wind Velocity | Changes in Wind Direction | Ground Slope | Distance to Urban Areas | Distance to Road Network | Distance to Energy Transmission Network | Land Use |
---|---|---|---|---|---|---|---|---|---|---|
Tegou et al. [45] | 2010 | Greece | AHP | X | X | X | X | X | ||
Aydin et al. [46] | 2010 | Türkiye | OWA | X | X | |||||
Georgiou et al. [47] | 2012 | Cyprus | AHP | X | X | X | X | X | X | |
Al-Yahyai et al. [40] | 2012 | Oman | AHP, OWA | X | X | X | X | |||
Gorsevski et al. [41] | 2013 | USA | WLC | X | X | X | ||||
Sanchez-Lozano et al. [48] | 2014 | Spain | ELECTRE-TRI | X | X | X | X | X | X | |
Latinopoulos and Kechagia [49] | 2015 | Greece | AHP, WLC | X | X | X | X | X | ||
Atici et al. [37] | 2015 | Türkiye | ELECTRE III, ELECTRE-TRI, SMAA-TRI | X | X | X | X | |||
Watson and Hudson [29] | 2015 | UK | AHP | X | X | X | X | X | X | |
Sanchez-Lozano et al. [23] | 2016 | Spain | AHP, TOPSIS | X | X | X | X | X | ||
Höfer et al. [16] | 2016 | Germany | AHP | X | X | X | X | X | X | |
Baseer et al. [43] | 2017 | Saudi Arabia | AHP | X | X | X | X | X | ||
Gigović et al. [30] | 2017 | Serbia | DEMATEL, ANP, MABAC | X | X | X | X | X | X | X |
Villacreses et al. [31] | 2017 | Ecuador | AHP, OWA, OCRA, VIKOR | X | X | X | X | X | X | |
Ali et al. [50] | 2017 | South Korea | FTN, AHP | X | X | X | X | X | X | |
Pamučar et al. [51] | 2018 | Serbia | BWM, MAIRCA | X | X | X | X | X | X | |
Ayodele et al. [32] | 2018 | Nigeria | AHP | X | X | X | X | X | ||
Değirmenci et al. [38] | 2018 | Türkiye | AHP | X | X | X | ||||
Asadi and Pourhossein [39] | 2019 | Azerbaijan | AHP, VIKOR, TOPSIS | X | X | X | X | X | ||
Xu et al. [52] | 2020 | China | AHP, VIKOR | X | X | X | X | X | X | |
Moradi et al. [53] | 2020 | Iran | AHP | X | X | X | X | X | ||
Nasery et al. [54] | 2021 | Afghanistan | AHP | X | X | X | X | X | X | |
Feloni and Karandinaki [55] | 2021 | Greece | AHP, WLC | X | X | X | X | X | ||
Saraswat et al. [56] | 2021 | India | AHP | X | X | X | X | X | X | |
Yousefi et al. [34] | 2022 | Iran | AHP | X | X | X | X | X | X | |
Ifkirne et al. [33] | 2022 | France | AHP | X | X | X | X | |||
Zalhaf et al. [35] | 2022 | Sudan | AHP | X | X | X | X | X | ||
Karamountzou and Vagiona [44] | 2023 | Greece | AHP, TOPSIS | X | X | X | X | X | X | |
Yegizaw and Mengistu [57] | 2023 | Ethiopia | AHP | X | X | X | X | X | X | |
Josimović et al. [42] | 2023 | Serbia | PROMETHEE | X | X | X | X | X | ||
Demir et al. [58] | 2024 | Türkiye | SWARA, MARCOS | X | X | X | X | X | ||
Yildiz [24] | 2024 | Türkiye | AHP | X | X | X | X | X | X | |
Placide and Lollchund [10] | 2024 | Burundi | AHP | X | X | X | X | X | X | |
Yaman [11] | 2024 | Türkiye | AHP | X | X | X | X | X |
Alternative ID | Longitude | Latitude | C1 (m/s) | C2 (°) | C3 (%) | C4 (km) | C5 (km) | C6 (km) | C7 (Scale) |
---|---|---|---|---|---|---|---|---|---|
1 | 43.297225020 | 12.791963050 | 4.12 | 90.91 | 0.00 | 0.19 | 20,542.33 | 132,062.52 | 4 |
2 | 43.297502790 | 12.791963050 | 4.12 | 90.92 | 0.00 | 0.19 | 20,567.20 | 132,072.94 | 4 |
3 | 43.296391720 | 12.791685280 | 4.12 | 90.90 | 0.00 | 0.18 | 20,449.32 | 132,008.08 | 4 |
4 | 43.296669490 | 12.791685280 | 4.12 | 90.90 | 0.00 | 0.18 | 20,473.95 | 132,015.86 | 4 |
5 | 43.296947250 | 12.791685280 | 4.12 | 90.91 | 0.00 | 0.19 | 20,499.27 | 132,024.13 | 4 |
. | . | . | . | . | . | . | . | . | . |
. | . | . | . | . | . | . | . | . | . |
. | . | . | . | . | . | . | . | . | . |
23,299,802 | 42.855853840 | 11.316466670 | 6.93 | 81.53 | 3.75 | 62.72 | 1655.17 | 1994.42 | 5 |
23,299,803 | 42.856131600 | 11.316466670 | 6.93 | 81.53 | 2.05 | 62.46 | 1648.22 | 1995.09 | 5 |
23,299,804 | 42.856409370 | 11.316466670 | 6.94 | 81.53 | 0.78 | 61.70 | 1641.35 | 1995.87 | 5 |
23,299,805 | 42.856687130 | 11.316466670 | 6.94 | 81.52 | 0.26 | 61.54 | 1634.53 | 1996.79 | 5 |
23,299,806 | 42.856964900 | 11.316466670 | 6.94 | 81.52 | 1.10 | 61.60 | 1627.94 | 1994.17 | 5 |
Criterion ID | Criterion Name | Weight |
---|---|---|
C1 | Wind velocity | 0.174 |
C2 | Changes in wind direction | 0.161 |
C3 | Ground slope | 0.065 |
C4 | Distance to urban areas | 0.164 |
C5 | Distance to road network | 0.159 |
C6 | Distance to energy transmission network | 0.170 |
C7 | Land use | 0.107 |
Longitude | Latitude | Si | Pi | Rank | ||||
---|---|---|---|---|---|---|---|---|
43.084455780 | 11.438683990 | 0.80 | 6.58 | 1.71 × 10−7 | 5.19 | 0.99 | 2.07 | 1 |
43.084733540 | 11.438683990 | 0.80 | 6.58 | 1.71 × 10−7 | 5.19 | 0.99 | 2.07 | 2 |
43.085011310 | 11.439239530 | 0.80 | 6.58 | 1.71 × 10−7 | 5.19 | 0.99 | 2.07 | 3 |
43.085289080 | 11.439239530 | 0.80 | 6.58 | 1.71 × 10−7 | 5.19 | 0.99 | 2.07 | 4 |
43.084733540 | 11.438961760 | 0.80 | 6.58 | 1.71 × 10−7 | 5.19 | 0.99 | 2.07 | 5 |
43.084178010 | 11.438683990 | 0.80 | 6.58 | 1.71 × 10−7 | 5.19 | 0.99 | 2.07 | 6 |
43.085011310 | 11.438683990 | 0.80 | 6.58 | 1.71 × 10−7 | 5.19 | 0.99 | 2.07 | 7 |
43.084455780 | 11.438961760 | 0.80 | 6.58 | 1.71 × 10−7 | 5.19 | 0.99 | 2.07 | 8 |
43.085011310 | 11.438961760 | 0.80 | 6.58 | 1.71 × 10−7 | 5.19 | 0.99 | 2.07 | 9 |
43.083344710 | 11.438683990 | 0.80 | 6.58 | 1.71 × 10−7 | 5.19 | 0.99 | 2.07 | 10 |
Longitude | Latitude | Qi | Rank |
---|---|---|---|
43.084455780 | 11.438683990 | 3.05 × 10−8 | 1 |
43.085289080 | 11.439239530 | 3.05 × 10−8 | 2 |
43.085011310 | 11.439239530 | 3.05 × 10−8 | 3 |
43.084733540 | 11.438683990 | 3.05 × 10−8 | 4 |
43.084733540 | 11.438961760 | 3.06 × 10−8 | 5 |
43.085011310 | 11.438683990 | 3.06 × 10−8 | 6 |
43.084178010 | 11.438683990 | 3.06 × 10−8 | 7 |
43.085566840 | 11.439239530 | 3.06 × 10−8 | 8 |
43.084455780 | 11.438961760 | 3.06 × 10−8 | 9 |
43.092511010 | 11.439239530 | 3.06 × 10−8 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdi, A.P.; Damci, A.; Turkoglu, H.; Kirca, V.S.O.; Demirkesen, S.; Sadikoglu, E.; Arslan, A.E. A Geographic Information System-Based Integrated Multi-Criteria Decision-Support System for the Selection of Wind Farm Sites: The Case of Djibouti. Sustainability 2025, 17, 2555. https://doi.org/10.3390/su17062555
Abdi AP, Damci A, Turkoglu H, Kirca VSO, Demirkesen S, Sadikoglu E, Arslan AE. A Geographic Information System-Based Integrated Multi-Criteria Decision-Support System for the Selection of Wind Farm Sites: The Case of Djibouti. Sustainability. 2025; 17(6):2555. https://doi.org/10.3390/su17062555
Chicago/Turabian StyleAbdi, Ayan Pierre, Atilla Damci, Harun Turkoglu, V.S. Ozgur Kirca, Sevilay Demirkesen, Emel Sadikoglu, and Adil Enis Arslan. 2025. "A Geographic Information System-Based Integrated Multi-Criteria Decision-Support System for the Selection of Wind Farm Sites: The Case of Djibouti" Sustainability 17, no. 6: 2555. https://doi.org/10.3390/su17062555
APA StyleAbdi, A. P., Damci, A., Turkoglu, H., Kirca, V. S. O., Demirkesen, S., Sadikoglu, E., & Arslan, A. E. (2025). A Geographic Information System-Based Integrated Multi-Criteria Decision-Support System for the Selection of Wind Farm Sites: The Case of Djibouti. Sustainability, 17(6), 2555. https://doi.org/10.3390/su17062555