From the Mountains to the Beach: Water Purification Ecosystem Services and Recreational Beach Use in Puerto Rico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Water Purification Ecosystem Services
2.3. Coastal Water Quality
2.4. Recreational Beach Use
2.5. Infrastructure Factors
2.6. Statistical Analysis
3. Results
3.1. Coastal Freshwater Quality Impairment
3.2. Beach Visitation Rates
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mehvar, S.; Filatova, T.; Dastgheib, A.; De Ruyter van Steveninck, E.; Ranasinghe, R. Quantifying economic value of coastal ecosystem services: A review. J. Mar. Sci. Eng. 2018, 6, 5. [Google Scholar] [CrossRef]
- Wood, S.A.; Guerry, A.D.; Silver, J.M.; Lacayo, M. Using social media to quantify nature-based tourism and recreation. Sci. Rep. 2013, 3, 2976. [Google Scholar] [CrossRef]
- National Oceanic and Atmospheric Administration (NOAA). Tourism and Recreation. 2024. Available online: https://coast.noaa.gov/states/fast-facts/tourism-and-recreation.html (accessed on 10 January 2025).
- National Oceanic and Atmospheric Administration (NOAA). Marine Economy Report. Caribbean Territories. 2024. Available online: https://coast.noaa.gov/data/digitalcoast/pdf/marine-economy-caribbean-territories.pdf (accessed on 10 January 2025).
- Lankia, T.; Lintunen, J.; Neuvonen, M.; Pouta, E.; Store, R. Piloting accounts for recreational ecosystem services: Quality, use, and monetary value of freshwaters in Finland. Water Resour. Econ. 2023, 41, 100215. [Google Scholar] [CrossRef]
- Peng, M.; Oleson, K.L. Beach recreationalists’ willingness to pay and economic implications of coastal water quality problems in Hawaii. Ecol. Econ. 2017, 136, 41–52. [Google Scholar] [CrossRef]
- Pouso, S.; Uyarra, M.C.; Borja, Á. The recovery of estuarine quality and the perceived increase of cultural ecosystem services by beach users: A case study from northern Spain. J. Environ. Manag. 2018, 212, 450–461. [Google Scholar] [CrossRef]
- Leeworthy, V.R.; Schwarzmann, D.; Hughes, S.; Vaughn, J.; Harris, D.; Padilla, G. Visitor Profiles: Reef Users, Puerto Rico Coral Reef Valuation; Office of National Marine Sanctuaries, National Oceanic and Atmospheric Administration: Silver Spring, MD, USA, 2018. Available online: https://www.coris.noaa.gov/activities/projects/pr_reef_ecosystem_valuation/tl_data.html (accessed on 10 January 2025).
- Howarth, R.W.; Sharpley, A.; Walker, D. Sources of nutrient pollution to coastal waters in the United States: Implications for achieving coastal water quality goals. Estuaries 2002, 25, 656–676. [Google Scholar] [CrossRef]
- Oelsner, G.P.; Stets, E.G. Recent trends in nutrient and sediment loading to coastal areas of the conterminous US: Insights and global context. Sci. Total Environ. 2019, 654, 1225–1240. [Google Scholar] [CrossRef]
- Nie, J.; Feng, H.; Witherell, B.B.; Alebus, M.; Mahajan, M.D.; Zhang, W.; Yu, L. Causes, assessment, and treatment of nutrient (N and P) pollution in rivers, estuaries, and coastal waters. Curr. Pollut. Rep. 2018, 4, 154–161. [Google Scholar] [CrossRef]
- Gilbert, M. The role of eutrophication in the global proliferation of harmful algal blooms. Oceanogry 2005, 18, 198–209. [Google Scholar] [CrossRef]
- Canto, M.M.; Fabricius, K.E.; Logan, M.; Lewis, S.; McKinna, L.I.; Robson, B.J. A benthic light index of water quality in the Great Barrier Reef, Australia. Mar. Pollut. Bull. 2021, 169, 112539. [Google Scholar] [CrossRef]
- Guerra, C.A.; Maes, J.; Geijzendorffer, I.; Metzger, M.J. An assessment of soil erosion prevention by vegetation in Mediterranean Europe: Current trends of ecosystem service provision. Ecol. Indic. 2016, 60, 213–222. [Google Scholar] [CrossRef]
- Hamel, P.; Chaplin-Kramer, R.; Sim, S.; Mueller, C. A new approach to modeling the sediment retention service (InVEST 3.0): Case study of the Cape Fear catchment, North Carolina, USA. Sci. Total Environ. 2015, 524, 166–177. [Google Scholar] [CrossRef]
- Berg, C.E.; Mineau, M.M.; Rogers, S.H. Examining the ecosystem service of nutrient removal in a coastal watershed. Ecosyst. Serv. 2016, 20, 104–112. [Google Scholar] [CrossRef]
- Mancuso, G.; Bencresciuto, G.F.; Lavrnić, S.; Toscano, A. Diffuse water pollution from agriculture: A review of nature-based solutions for nitrogen removal and recovery. Water 2021, 13, 1893. [Google Scholar] [CrossRef]
- Kreitler, J.; Papenfus, M.; Byrd, K.; Labiosa, W. Interacting coastal based ecosystem services: Recreation and water quality in Puget Sound, WA. PLoS ONE 2013, 8, e56670. [Google Scholar] [CrossRef]
- Smith, A.; Yee, S.H.; Russell, M.; Awkerman, J.; Fisher, W.S. Linking ecosystem service supply to stakeholder concerns on both land and sea: An example from Guánica Bay watershed, Puerto Rico. Ecol. Indic. 2017, 74, 371–383. [Google Scholar] [CrossRef]
- Byczek, C.; Longaretti, P.-Y.; Renaud, J.; Lavorel, S. Benefits of crowd-sourced GPS information for modelling the recreation ecosystem service. PLoS ONE 2018, 13, e0202645. [Google Scholar] [CrossRef] [PubMed]
- US Census. Quick Facts Puerto Rico. 2023. Available online: https://www.census.gov/quickfacts/PR (accessed on 11 January 2025).
- Discover Puerto Rico. Facts About Puerto Rico. 2024. Available online: https://www.discoverpuertorico.com/info/facts-about-puerto-rico (accessed on 11 January 2025).
- USGS. Climate of Puerto Rico. 2016. Available online: https://www.usgs.gov/centers/cfwsc/science/climate-puerto-rico (accessed on 11 January 2025).
- DRNA. Valoracion de Playas en Puerto Rico. 2022. Available online: https://www.drna.pr.gov/wp-content/uploads/2022/10/Informe-Final-Valorizacion-de-Playas-30-SEPT-2022.pdf (accessed on 11 January 2025).
- Chaparro, R.N.D. Desinversión y Desinterés: La Situación en el Manejo de las Playas en Puerto Rico. Available online: https://issuu.com/seagrantpr/docs/prsg-public-policy-position-papers (accessed on 11 January 2025).
- Puerto Rico GIS. Balnearios 2016. 2016. Available online: https://gis.pr.gov/descargaGeodatos/Dotaciones/Pages/Recreaci%C3%B3n.aspx (accessed on 11 January 2025).
- USGS. N.D. National Hydrography Dataset (NHD). Available online: https://www.usgs.gov/national-hydrography/access-national-hydrography-products (accessed on 11 January 2025).
- USEPA. ATTAINS Water Quality Assessment GIS Dataset. 2024. Available online: https://www.epa.gov/waterdata/waters-geospatial-data-downloads#ATTAINSWaterQualityAssessmentGISDataset (accessed on 11 January 2025).
- Natural Capital Project. Integrated Valuation of Ecosystem Services. 2024. Available online: https://naturalcapitalproject.stanford.edu/software/invest (accessed on 11 January 2025).
- Renard, K.; Foster, G.; Weesies, G.; McCool, D.; Yoder, D. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Soil Loss Equation; U.S. Department of Agriculture, Agricultural Research Service: Maryland, MA, USA, 1997.
- Quinones, F. Recursos de Agua de Puerto Rico: Embalses Principales de Puerto Rico. 2022. Available online: https://www.recursosaguapuertorico.com/Embalses-Principales.html (accessed on 11 January 2025).
- National Water Quality Monitoring Council. Water Quality Portal. 2023. Available online: https://www.epa.gov/awma/national-water-quality-monitoring-council (accessed on 11 January 2025).
- Valladares-Castellanos, M.; de Jesús Crespo, R.; Xu, Y.J.; Douthat, T.H. A framework for validating watershed ecosystem service models in the United States using long-term water quality data: Applications with the InVEST Nutrient Delivery (NDR) model in Puerto Rico. Sci. Total Environ. 2024, 949, 175111. [Google Scholar] [CrossRef]
- Crespo, R.D.J.; Valladares-Castellanos, M.; Mihunov, V.V.; Douthat, T.H. Going with the flow: The supply and demand of sediment retention ecosystem services for the reservoirs in Puerto Rico. Front. Environ. Sci. 2023, 11, 1214037. [Google Scholar] [CrossRef]
- NOAA C-CAP. High Resolution Land Cover. 2023. Available online: https://coastalimagery.blob.core.windows.net/ccap-landcover/CCAP_bulk_download/High_Resolution_Land_Cover/Phase_1_Initial_Layers/index.html (accessed on 11 January 2025).
- ESRI. ArcGIS (Version 10.4.1). 2016. Available online: https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview (accessed on 11 January 2025).
- US EPA. Ammonia. 2024. Available online: https://www.epa.gov/caddis/ammonia#:~:text=The%20resulting%20dissolved%20oxygen%20reductions (accessed on 11 January 2025).
- USEPA. Aquatic Life Ambient Water Quality Criteria for Ammonia Freshwater. 2015. Available online: https://www.epa.gov/sites/default/files/2015-08/documents/aquatic-life-ambient-water-quality-criteria-for-ammonia-freshwater-2013.pdf (accessed on 11 January 2025).
- USEPA. Protocol for Developing TMDL. 1999. Available online: https://nepis.epa.gov/Exe/ZyPDF.cgi/20004PB2.PDF?Dockey=20004PB2.PDF (accessed on 11 January 2025).
- USEPA. Dissolved Oxygen Factsheet. 2021. Available online: https://www.epa.gov/system/files/documents/2021-07/parameter-factsheet_do.pdf (accessed on 11 January 2025).
- USEPA. Sediments. 2024. Available online: https://www.epa.gov/caddis/sediments (accessed on 11 January 2025).
- USEPA. List of State-Specific Water Quality Standards for Turbidity. 2022. Available online: https://www.epa.gov/system/files/documents/2022-01/list-of-state-specific-water-quality-standards.pdf (accessed on 11 January 2025).
- USEPA. Indicators: Chlorophyll a. 2025. Available online: https://www.epa.gov/national-aquatic-resource-surveys/indicators-chlorophyll (accessed on 19 February 2015).
- Angradi, T.R.; Ringold, P.L.; Hall, K. Water clarity measures as indicators of recreational benefits provided by US lakes: Swimming and aesthetics. Ecol. Indic. 2018, 93, 1005–1019. [Google Scholar] [CrossRef]
- Hoyer, M.V.; Frazer, T.K.; Notestein, S.K.; Canfield, D.E., Jr. Nutrient, chlorophyll, and water clarity relationships in Florida’s nearshore coastal waters with comparisons to freshwater lakes. Can. J. Fish. Aquat. Sci. 2002, 59, 1024–1031. [Google Scholar] [CrossRef]
- ESRI Oceans. Chlorophyll-a 20-Year Long-Term Mean (2000–2019). 2023. Available online: https://www.arcgis.com/home/item.html?id=0a1dc1490321474d924d9cf241466bf6 (accessed on 11 January 2025).
- Sathyendranath, S.; Jackson, T.; Brockmann, C.; Brotas, V.; Calton, B.; Chuprin, A.; Clements, O.; Cipollini, P.; Danne, O.; Dingle, J.; et al. (2021): ESA Ocean Colour Climate Change Initiative (Ocean_Colour_cci): Version 5.0 Data. NERC EDS Centre for Environmental Data Analysis, 19 May 2021. Available online: https://catalogue.ceda.ac.uk/uuid/1dbe7a109c0244aaad713e078fd3059a/ (accessed on 11 January 2025).
- Depellegrin, D.; Llambrich, C.M.; Roy, S.; Anbleyth-Evans, J.; Bongiorni, L.; Menegon, S. Risk-based analysis of recreational ecosystem services supply and demand in beach areas of the Adriatic Sea. Ocean. Coast. Manag. 2023, 243, 106725. [Google Scholar] [CrossRef]
- Cunha, J.; Elliott, M.; Ramos, S. Linking modelling and empirical data to assess recreation services provided by coastal habitats: The case of NW Portugal. Ocean. Coast. Manag. 2018, 162, 60–70. [Google Scholar] [CrossRef]
- Puerto Rico GIS. Hoteles, Paradores. 2021. Available online: https://gis.pr.gov/descargaGeodatos/Desarrollo_Economico/Pages/Turismo.aspx (accessed on 11 January 2025).
- US Census. 2020. Available online: https://www.census.gov/geographies/reference-maps/2020/geo/2020-census-block-maps.html (accessed on 11 January 2025).
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Grueber, C.E.; Nakagawa, S.; Laws, R.J.; Jamieson, I.G. Multimodel inference in ecology and evolution: Challenges and solutions. J. Evol. Biol. 2011, 24, 699–711. [Google Scholar] [CrossRef]
- R Core Development Team. R: A Language and Environment for Statistical Computing. (Version 4.4.1). 2024. Available online: http://www.r-project.org (accessed on 11 January 2025).
- Arhonditsis, G.; Tsirtsis, G.; Angelidis, M.O.; Karydis, M. Quantification of the effects of nonpoint nutrient sources to coastal marine eutrophication: Applications to a semi-enclosed gulf in the Mediterranean Sea. Ecol. Model. 2000, 129, 209–227. [Google Scholar] [CrossRef]
- Romero, E.; Garnier, J.; Lassaletta, L.; Billen, G.; Le Gendre, R.; Riou, P.; Cugier, P. Large-scale patterns of river inputs in southwestern Europe: Seasonal and interannual variations and potential eutrophication effects at the coastal zone. Biogeochemistry 2013, 113, 481–505. [Google Scholar] [CrossRef]
- Zhao, D.; Xiao, M.; Huang, C.; Liang, Y.; An, Z. Landscape dynamics improved recreation service of the Three Gorges Reservoir Area, China. Int. J. Environ. Res. Public Health 2021, 18, 8356. [Google Scholar] [CrossRef] [PubMed]
- Botero, C.; Anfuso, A.; Williams, A.T.; Zielinski, S.; Silva, C.P.; Cervantes, O.; Silva, L.; Cabrera, J.A. Reasons for beach choice: European and Caribbean perspectives. J. Coast. Res. 2013, 65, 880–885. [Google Scholar] [CrossRef]
- Beharry-Borg, N.; Scarpa, R. Valuing quality changes in Caribbean coastal waters for heterogeneous beach visitors. Ecol. Econ. 2010, 69, 1124–1139. [Google Scholar] [CrossRef]
- Loomis, J.; Santiago, L. Economic valuation of beach quality improvements: Comparing incremental attribute values estimated from two stated preference valuation methods. Coast. Manag. 2013, 41, 75–86. [Google Scholar] [CrossRef]
- Leotaud, N. Linking Tourism to Watersheds and People: A Preliminary Analysis of the Potential of the Tourism Sector to Contribute to Payments for Watershed Services in Dunns River, Ocho Rios, Jamaica and Speyside, Tobago; Who Pays for Water Project Document No 3; Tobago and International Institute for Environment and Development: London, UK, 2006. [Google Scholar]
- Richards, D.R.; Friess, D.A. A rapid indicator of cultural ecosystem service usage at a fine spatial scale: Content analysis of social media photographs. Ecol. Indic. 2015, 53, 187–195. [Google Scholar] [CrossRef]
Water Purification ES and CFW-AU * Impairment | MeanSq | Fvalue | Pr(>F) |
---|---|---|---|
N export ~Ammonia Impairment | |||
CFW-AU drainage | 31.171 | 363.5 | <0.001 |
Huc-10 | 26.691 | 120.5 | <0.001 |
N export~Nutrient Impairment | |||
CFW-AU drainage | 24.639 | 86.86 | <0.001 |
Huc-10 | 20.8 | 51.98 | <0.001 |
N export~Dissolved Oxygen Impairment | |||
CFW-AU drainage | 7.363 | 9.121 | 0.00485 |
Huc-10 | 10.08 | 13.91 | <0.001 |
P export~Nutrient Impairment | |||
CFW-AU drainage | 22.91 | 68.14 | <0.001 |
Huc-10 | 21.38 | 55.87 | <0.001 |
P export~Dissolved Oxygen Impairment | |||
CFW-AU drainage | 8.458 | 10.93 | 0.00229 |
Huc-10 | 10.54 | 14.82 | 0.000514 |
Sediment export~Turbidity Impairment | |||
CFW-AU drainage | 2.4623 | 2.57 | 0.118 |
Huc-10 | 3.045 | 3.246 | 0.0808 |
Beach Water Clarity and CFW-AU * Impairment | MeanSq | Fvalue | Pr(>F) |
Beach Chlorophyll A~Ammonia Impairment | 8.796 | 11.52 | 0.00181 |
Beach Chlorophyll A~Nutrient Impairment | 4.181 | 4.627 | 0.0389 |
Beach Chlorophyll A~Dissolved Oxygen Impairment | 6.155 | 7.295 | 0.0108 |
Beach Chlorophyll A~Turbidity Impairment | 4.227 | 4.685 | 0.0378 |
Beach Visitation and CFW-AU * Impairment | MeanSq | Fvalue | Pr(>F) |
PUD/yr~Ammonia Impairment | 32.75 | 20.27 | <0.001 |
PUD/yr~Nutrient Impairment | 29.27 | 17.01 | <0.001 |
PUD/yr~Dissolved Oxygen Impairment | 16.92 | 8.075 | 0.00764 |
PUD/yr~Turbidity Impairment | 34.24 | 21.8 | <0.001 |
Averages for Selected Variables | ||||
---|---|---|---|---|
Variables | Estimate | S.E. | z value | Pr(>|z|) |
Intercept | 2.59 | 0.29 | 9.08 | < 0.001 |
Amenities | 0.5 | 0.18 | 3.58 | <0.001 |
% Impervious | 0.85 | 0.34 | 2.52 | 0.01 |
P Export (H10) | 0.73 | 0.35 | 2.07 | 0.04 |
N Export (H10) | 0.70 | 0.34 | 2.07 | 0.04 |
% Vegetation | −0.20 | 0.41 | 0.48 | 0.63 |
Sed Export (H10) | 0.12 | 0.24 | 0.50 | 0.62 |
Model Rankings | ||||
Selected Models | df | logLik | dAICc | weight |
Amenities + %Impervious | 5 | −47.93 | 0 | 0.23 |
Amenities + P Export (H10) | 5 | −48.3 | 0.76 | 0.16 |
Amenities + N Export (H10) | 5 | −48.35 | 0.85 | 0.15 |
Amenities + %Vegetation+ Sed Export (H10) | 6 | −46.98 | 1.03 | 0.14 |
Amenities + %Impervious+ Sed Export (H10) | 6 | −47.14 | 1.37 | 0.12 |
Amenities | 4 | −50.12 | 1.65 | 0.1 |
Amenities + %Vegetation | 5 | −48.85 | 1.85 | 0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corridore, M.; de Jesús Crespo, R.; Valladares-Castellanos, M.; Douthat, T. From the Mountains to the Beach: Water Purification Ecosystem Services and Recreational Beach Use in Puerto Rico. Sustainability 2025, 17, 2556. https://doi.org/10.3390/su17062556
Corridore M, de Jesús Crespo R, Valladares-Castellanos M, Douthat T. From the Mountains to the Beach: Water Purification Ecosystem Services and Recreational Beach Use in Puerto Rico. Sustainability. 2025; 17(6):2556. https://doi.org/10.3390/su17062556
Chicago/Turabian StyleCorridore, Maya, Rebeca de Jesús Crespo, Mariam Valladares-Castellanos, and Thomas Douthat. 2025. "From the Mountains to the Beach: Water Purification Ecosystem Services and Recreational Beach Use in Puerto Rico" Sustainability 17, no. 6: 2556. https://doi.org/10.3390/su17062556
APA StyleCorridore, M., de Jesús Crespo, R., Valladares-Castellanos, M., & Douthat, T. (2025). From the Mountains to the Beach: Water Purification Ecosystem Services and Recreational Beach Use in Puerto Rico. Sustainability, 17(6), 2556. https://doi.org/10.3390/su17062556