Research on the Impact of Data Factors on Enterprise Green Innovation—Evidence from Chinese Manufacturing Enterprises
Abstract
1. Introduction
2. The Literature Review
2.1. Green Innovation and Its Driving Factors
2.2. Data Factors
2.3. The Relationship Between Data Factors and Green Innovation
2.4. The Literature Gaps
3. Theoretical Mechanism Analysis
3.1. The Impact of Data Factors on Enterprise Green Innovation
3.2. The Mechanism by Which Data Factors Affect Enterprises Green Innovation
4. Materials and Methods
4.1. Variable Selection
4.1.1. Explained Variable
4.1.2. Core Explanatory Variables
4.1.3. Control Variables
4.1.4. Mediator Variable
4.1.5. Data Sources
4.2. Model Construction
5. Results
5.1. Descriptive Statistics
5.2. Benchmark Regression Test
5.3. Robustness Test
5.3.1. Replace the Dependent Variable
5.3.2. Replace Explanatory Variables
5.4. Heterogeneity Test
5.5. Mediation Effect Analysis
6. Discussion
7. Conclusions, Policy Recommendations, and Research Limitations
7.1. Conclusions
7.2. Policy Recommendations
7.3. Practical Implication
7.4. Research Limitations and Future Research Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peng, L.; Yan, X.; Jiang, Z.; Yan, Z.; Xu, J. From pilots to demonstrations: The green economic development effect of low-carbon city pilot policies. Environ. Sci. Pollut. Res. 2023, 30, 62376–62396. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zhang, Y.; Zheng, M.; Li, X.; Cui, G.; Li, H. Research on green governance of Chinese listed companies and its evaluation. J. Manag. World 2019, 35, 126–133. [Google Scholar]
- Arroyave, J.J.; Sáez-Martínez, F.J.; González-Moreno, Á. Cooperation with universities in the development of eco-innovations and firms’ performance. Front. Psychol. 2020, 11, 612465. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.-W.; Li, Y.-H. Green innovation and performance: The view of organizational capability and social reciprocity. J. Bus. Ethics 2017, 145, 309–324. [Google Scholar] [CrossRef]
- Acemoglu, D.; Aghion, P.; Bursztyn, L.; Hemous, D. The environment and directed technical change. Am. Econ. Rev. 2012, 102, 131–166. [Google Scholar] [CrossRef]
- Zixun, Q.; Yahong, Z. Development of digital economy and regional total factor productivity: An analysis based on national big data comprehensive pilot zone. J. Financ. Econ. 2021, 47, 4–17. [Google Scholar]
- Xiao, X.; Qi, Y. Value dimension and theoretical logic of industrial digital transformation. Reform 2019, 8, 61–70. [Google Scholar]
- Deng, R.; Zhang, A. Research on the impact of urban digital economy development on environmental pollution and its mechanism. South China J. Econ 2022, 2, 18–37. [Google Scholar]
- Lv, T.; Li, R. Digital Transformation of Manufacturing Enterprises: The Perspective of Data Elements Empowering Traditional Elements. Study Explor. 2022, 9, 108–117. [Google Scholar]
- Yu, L.; Wang, J. New theory on production factors-commonness and characteristics of data factor. Res. Econ. Manag. 2020, 41, 62–73. [Google Scholar]
- Yang, J.; Li, X.; Huang, S. Impacts on environmental quality and required environmental regulation adjustments: A perspective of directed technical change driven by big data. J. Clean. Prod. 2020, 275, 124126. [Google Scholar] [CrossRef]
- McAfee, A.; Brynjolfsson, E.; Davenport, T.H.; Patil, D.; Barton, D. Big data: The management revolution. Harv. Bus. Rev. 2012, 90, 60–68. [Google Scholar] [PubMed]
- Grover, V.; Chiang, R.H.; Liang, T.-P.; Zhang, D. Creating strategic business value from big data analytics: A research framework. J. Manag. Inf. Syst. 2018, 35, 388–423. [Google Scholar] [CrossRef]
- Hagiu, A.; Wright, J. When data creates competititve advantage, and when it doesn’t. Harv. Bus. Rev. 2020, 98, 94–101. [Google Scholar]
- Fussler, C.; James, P. Driving Eco-Innovation: A Breakthrough Discipline for Innovation and Sustainability; Pitman Publishing: London, UK, 1996. [Google Scholar]
- Jorgenson, D.W.; Wilcoxen, P.J. Environmental regulation and US economic growth. RAND J. Econ. 1990, 21, 314–340. [Google Scholar] [CrossRef]
- Tietenberg, T.; Lewis, L. Environmental and Natural Resource Economics; Routledge: London, UK, 2023. [Google Scholar]
- Mubarak, M.F.; Tiwari, S.; Petraite, M.; Mubarik, M.; Raja Mohd Rasi, R.Z. How Industry 4.0 technologies and open innovation can improve green innovation performance? Manag. Environ. Qual. Int. J. 2021, 32, 1007–1022. [Google Scholar] [CrossRef]
- Sterner, T.; Coria, J. Policy Instruments for Environmental and Natural Resource Management; Routledge: London, UK, 2013. [Google Scholar]
- Chen, Y. Retesting of “Strong Potter Hypothesis” under Fiscal Decentralization: From the Perspectives of Enterprise Environmental Protection Innovation and Non-environmental Protection Innovation. Commer. Res. 2018, 60, 143. [Google Scholar]
- Li, Q.; Xiao, Z. Heterogeneous environmental regulation tools and green innovation incentives: Evidence from green patents of listed companies. Econ. Res. J 2020, 55, 192–208. [Google Scholar]
- Wang, A.; Si, L.; Hu, S. Can the penalty mechanism of mandatory environmental regulations promote green innovation? Evidence from China’s enterprise data. Energy Econ. 2023, 125, 106856. [Google Scholar] [CrossRef]
- Zhou, M.; Chen, F.; Chen, Z. Can CEO education promote environmental innovation: Evidence from Chinese enterprises. J. Clean. Prod. 2021, 297, 126725. [Google Scholar] [CrossRef]
- Liao, Z.; Chen, J.; Weng, C.; Zhu, C. The effects of external supervision on firm-level environmental innovation in China: Are they substantive or strategic? Econ. Anal. Policy 2023, 80, 267–277. [Google Scholar] [CrossRef]
- Ling, H.; Yang, Z.; Xu, R.; Chen, J. Green Effect of Public Experience:CEO Public Environmental Protection Experience Diversity and Enterprise Green Technology Innovation. Sci. Sci. Manag. S. T. 2024, 45, 189–210. [Google Scholar]
- Wang, L.; Zhou, X.; Chen, M. From “cultivator” to “influencer”:How does digital transformation drive green innovation:Longitudinal case study based on Inspur. China Soft Sci. 2023, 10, 146–163. [Google Scholar]
- Feng, X.; Wang, J.; Na, X. Impact of green innovation network embedding and resources access to green innovation quality of enterprises. China Soft Sci. 2023, 11, 175–188. [Google Scholar]
- Gu, W.; Yuan, W. Research on the influence of chain shareholder network on enterprise green innovation. J. Bus. Res. 2024, 172, 114416. [Google Scholar] [CrossRef]
- Cong, L.W.; Xie, D.; Zhang, L. Knowledge accumulation, privacy, and growth in a data economy. Manag. Sci. 2021, 67, 6480–6492. [Google Scholar] [CrossRef]
- Jones, C.I.; Tonetti, C. Nonrivalry and the Economics of Data. Am. Econ. Rev. 2020, 110, 2819–2858. [Google Scholar] [CrossRef]
- Farboodi, M.; Veldkamp, L. A model of the Data Economy; National Bureau of Economic Research: Cambridge, MA, USA, 2021. [Google Scholar]
- Niyato, D.; Alsheikh, M.A.; Wang, P.; Kim, D.I.; Han, Z. Market model and optimal pricing scheme of big data and Internet of Things (IoT). In Proceedings of the 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur, Malaysia, 22–27 May 2016; pp. 1–6. [Google Scholar]
- Chadefaux, T. Early warning signals for war in the news. J. Peace Res. 2014, 51, 5–18. [Google Scholar] [CrossRef]
- Farboodi, M.; Mihet, R.; Philippon, T.; Veldkamp, L. Big data and firm dynamics. In AEA Papers and Proceedings; American Economic Association: Nashville, TN, USA, 2019; pp. 38–42. [Google Scholar]
- Acquisti, A.; Taylor, C.; Wagman, L. The economics of privacy. J. Econ. Lit. 2016, 54, 442–492. [Google Scholar] [CrossRef]
- Carrière-Swallow, Y.; Haksar, V. The Economics and Implications of Data; IMF: Washington, DC, USA, 2019. [Google Scholar]
- Gaessler, F.; Wagner, S. Patents, data exclusivity, and the development of new drugs. Rev. Econ. Stat. 2022, 104, 571–586. [Google Scholar] [CrossRef]
- Schaefer, M.; Sapi, G. Learning from Data and Network Effects: The Example of Internet Search. 2020. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3688819 (accessed on 13 October 2024).
- Li, W.C.; Nirei, M.; Yamana, K. Value of Data: There’s No Such Thing as a Free Lunch in the Digital Economy; RIETI: Tokyo, Japan, 2019. [Google Scholar]
- Haggart, B. The government’s role in constructing the data-driven economy. In Data Governance in the Digital Age; Centre for International Governance Innovation: Waterloo, ON, Canada, 2018; pp. 20–25. [Google Scholar]
- Li, X.; Dong, H.; Chan, W. Digital Economy, Green Innovation Willingness and Green Innovation Performance: An Theoretical Framework on the Endogenization of Data as Production Factors and Empirical Study. J. Zhongnan Univ. Econ. Law 2024, 134–147. [Google Scholar] [CrossRef]
- Yang, L.; Jia, R. Can Digital Transformation Boost Green Innovation Performance?: Based on the Data of Chinese A-Share Listed Companies. Ecol. Econ. 2024, 40, 64–74. [Google Scholar]
- Han, X.; Chen, L.; Li, B.; Song, W. Why Can Digital Finance Induce Regional Green Innovation? Sci. Sci. Manag. S.& T. 2023, 44, 114–130. [Google Scholar]
- Jianlin, L.; Tianying, J.; Mengyu, F. The impact Path of digital finance on green innovation efficiency. Econ. Geogr. 2023, 43, 141–147. [Google Scholar]
- Lange, S.; Pohl, J.; Santarius, T. Digitalization and energy consumption. Does ICT reduce energy demand? Ecol. Econ. 2020, 176, 106760. [Google Scholar] [CrossRef]
- Li, X.; Liu, J.; Ni, P. The impact of the digital economy on CO2 emissions: A theoretical and empirical analysis. Sustainability 2021, 13, 7267. [Google Scholar] [CrossRef]
- Quah, D. ICT clusters in development: Theory and evidence. EIB Pap. 2001, 6, 85–100. [Google Scholar]
- Ghasemaghaei, M.; Calic, G. Assessing the impact of big data on firm innovation performance: Big data is not always better data. J. Bus. Res. 2020, 108, 147–162. [Google Scholar] [CrossRef]
- Pacheco, D.F.; Dean, T.J. Firm responses to social movement pressures: A competitive dynamics perspective. Strateg. Manag. J. 2015, 36, 1093–1104. [Google Scholar] [CrossRef]
- Matray, A. The local innovation spillovers of listed firms. J. Financ. Econ. 2021, 141, 395–412. [Google Scholar] [CrossRef]
- Basu, S.; Fernald, J. Information and communications technology as a general-purpose technology: Evidence from US industry data. Ger. Econ. Rev. 2007, 8, 146–173. [Google Scholar] [CrossRef]
- Porter, M.E.; Heppelmann, J.E. How smart, connected products are transforming companies. Harv. Bus. Rev. 2015, 93, 96–114. [Google Scholar]
- Wu, F.; Hu, H.; Lin, H.; Ren, X. Enterprise digital transformation and capital market performance: Empirical evidence from stock liquidity. Manag. World 2021, 37, 130–144. [Google Scholar]
- Chen, W.; Zhang, L.; Jiang, P.; Meng, F.; Sun, Q. Can digital transformation improve the information environment of the capital market? Evidence from the analysts’ prediction behaviour. Account. Financ. 2022, 62, 2543–2578. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y. Research on the green innovation promoted by green credit policies. J. Manag. World 2021, 37, 173–188. [Google Scholar]
- Ying, Q.; He, S. Corporate innovation strategies under the government’s R&D subsidies:“making up the number” or “Strive for excellence”. Nankai Bus. Rev. 2022, 25, 57–69. [Google Scholar]
- El-Kassar, A.-N.; Singh, S.K. Green innovation and organizational performance: The influence of big data and the moderating role of management commitment and HR practices. Technol. Forecast. Soc. Change 2019, 144, 483–498. [Google Scholar] [CrossRef]
- Xu, X.; Ren, X.; Chang, Z. Big Data and Green Development. China Ind. Econ. 2019, 4, 5–22. [Google Scholar]
- Cao, Y.; Li, X.; Hu, H.; Wan, G.; Wang, S. How does digitalization drive the green transformation in manufacturing companies? An exploratory case study from the perspective of resource orchestration theory. J. Manag. World 2023, 39, 96–112. [Google Scholar]
- Wang, K.; Liu, Y.; Wang, S. Data Factors and Green Innovation: A Perspective of New Quality Productive Forces. Res. Financ. Econ. Issues 2024, 9, 18–33. [Google Scholar]
- Chuanming, L.; Liang, C.; Xiaomin, W. Impact of Data Element Agglomeration on Scientific and Technological Innovation: A Quasi-natural Experiment Based on Big Data Comprehensive Pilot Areas. J. Shanghai Univ. Financ. Econ. 2023, 25, 107–121. [Google Scholar]
- Yu, Z.; Linbo, C.; Kun, Z. Does Digital Transformation Promote Corporate Green Innovation? Enterp. Econ. 2024, 43, 107–117. [Google Scholar]
- Siemroth, C.; Hornuf, L. Why do retail investors pick green investments? A lab-in-the-field experiment with crowdfunders. J. Econ. Behav. Organ. 2023, 209, 74–90. [Google Scholar] [CrossRef]
- Wang, J. The impact of investor communication on enterprise green innovation. Financ. Res. Lett. 2023, 57, 104158. [Google Scholar] [CrossRef]
VarName | Obs | Mean | SD | Min | Median | Max |
---|---|---|---|---|---|---|
Dig | 14,318 | 1.4743 | 1.284 | 0.00 | 1.39 | 4.80 |
GIA | 14,318 | 0.4802 | 0.902 | 0.00 | 0.00 | 4.06 |
GIQ | 14,318 | 0.3318 | 0.743 | 0.00 | 0.00 | 3.76 |
Assets | 14,318 | 22.3302 | 1.213 | 19.61 | 22.16 | 27.64 |
Age | 14,318 | 1.8659 | 0.914 | 0.00 | 1.95 | 3.47 |
TobinQ | 14,318 | 2.1757 | 1.287 | 0.66 | 1.77 | 8.14 |
LEV | 14,318 | 0.3730 | 0.177 | 0.01 | 0.37 | 0.76 |
ROA | 14,318 | 0.0561 | 0.057 | −0.67 | 0.05 | 0.22 |
Share | 14,318 | 0.3360 | 0.145 | 0.02 | 0.32 | 0.90 |
FAR | 14,318 | 0.2111 | 0.124 | 0.00 | 0.19 | 0.58 |
OCR | 14,318 | 0.6785 | 0.178 | 0.00 | 0.71 | 0.96 |
Variables | GIA | GIQ | ||||
---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | |
Dig | 0.133 *** | 0.091 *** | 0.063 *** | 0.111 *** | 0.072 *** | 0.056 *** |
(10.21) | (7.55) | (4.84) | (9.62) | (6.98) | (4.99) | |
Assets | 0.217 *** | 0.229 *** | 0.197 *** | 0.210 *** | ||
(7.82) | (8.09) | (7.75) | (8.14) | |||
Age | −0.145 *** | −0.109 *** | −0.115 *** | −0.093 *** | ||
(−6.59) | (−4.98) | (−6.04) | (−4.94) | |||
TobinQ | 0.038 *** | 0.028 *** | 0.035 *** | 0.028 *** | ||
(3.92) | (2.71) | (4.20) | (3.19) | |||
LEV | 0.615 *** | 0.488 *** | 0.390 *** | 0.314 *** | ||
(6.08) | (4.94) | (4.52) | (3.68) | |||
ROA | 0.531 ** | 0.306 | 0.277 | 0.113 | ||
(2.48) | (1.46) | (1.56) | (0.63) | |||
Share | −0.240 ** | −0.164 | −0.200 ** | −0.154 * | ||
(−2.06) | (−1.47) | (−2.05) | (−1.65) | |||
FAR | −0.622 *** | −0.281 ** | −0.577 *** | −0.366 *** | ||
(−4.29) | (−2.05) | (−4.72) | (−3.10) | |||
OCR | 0.483 *** | 0.072 | 0.355 *** | 0.053 | ||
(6.21) | (0.75) | (5.63) | (0.67) | |||
Constant | 0.284 *** | −4.685 *** | −4.719 *** | 0.169 *** | −4.249 *** | −4.354 *** |
(13.24) | (−8.00) | (−7.97) | (9.62) | (−7.93) | (−8.09) | |
Observations | 14,318 | 14,318 | 14,311 | 14,318 | 14,318 | 14,311 |
R-squared | 0.036 | 0.141 | 0.202 | 0.036 | 0.144 | 0.191 |
Industry FE | YES | YES | ||||
Year FE | YES | YES |
Variables | Replace the Explained Variable | Replace Explanatory Variables | ||
---|---|---|---|---|
GIA (Grants) | GIQ (Grants) | GIA | GIQ | |
Dig | 0.042 *** | 0.030 *** | ||
(3.80) | (3.55) | |||
Dig_dum | 0.048 ** | 0.030 * | ||
(2.19) | (1.65) | |||
Assets | 0.200 *** | 0.171 *** | 0.236 *** | 0.216 *** |
(8.03) | (7.02) | (8.28) | (8.32) | |
Age | −0.092 *** | −0.067 *** | −0.106 *** | −0.091 *** |
(−4.84) | (−4.20) | (−4.84) | (−4.78) | |
TobinQ | 0.022 *** | 0.018 *** | 0.028 *** | 0.029 *** |
(2.59) | (2.59) | (2.75) | (3.23) | |
LEV | 0.358 *** | 0.095 | 0.499 *** | 0.325 *** |
(4.14) | (1.47) | (5.03) | (3.78) | |
ROA | −0.053 | −0.340 ** | 0.249 | 0.059 |
(−0.29) | (−2.57) | (1.19) | (0.33) | |
Share | −0.151 | −0.188 ** | −0.161 | −0.151 |
(−1.56) | (−2.55) | (−1.44) | (−1.61) | |
FAR | −0.181 | −0.234 *** | −0.378 *** | −0.456 *** |
(−1.53) | (−2.61) | (−2.72) | (−3.82) | |
OCR | 0.027 | −0.044 | 0.049 | 0.031 |
(0.33) | (−0.82) | (0.50) | (0.39) | |
Constant | −4.073 *** | −3.451 *** | −4.787 *** | −4.415 *** |
(−7.83) | (−6.90) | (−8.04) | (−8.14) | |
Observations | 14,311 | 14,311 | 14,311 | 14,311 |
R-squared | 0.195 | 0.162 | 0.197 | 0.185 |
Industry FE | YES | YES | YES | YES |
Year FE | YES | YES | YES | YES |
Variables | GIA | GIQ | ||||
---|---|---|---|---|---|---|
West | Central | East | West | Central | East | |
Dig | 0.055 | 0.043 | 0.073 *** | 0.049 | 0.027 | 0.066 *** |
(1.42) | (1.39) | (4.81) | (1.44) | (1.08) | (5.10) | |
Assets | 0.227 *** | 0.209 *** | 0.238 *** | 0.173 *** | 0.175 *** | 0.227 *** |
(3.31) | (3.73) | (6.75) | (2.84) | (3.59) | (7.07) | |
Age | −0.147 *** | −0.121 ** | −0.111 *** | −0.094 ** | −0.098 ** | −0.101 *** |
(−2.97) | (−2.40) | (−4.13) | (−2.46) | (−2.27) | (−4.32) | |
TobinQ | 0.006 | 0.021 | 0.034 *** | 0.012 | 0.027 | 0.032 *** |
(0.24) | (0.93) | (2.74) | (0.53) | (1.39) | (2.95) | |
LEV | 0.176 | 0.718 *** | 0.454 *** | 0.125 | 0.551 ** | 0.272 *** |
(0.76) | (2.86) | (3.90) | (0.66) | (2.56) | (2.71) | |
ROA | 0.484 | −0.371 | 0.371 | 0.454 | −0.347 | 0.101 |
(0.84) | (−0.63) | (1.48) | (0.90) | (−0.74) | (0.47) | |
Share | −0.436 | 0.540 * | −0.270 ** | −0.311 | 0.483 ** | −0.251 ** |
(−1.26) | (1.94) | (−2.09) | (−1.13) | (2.19) | (−2.26) | |
FAR | −0.204 | −1.180 *** | −0.117 | −0.441 * | −1.049 *** | −0.218 |
(−0.63) | (−3.19) | (−0.71) | (−1.65) | (−3.38) | (−1.54) | |
OCR | 0.080 | 0.109 | 0.056 | 0.169 | 0.175 | −0.010 |
(0.35) | (0.46) | (0.49) | (1.00) | (1.00) | (−0.11) | |
Constant | −4.442 *** | −4.274 *** | −4.906 *** | −3.498 *** | −3.711 *** | −4.677 *** |
(−3.10) | (−3.61) | (−6.71) | (−2.75) | (−3.62) | (−7.02) | |
Observations | 1393 | 2357 | 10,539 | 1393 | 2357 | 10,539 |
R-squared | 0.263 | 0.238 | 0.213 | 0.218 | 0.222 | 0.204 |
Industry FE | YES | YES | YES | YES | YES | YES |
Year FE | YES | YES | YES | YES | YES | YES |
Variables | GIA | GIQ | ||
---|---|---|---|---|
Non-State-Owned | State-Owned | Non-State-Owned | State-Owned | |
Dig | 0.071 *** | 0.033 | 0.058 *** | 0.052 * |
(5.28) | (1.00) | (5.17) | (1.76) | |
Assets | 0.196 *** | 0.295 *** | 0.175 *** | 0.269 *** |
(6.13) | (5.41) | (6.06) | (5.28) | |
Age | −0.106 *** | −0.197 *** | −0.094 *** | −0.171 *** |
(−4.52) | (−3.41) | (−4.71) | (−3.43) | |
TobinQ | 0.029 *** | 0.047 ** | 0.027 *** | 0.054 *** |
(2.58) | (2.01) | (2.77) | (2.60) | |
LEV | 0.521 *** | 0.409 | 0.341 *** | 0.285 |
(5.57) | (1.61) | (4.42) | (1.23) | |
ROA | 0.353 * | 0.818 | 0.129 | 0.684 |
(1.81) | (1.08) | (0.80) | (1.01) | |
Share | −0.142 | −0.567 * | −0.173 * | −0.444 * |
(−1.28) | (−1.92) | (−1.93) | (−1.72) | |
FAR | −0.371 *** | 0.002 | −0.378 *** | −0.202 |
(−2.69) | (0.01) | (−3.31) | (−0.67) | |
OCR | 0.063 | 0.536 * | 0.011 | 0.484 ** |
(0.64) | (1.93) | (0.14) | (2.02) | |
Constant | −4.022 *** | −6.195 *** | −3.581 *** | −5.770 *** |
(−5.99) | (−5.40) | (−5.92) | (−5.40) | |
Observations | 10,963 | 3344 | 10,963 | 3344 |
R-squared | 0.201 | 0.257 | 0.178 | 0.256 |
Industry FE | YES | YES | YES | YES |
Year FE | YES | YES | YES | YES |
Variables | (1) | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|---|
RDS | GIA | GIQ | Analyst | GIA | GIQ | |
Dig | 0.025 ** | 0.059 *** | 0.053 *** | 0.034 *** | 0.061 *** | 0.055 *** |
(2.46) | (4.40) | (4.57) | (3.76) | (4.49) | (4.66) | |
RDS | 0.135 *** | 0.114 *** | ||||
(7.94) | (7.95) | |||||
Analyst | 0.038 ** | 0.025 | ||||
(2.12) | (1.63) | |||||
Assets | −0.019 | 0.251 *** | 0.231 *** | 0.445 *** | 0.232 *** | 0.218 *** |
(−1.11) | (7.96) | (7.91) | (29.11) | (6.92) | (7.08) | |
Age | −0.092 *** | −0.106 *** | −0.091 *** | −0.109 *** | −0.114 *** | −0.099 *** |
(−5.19) | (−4.50) | (−4.44) | (−7.49) | (−4.75) | (−4.70) | |
TobinQ | 0.046 *** | 0.018 * | 0.020 ** | 0.168 *** | 0.018 * | 0.021 ** |
(5.11) | (1.83) | (2.23) | (14.43) | (1.73) | (2.23) | |
LEV | −0.530 *** | 0.543 *** | 0.359 *** | 0.051 | 0.470 *** | 0.298 *** |
(−5.41) | (5.40) | (4.09) | (0.68) | (4.62) | (3.36) | |
ROA | −3.998 *** | 0.756 *** | 0.483 *** | 3.120 *** | 0.098 | −0.049 |
(−15.09) | (3.61) | (2.69) | (14.49) | (0.48) | (−0.27) | |
Share | −0.287 *** | −0.163 | −0.156 | −0.438 *** | −0.185 | −0.178 * |
(−3.09) | (−1.38) | (−1.54) | (−5.51) | (−1.55) | (−1.74) | |
FAR | 0.139 | −0.306 ** | −0.390 *** | 0.017 | −0.288 ** | −0.374 *** |
(1.02) | (−2.23) | (−3.23) | (0.17) | (−2.07) | (−3.06) | |
OCR | −2.098 *** | 0.335 *** | 0.272 *** | −0.866 *** | 0.084 | 0.054 |
(−14.96) | (3.37) | (3.32) | (−9.06) | (0.86) | (0.67) | |
Constant | 3.749 *** | −5.586 *** | −5.143 *** | −7.630 *** | −4.792 *** | −4.527 *** |
(10.27) | (−8.32) | (−8.28) | (−23.14) | (−7.01) | (−7.19) | |
Observations | 14,311 | 14,311 | 14,311 | 14,311 | 14,311 | 14,311 |
R-squared | 0.519 | 0.215 | 0.204 | 0.388 | 0.206 | 0.194 |
Industry FE | YES | YES | YES | YES | YES | YES |
Year FE | YES | YES | YES | YES | YES | YES |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, K.; Chen, Y. Research on the Impact of Data Factors on Enterprise Green Innovation—Evidence from Chinese Manufacturing Enterprises. Sustainability 2025, 17, 2184. https://doi.org/10.3390/su17052184
Jia K, Chen Y. Research on the Impact of Data Factors on Enterprise Green Innovation—Evidence from Chinese Manufacturing Enterprises. Sustainability. 2025; 17(5):2184. https://doi.org/10.3390/su17052184
Chicago/Turabian StyleJia, Kaiwei, and Yanlin Chen. 2025. "Research on the Impact of Data Factors on Enterprise Green Innovation—Evidence from Chinese Manufacturing Enterprises" Sustainability 17, no. 5: 2184. https://doi.org/10.3390/su17052184
APA StyleJia, K., & Chen, Y. (2025). Research on the Impact of Data Factors on Enterprise Green Innovation—Evidence from Chinese Manufacturing Enterprises. Sustainability, 17(5), 2184. https://doi.org/10.3390/su17052184