Valorizing Organic Waste Through Black Soldier Fly Larvae (Hermetia illucens): A Sustainable Solution for Aquafeeds with Key Nutrients and Natural Bioactive Polyphenols
Abstract
:1. Introduction
2. Materials and Methods
2.1. Waste Collection and Preparation
2.2. Larval Rearing and Experimental Design
2.3. Analytical Analysis
2.3.1. Biomass Gain, Survival, Feed Conversion Ratio, Protein Efficiency, and Bioconversion Ratio
2.3.2. Nutritional Composition
2.3.3. Total Polyphenol Concentration
2.4. Statistical Analysis
3. Results
3.1. Growth and Survival
3.2. Feed Conversion Ratio, Protein Efficiency Ratio and Bioconversion
3.3. Nutritional Composition
3.3.1. Feeds
3.3.2. Larvae
3.3.3. Total Polyphenol Concentration
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BSFL | Black Soldier Fly Larvae |
KW | Kitchen Waste |
AW | Agriculture Waste |
AS | Aquaculture Sludge |
AO | Aquaculture Offal |
MX | Mix |
FCR | Feed Conversion Ratio |
PER | Protein Efficiency Ratio |
GAE | Gallic Acid Equivalent |
BSFLM | Black Soldier Fly Larvae Meal |
HCC | Hydrated Coconut Coir |
TAA | Total Amino Acids |
IAA | Indispensable Amino Acids |
DAA | Dispensable Amino Acids |
LC-PUFAs | Long-Chain Polyunsaturated Fatty Acids |
References
- Naylor, R.L.; Hardy, R.W.; Buschmann, A.H.; Bush, S.R.; Cao, L.; Klinger, D.H.; Little, D.C.; Lubchenco, J.; Shumway, S.E.; Troell, M. A 20-year retrospective review of global aquaculture. Nature 2021, 591, 551–563. [Google Scholar] [CrossRef] [PubMed]
- Turchini, G.M.; Trushenski, J.T.; Glencross, B.D. Thoughts for the future of aquaculture nutrition: Realigning perspectives to reflect contemporary issues related to judicious use of marine resources in aquafeeds. N. Am. J. Aquac. 2019, 81, 13–39. [Google Scholar] [CrossRef]
- Booman, M.; Forster, I.; Vederas, J.C.; Groman, D.B.; Jones, S.R.M. Soybean meal-induced enteritis in Atlantic salmon (Salmo salar) and Chinook salmon (Oncorhynchus tshawytscha) but not in pink salmon (O. gorbuscha). Aquaculture 2018, 483, 238–243. [Google Scholar] [CrossRef]
- van Huis, A. Insects as food and feed, a new emerging agricultural sector: A review. J. Insects Food Feed 2019, 6, 27–44. [Google Scholar] [CrossRef]
- Diclaro, J.W.; Kaufman, P.E. Black Soldier Fly Hermetia Illucens Linnaeus (Insecta: Diptera: Stratiomyidae). EDIS/EENY 2009, 7. [Google Scholar] [CrossRef]
- Ståhls, G.; Meier, R.; Sandrock, C.; Hauser, M.; Zoric, L.S.; Laiho, E.; Aracil, A.; Doderovic, J.; Badenhorst, R.; Unadirekkul, P.; et al. The puzzling mitochondrial phylogeography of the black soldier fly (Hermetia illucens), the commercially most important insect protein species. BMC Evol. Biol. 2020, 20, 20. [Google Scholar] [CrossRef] [PubMed]
- Kaya, C.; Generalovic, T.N.; Ståhls, G.; Hauser, M.; Samayoa, A.C.; Nunes-Silva, C.G.; Roxburgh, H.; Wohlfahrt, J.; Ewusie, E.A.; Kenis, M.; et al. Global population genetic structure and demographic trajectories of the black soldier fly, Hermetia illucen. BMC Biol. 2021, 19, 94. [Google Scholar] [CrossRef]
- Tepper, K.; Edwards, O.; Sunna, A.; Paulsen, I.T.; Maselko, M. Diverting organic waste from landfills via insect biomanufacturing using engineered black soldier flies (Hermetia illucens). Commun. Biol. 2024, 7, 862. [Google Scholar] [CrossRef] [PubMed]
- De Smet, J.; Wynants, E.; Cos, P.; Van Campenhout, L. Microbial Community Dynamics during Rearing of Black Soldier Fly Larvae (Hermetia illucens) and Impact on Exploitation Potential. Appl. Environ. Microbiol. 2018, 84, e02722-17. [Google Scholar] [CrossRef]
- Verraes, C.; van Boxstael, S.; van Meervenne, E.; van Coillie, E.; Butaye, P.; Catry, B.; de Schaetzen, M.A.; van Huffel, X.; Imberechts, H.; Dierick, K.; et al. Antimicrobial Resistance in the Food Chain: A Review. Int. J. Environ. Res. Public Health 2013, 10, 2643–2669. [Google Scholar] [CrossRef]
- Xia, J.; Ge, C.; Yao, H. Antimicrobial Peptides from Black Soldier Fly (Hermetia illucens) as Potential Antimicrobial Factors Representing an Alternative to Antibiotics in Livestock Farming. Animals 2021, 11, 1937. [Google Scholar] [CrossRef] [PubMed]
- Pimchan, T.; Hamzeh, A.; Siringan, P.; Thumanu, K.; Hanboonsong, Y.; Yongsawatdigul, J. Antibacterial peptides from black soldier fly (Hermetia illucens) larvae: Mode of action and characterization. Sci. Rep. 2024, 14, 26469. [Google Scholar] [CrossRef]
- Zabulionė, A.; Šalaševičienė, A.; Makštutienė, N.; Šarkinas, A. Exploring the Antimicrobial Potential and Stability of Black Soldier Fly (Hermentia illucens) Larvae Fat for Enhanced Food Shelf-Life. Gels 2023, 9, 793. [Google Scholar] [CrossRef]
- Auza, F.A.; Purwanti, S.; Syamsu, J.A.; Natsir, A. Antibacterial activities of black soldier flies (Hermetia illucens. l) extracts towards the growth of Salmonella typhimurium, E.coli and Pseudomonas aeruginosa. IOP Conf. Ser. Earth Environ. Sci. 2020, 492, 012024. [Google Scholar] [CrossRef]
- Corino, C.; Rossi, R. Antioxidants in Animal Nutrition. Antioxiants 2021, 10, 1877. [Google Scholar] [CrossRef] [PubMed]
- Makkar, H.P.S.; Tran, G.; Heuze, V.; Ankers, P. State-of-the-art on use of insects as animal feed. Anim. Feed Sci. Technol. 2014, 197, 1–33. [Google Scholar] [CrossRef]
- Gold, M.; Tomberlin, J.K.; Diener, S.; Zurbrügg, C.; Mathys, A. Decomposition of biowaste macronutrients, microbes, and chemical properties during the conversion process by black soldier fly larvae (Hermetia illucens). Sci. Total Environ. 2018, 613, 130–141. [Google Scholar] [CrossRef]
- Gessner, D.K.; Ringseis, R.; Eder, K. Potential of plant polyphenols to combat oxidative stress and inflammatory processes in farm animals. J. Anim. Physiol. Anim. Nutr. 2017, 101, 605–628. [Google Scholar] [CrossRef] [PubMed]
- Ahmadifar, E.; Yousefi, M.; Karimi, M.; Raieni, R.; Dadar, M.; Yılmaz, S.; Dawood, M.; Abdel-Latif, H. Benefits of Dietary Polyphenols and Polyphenol-Rich Additives to Aquatic Animal Health: An Overview. Rev. Fish. Sci. Aquac. 2020, 29, 478–511. [Google Scholar] [CrossRef]
- Cory, H.; Passarelli, S.; Szeto, J.; Tamez, M.; Mattei, J. The Role of Polyphenols in Human Health and Food Systems: A Mini-Review. Front. Nutr. 2018, 5, 87. [Google Scholar] [CrossRef] [PubMed]
- Sakakibara, H.; Shimoi, K. Anti-stress effects of polyphenols: Animal models and human trials. Food Funct. 2020, 11, 5702–5717. [Google Scholar] [CrossRef]
- Henry, M.; Gasco, L.; Piccolo, G.; Fountoulaki, E. Review on the use of insects in the diet of farmed fish: Past and future. Anim. Feed Sci. Technol 2015, 203, 1–22. [Google Scholar] [CrossRef]
- Gasco, L.; Finke, M.; van Huis, A. Can diets containing insects promote animal health? J. Insects Food Feed 2018, 4, 1–4. [Google Scholar] [CrossRef]
- Parodi, A.; Leip, A.; De Boer, I.J.M.; Slegers, P.M.; Ziegler, F.; Temme, E.H.M.; van Zanten, H.H.E. The potential of future foods for sustainable and healthy diets. Nat. Sustain. 2018, 1, 782–789. [Google Scholar] [CrossRef]
- Lock, E.R.; Arsiwalla, T.; Waagbø, R. Insect larvae meal as an alternative source of nutrients in the diet of Atlantic salmon (Salmo salar) postsmolt. Aquac. Nutr. 2021, 27, 568–579. [Google Scholar] [CrossRef]
- Moutinho, S.; Oliva-Teles, A.; Fontinha, F.; Martins, N.; Monroig, Ó.; Peres, H. Black soldier fly larvae meal as a potential modulator of immune, inflammatory, and antioxidant status in gilthead seabream juveniles. Comp. Biochem. Physiol. B 2024, 271, 110951. [Google Scholar] [CrossRef] [PubMed]
- Weththasinghe, P.; Rocha, S.D.; Øyås, O.; Lagos, L.; Hansen, J.Ø.; Mydland, L.T.; Øverland, M. Modulation of Atlantic salmon (Salmo salar) gut microbiota composition and predicted metabolic capacity by feeding diets with processed black soldier fly (Hermetia illucens) larvae meals and fractions. Anim. Microbiome 2022, 4, 9. [Google Scholar] [CrossRef] [PubMed]
- AOAC Official Method 990.03, Protein (crude) in animal feed, combustion method. In Official Methods of Analysis of AOAC International, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2006.
- Bligh, E.G.; Dyer, W.J. A rapid method for total lipid extraction and purification. Can. J. Biochem. Physiol 1959, 37, 911–917. [Google Scholar] [CrossRef] [PubMed]
- ISO Standard No. 9831.1998; Animal Feeding Stuffs, Animal Products, and Faeces or Urine—Determination of Gross Calorific Value—Bomb Calorimeter Metho. International Organization of Standardization: Geneva, Switzerland, 1998.
- AOAC Official Method 969.33, Fatty acids in oils and fats. In Official Methods of Analysis of AOAC International; AOAC International: Gaithersburg, MD, USA, 1969.
- AOAC Official Method 969.22, Methyl esters of fatty acids in oils and fats, Gas chromatographic method. In Official Methods of Analysis of AOAC International; AOAC International: Gaithersburg, MD, USA, 1997.
- Olivares-Ferretti, P.; Chavez, V.; Hernandez, K.; Parodi, J. Polyphenols extracts from Didymosphenia geminata (Lyngbye) Schmidt altered the motility and viability of Daphnia magna. Res. Sq. 2021, 56, 35–45. [Google Scholar] [CrossRef]
- Belperio, S.; Cattaneo, A.; Nannoni, E.; Sardi, L.; Martelli, G.; Dabbou, S.; Meneguz, M. Assessing substrate utilization and bioconversion efficiency of black soldier fly (Hermetia illucens) larvae: Effect of diet composition on growth and development temperature. Animals 2024, 14, 1340. [Google Scholar] [CrossRef] [PubMed]
- Chia, S.Y.; Tanga, C.M.; Khamis, F.M.; Mohamed, S.A.; Salifu, D.; Sevgan, S.; Ekesi, S. Threshold temperatures and thermal requirements of black soldier fly Hermetia illucens: Implications for mass production. PLoS ONE 2020, 15, e0228541. [Google Scholar] [CrossRef] [PubMed]
- Nyakeri, E.M.; Ogola, H.J.O.; Ayieko, M.A.; Amimo, F.A. An open system for farming black soldier fly larvae as a source of proteins for small-scale poultry and fish production. J. Insects Food Feed 2017, 3, 51–56. [Google Scholar] [CrossRef]
- Lalander, C.; Diener, S.; Zurbrügg, C.; Vinnerås, B. Effects of feedstock on larval development and process efficiency in waste treatment with black soldier fly (Hermetia illucens). J. Clean. Prod. 2018, 233, 116–126. [Google Scholar] [CrossRef]
- Bekker, N.S.; Heidelbach, S.; Vastergaard, S.Z.; Nielsen, M.E.; Riisgaard-Jensen, M.; Zeuner, E.J.; Bahrndorff, S.; Eriksen, T. Impact of substrate moisture content on growth and metabolic performance of black soldier fly larvae. Waste Manag. 2021, 127, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Barragan-Fonseca, K.B.; Dicke, M.; van Loon, J.J. Influence of larval density and dietary nutrient concentration on performance, body protein, and fat contents of black soldier fly larvae (Hermetia illucens). Entomol. Exp. Appl. 2018, 166, 761–770. [Google Scholar] [CrossRef] [PubMed]
- Diener, S.; Zurbrügg, C.; Gutiérrez, F.R.; Nguyen, D.H.; Morel, A.; Koottatep, T.; Tockner, K. Black soldier fly larvae for organic waste treatment—Prospects and constraints. In Proceedings of the WasteSafe 2011—2nd International Conference on Solid Waste Management in the Developing Countries, Khulna, Bangladesh, 13–15 February 2011. [Google Scholar]
- Li, R.; Lin, T.; Fan, X.; Dai, X.F.; Huang, J.H.; Zhang, Y.F.; Guo, R.B.; Fu, S.F. Effects of salinity in food waste on the growth of black soldier fly larvae and global warming potential analysis. Chem. Eng. J. 2024, 480, 148221. [Google Scholar] [CrossRef]
- Spranghers, T.; Ottoboni, M.; Klootwijk, C.; Ovyn, A.; Deboosere, S.; De Meulenaer, B.; Michiels, J.; Eeckhout, M.; De Clercq, P.; De Smet, S. Nutritional composition of black soldier fly (Hermetia illucens) prepupae reared on different organic waste substrates. J. Sci. Food Agric. 2017, 97, 2594–2600. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, J.; He, J.; Lu, H.; Sun, S.; Ji, F.; Dong, X.; Bao, Y.; Xu, J.; He, G.; et al. Chronological and carbohydrate-dependent transformation of fatty acids in the larvae of black soldier fly following food waste treatment. Molecules 2023, 28, 41903. [Google Scholar] [CrossRef] [PubMed]
- St-Hilaire, S.; Cranfill, K.; McGuire, M.A.; Mosley, E.E.; Tomberlin, J.K.; Newton, L.; Sealey, W.; Sheppard, C.; Irving, S. Fish offal recycling by the black soldier fly produces a foodstuff high in omega-3 fatty acids. J. World Aquac. Soc. 2007, 38, 309–313. [Google Scholar] [CrossRef]
- Eggink, K.M.; Lund, I.; Pedersen, P.B.; Hansen, B.W.; Dalsgaard, J. Biowaste and by-products as rearing substrates for black soldier fly (Hermetia illucens) larvae: Effects on larval body composition and performance. PLoS ONE 2022, 17, e0275213. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Dong, Y.; Sun, Q.; Tan, X.; You, C.; Huang, Y.; Zhou, M. Growth and fatty acid composition of black soldier fly (Hermetia illucens) larvae are influenced by dietary fat sources and levels. Animals 2022, 12, 486. [Google Scholar] [CrossRef]
- Ewald, N.; Vidakovic, A.; Langeland, M.; Kiessling, A.; Sampels, S.; Lalander, C. Fatty acid composition of black soldier fly larvae (Hermetia illucens)—Possibilities and limitations for modification through diet. Waste Manag. 2020, 102, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Barroso, F.G.; Sanchez-Muros, M.J.; Rincon, M.A.; Rodriguez-Rodriguez, M.; Fabrikov, D.; Morote, E.; Guil-Guerrero, J.S. Production of n-3-rich insects by bioaccumulation of fishery waste. J. Food Compos. Anal. 2019, 82, 103237. [Google Scholar] [CrossRef]
- Erbland, P.; Alyokhin, A.; Perkins, B.; Peterson, M. Dose-dependent retention of omega-3 fatty acids by black soldier fly larvae (Diptera: Stratiomyidae). J. Econ. Entomol. 2020, 113, 1221–1226. [Google Scholar] [CrossRef]
- Tylewicz, U.; Nowacka, M.; Marin-Garcia, B.; Wiktor, A. Target sources of polyphenols in different food products and their processing by-products. In Polyphenols: Properties, Recovery, and Applications; Woodhead Publishing: Sawston, UK, 2018; pp. 135–175. [Google Scholar] [CrossRef]
- García-Valverde, V.; Inmaculada, N.G.; García-Alonso, J.; Periago, M.J. Antioxidant bioactive compounds in selected industrial processing and fresh consumption tomato cultivars. Food Bioprocess Technol. 2013, 6, 391–402. [Google Scholar] [CrossRef]
- Islam, M.S.; Yoshimoto, M.; Yahara, S.; Okuno, S.; Ishiguro, K.; Yamakawa, O. Identification and characterization of foliar polyphenolic composition in sweet potato (Ipomoea batatas L.) genotypes. J. Agric. Food Chem. 2002, 50, 3718–3722. [Google Scholar] [CrossRef]
- Sun, Y.; Pan, Z.; Yang, C.; Jia, Z.; Guo, X. Comparative assessment of phenolic profiles, cellular antioxidant and antiproliferative activities in ten varieties of sweet potato (Ipomoea batatas) storage roots. Molecules 2019, 24, 4476. [Google Scholar] [CrossRef]
- Vella, F.; Calandrelli, R.; Cautela, D.; Laratta, B. Screening of bioactivity in extracts from different varieties of lettuce. In Proceedings of the International Electronic Conference on Plant Science, Online, 1–15 December 2020. [Google Scholar] [CrossRef]
- Brar, J.S.; Sharma, S.; Kaur, H.; Singh, H.; Naik, E.K.; Adhikary, T. Phytochemical properties, antioxidant potential and fatty acids profiling of three dragon fruit species grown under sub-tropical climate. Not. Bot. Horti Agrobot. Cluj-Napoca 2023, 51, 12993. [Google Scholar] [CrossRef]
- Ouédraogo, N.; Sombie, P.A.E.D.; Traore, R.E.; Sama, H.; Bationo/Kando, P.; Sawadogo, M.; Lebot, V. Nutritional and phytochemical characterization of taro (Colocasia esculenta (L.) Schott) germplasm from Burkina Faso. J. Plant Breed. Crop Sci. 2023, 15, 32–41. [Google Scholar] [CrossRef]
- Faezah, N.; Aishah, S.; Kalsom, U. Comparative evaluation of organic and inorganic fertilizers on total phenolic, total flavonoid, antioxidant activity, and cyanogenic glycosides in cassava (Manihot esculenta). Afr. J. Biotechnol. 2013, 12, 2414–2421. [Google Scholar] [CrossRef]
- Bureau, D.P.; Kaushik, S.J.; Cho, C.Y. Bioenergetics. In Fish Nutrition, 3rd ed.; Halver, J.E., Hardy, R.W., Eds.; Academic Press: Cambridge, MA, USA, 2002; pp. 1–59. [Google Scholar]
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef]
- Scalbert, A.; Johnson, I.T.; Saltmarsh, M. Polyphenols: Antioxidants and beyond. Am. J. Clin. Nutr. 2005, 81, 215S–217S. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Minor, M.; Morel, P.C.; Najar-Rodriguez, A.J. Bioconversion of three organic wastes by black soldier fly (Diptera: Stratiomyidae) larvae. Environ. Entomol. 2018, 47, 1609–1617. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Chen, X.; Wang, H.; Yang, Q.; Rehman, K.; Li, W.; Cai, M.; Li, Q.; Mazza, L.; Zhang, J.; et al. Dynamic changes of nutrient composition throughout the entire life cycle of black soldier fly. PLoS ONE 2017, 12, e0182601. [Google Scholar] [CrossRef] [PubMed]
Rearing Feed | KW | AW | AS | AO | MX |
---|---|---|---|---|---|
Kitchen Waste | Agriculture Waste | Aquaculture Sludge | Aquaculture Offal | Mix | |
Initial biomass (g) | 2.40 ± 0.08 a | 2.34 ± 0.07 a | 2.32 ± 0.06 a | 2.29 ± 0.04 a | 2.33 0.09 a |
Final biomass (g) | 7.0 ± 0.1 a | 9.0 ± 0.2 a | 19.2 ± 0.3 b | 32.3 ± 0.6 c | 34.8 ± 1.7 c |
Biomass gain (g) | 4.6 ± 0.1 a | 6.7 ± 0.2 a | 17.0 ± 0.2 b | 30.0 ± 0.6 c | 32.5 ± 1.6 c |
Average weight (mg) | 35 ± 0.8 a | 48 ± 0.5 a | 98 ± 12.2 b | 170 ± 2.2 c | 177 ± 7.4 c |
Survival (%) | 98.9 ± 0.6 a | 93.9± 2.0 a | 97.6 ± 0.3 a | 95.0 ± 1.5 a | 98.3 ± 1.2 a |
Feed given (g) | 152.4 ± 3.4 a | 182.8 ± 4.0 a | 296.4 ± 5.7 b | 579.8 ± 9.6 c | 495.4 ± 34.2 d |
FCR | 33.5 ± 0.9 a | 27.4 ± 0.7 b | 17.6 ± 1.2 c | 19.4 ± 0.1 c | 15.2 ± 0.3 d |
Bioconversion (%) | 4.6 ± 0.1 a | 4.9 ± 0.1 b | 6.5 ± 0.1 c | 5.6 ± 0.1 d | 7.1 ± 0.2 e |
PER (%) | 21.2 ± 0.6 a | 69.5 ± 1.7 b | 19.3 ± 0.2 a | 13.0 ± 0.1 c | 29.1 ± 0.6 d |
KW | AW | AS | AO | MX | |
---|---|---|---|---|---|
% of DM | Kitchen Waste | Agriculture Waste | Aquaculture Sludge | Aquaculture Offal | Mix |
Crude Protein | 14.1 | 5.3 | 29.5 | 39.9 | 22.6 |
Crude Lipids | 3.4 | 2.5 | 20.1 | 60.4 | 39.6 |
Gross Energy (MJ/kg) | 18.1 | 17.5 | 17.5 | 26.4 | 26.5 |
Ash | 10.2 | 4.3 | 29.0 | 2.4 | 6.8 |
Amino Acid Profile (% DM) | |||||
Indispensable Amino Acids (IAA) | |||||
Arginine | 0.3 | 0.3 | 1.9 | 2.6 | 0.9 |
Histidine | 0.2 | 0.1 | 0.6 | 0.8 | 0.3 |
Isoleucine | 0.3 | 0.1 | 1.0 | 1.6 | 0.6 |
Leucine | 0.5 | 0.2 | 1.9 | 2.8 | 1.0 |
Lysine | 0.2 | 0.1 | 0.9 | 2.5 | 0.5 |
Methionine | 0.1 | 0.0 | 0.5 | 1.0 | 0.3 |
Phenylalanine | 0.3 | 0.1 | 1.2 | 1.7 | 0.5 |
Threonine | 0.3 | 0.1 | 1.2 | 1.6 | 0.6 |
Valine | 0.4 | 0.2 | 1.2 | 1.8 | 0.7 |
Sum IAA | 2.6 | 1.3 | 10.2 | 16.3 | 5.4 |
Dispensable Amino Acids (DAA) | |||||
Alanine | 0.4 | 0.2 | 1.6 | 2.5 | 1.0 |
Aspartic | 0.8 | 0.4 | 2.5 | 3.4 | 1.3 |
Glutamic | 1.8 | 0.6 | 2.9 | 4.2 | 1.7 |
Glycine | 0.4 | 0.2 | 1.9 | 2.4 | 0.9 |
Proline | 0.3 | 0.1 | 1.7 | 1.8 | 0.8 |
Serine | 0.4 | 0.2 | 1.4 | 1.8 | 0.7 |
Taurine | <0.01 | <0.01 | 0.0 | 0.7 | 0.1 |
Tyrosine | 0.2 | 0.1 | 0.8 | 1.1 | 0.4 |
Sum DAA | 4.3 | 1.9 | 12.7 | 17.9 | 6.9 |
Sum AA | 9.5 | 4.6 | 33.2 | 50.4 | 17.7 |
Fatty Acids (FA, % DM) | |||||
C10:0 Capric acid | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 |
C12:0 Lauric acid | 0.04 | <0.1 | <0.1 | 0.02 | 0.03 |
C14:0 Myristic acid | 0.03 | <0.1 | 0.42 | 0.83 | 0.58 |
C16:0 Palmitic acid | 1.08 | 0.42 | 7.96 | 8.22 | 5.63 |
C16:1c-9 Palmitoleic acid | 0.03 | <0.1 | 0.55 | 1.83 | 1.29 |
C18:0 Stearic acid | 0.13 | 0.11 | 3.58 | 2.77 | 1.92 |
C18:1c-9 Oleic acid | 0.20 | 0.24 | 3.14 | 25.40 | 16.90 |
C18:2c-9,12 Linoleic acid | 1.01 | 0.60 | 1.16 | 8.92 | 5.80 |
C18:3c-9,12,15 alpha-Linolenic acid | 0.06 | 0.03 | 0.08 | 1.80 | 1.18 |
C20:0 Arachidic acid | 0.03 | 0.01 | 0.43 | 0.19 | 0.13 |
C20:4c-5,8,11,14 Arachidonic acid | <0.1 | <0.1 | 0.04 | 0.42 | 0.19 |
C20:5c-5,8,11,14,17 Eicosapentaenoic acid (EPA) | 0.05 | 0.41 | 1.61 | 1.22 | 0.79 |
C22:6-4,7,10,13,16,19 Docosahexaenoic acid (DHA) | <0.1 | <0.1 | 0.13 | 2.83 | 1.51 |
Sum Saturated Fatty Acids (SFA) | 1.4 | 1.0 | 13.0 | 12.0 | 8.5 |
Sum Unsaturated Fatty Acids (UFA) | 2.0 | 1.6 | 7.4 | 48.0 | 31.0 |
Sum Monounsaturated Fatty Acids (MFA) | 0.3 | 0.5 | 4.3 | 30.5 | 20.3 |
Sum Polyunsaturated Fatty Acids (PUFA) | 1.7 | 1.0 | 3.1 | 18.0 | 11.0 |
Sum n-3 | 0.7 | 0.4 | 1.9 | 6.6 | 3.9 |
Sum n-6 | 1.0 | 0.6 | 1.2 | 11.0 | 6.8 |
n6/n3 | 1.4 | 1.5 | 0.6 | 1.7 | 1.7 |
EPA+DHA | 0.1 | 0.4 | 1.7 | 4.1 | 2.3 |
Sum | 2.7 | 1.8 | 19.1 | 54.5 | 36.0 |
KW | AW | AS | AO | MX | |
---|---|---|---|---|---|
% of DM | Kitchen Waste | Agriculture Waste | Aquaculture Sludge | Aquaculture Offal | Mix |
Crude Protein | 56.5 | 31.6 | 40.9 | 42.0 | 33.9 |
Crude Lipids | 10.8 | 30.0 | 26.8 | 42.9 | 47.9 |
Gross Energy (MJ/kg) | 21.0 | 24.4 | 22.7 | 28.8 | 28.6 |
Ash | 8.5 | 5.6 | 12.7 | 3.7 | 6.1 |
Amino Acid Profile (% DM) | |||||
Indispensable Amino Acids (IAA) | |||||
Arginine | 3.6 | 1.6 | 2.8 | 2.9 | 2.2 |
Histidine | 1.4 | 0.6 | 1.1 | 1.4 | 0.9 |
Isoleucine | 2.2 | 1.0 | 1.8 | 2.0 | 1.5 |
Leucine | 3.8 | 1.8 | 3.2 | 3.6 | 2.7 |
Lysine | 2.6 | 1.1 | 2.5 | 2.5 | 1.8 |
Methionine | 0.6 | 0.3 | 0.8 | 0.7 | 0.5 |
Phenylalanine | 2.2 | 0.9 | 2.6 | 2.7 | 1.6 |
Threonine | 2.0 | 1.0 | 1.7 | 1.7 | 1.3 |
Valine | 3.2 | 1.5 | 2.6 | 2.9 | 2.2 |
Sum IAA | 21.8 | 9.8 | 19.1 | 20.4 | 14.6 |
Dispensable Amino Acids (DAA) | |||||
Alanine | 3.9 | 1.9 | 2.9 | 3.1 | 2.6 |
Aspartic | 4.4 | 2.2 | 4.2 | 4.4 | 3.3 |
Glutamic | 5.9 | 2.7 | 4.3 | 4.3 | 3.3 |
Glycine | 2.8 | 1.3 | 2.1 | 2.2 | 1.7 |
Proline | 3.2 | 1.6 | 2.4 | 2.7 | 2.2 |
Serine | 2.5 | 1.2 | 1.9 | 2.1 | 1.6 |
Taurine | <0.1 | <0.1 | <0.1 | 0.1 | <0.1 |
Tyrosine | 2.8 | 1.2 | 2.8 | 3.1 | 2.1 |
Sum DAA | 25.4 | 12.2 | 20.6 | 21.9 | 16.7 |
Sum AA | 68.9 | 31.9 | 58.8 | 62.6 | 45.9 |
Fatty Acids (FA, % DM) | |||||
C10:0 Capric acid | 0.09 | 0.42 | 0.11 | 0.28 | 0.31 |
C12:0 Lauric acid | 4.10 | 14.30 | 3.45 | 9.62 | 11.00 |
C14:0 Myristic acid | 1.00 | 3.11 | 1.24 | 1.91 | 2.18 |
C16:0 Palmitic acid | 2.44 | 4.83 | 9.42 | 6.50 | 8.11 |
C16:1c-9 Palmitoleic acid | 0.39 | 1.19 | 1.97 | 1.56 | 1.61 |
C18:0 Stearic acid | 0.69 | 1.08 | 1.32 | 1.13 | 1.32 |
C18:1c-9 Oleic acid | 1.14 | 3.35 | 5.97 | 12.90 | 13.50 |
C18:2c-9,12 Linoleic acid | 0.51 | 1.01 | 1.73 | 5.19 | 5.87 |
C18:3c-9,12,15 alpha-Linolenic acid | 0.10 | 0.14 | 0.16 | 0.93 | 1.10 |
C20:0 Arachidic acid | <0.1 | <0.1 | 0.06 | 0.04 | 0.06 |
C20:4c-5,8,11,14 Arachidonic acid | <0.1 | <0.1 | 0.08 | 0.15 | 0.14 |
C20:5c-5,8,11,14,17 Eicosapentaenoic acid (EPA) | <0.1 | <0.1 | 0.40 | 0.77 | 0.79 |
C22:6-4,7,10,13,16,19 Docosahexaenoic acid (DHA) | <0.1 | <0.1 | 0.07 | 0.27 | 0.30 |
Sum Saturated Fatty Acids (SFA) | 8.5 | 24.0 | 16.0 | 20.0 | 23.0 |
Sum Unsaturated Fatty Acids (UFA) | 2.3 | 6.1 | 11.0 | 23.0 | 25.0 |
Sum Monounsaturated Fatty Acids (MFA) | 1.7 | 4.9 | 8.5 | 15.5 | 16.1 |
Sum Polyunsaturated Fatty Acids (PUFA) | 0.7 | 1.2 | 2.5 | 7.7 | 8.5 |
Sum n-3 | 0.1 | 0.2 | 0.7 | 2.0 | 2.3 |
Sum n-6 | 0.5 | 1.0 | 1.8 | 5.6 | 6.3 |
n6/n3 | 5.0 | 5.0 | 2.6 | 2.8 | 2.7 |
EPA+DHA | <0.1 | <0.1 | 0.5 | 1.0 | 1.1 |
Sum | 10.5 | 29.4 | 26.0 | 41.3 | 46.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Camperio, J.; Suarez, J.A.; Simonton, J.; Paresky, E.; Parodi, J.; Benetti, D.D. Valorizing Organic Waste Through Black Soldier Fly Larvae (Hermetia illucens): A Sustainable Solution for Aquafeeds with Key Nutrients and Natural Bioactive Polyphenols. Sustainability 2025, 17, 1788. https://doi.org/10.3390/su17051788
Camperio J, Suarez JA, Simonton J, Paresky E, Parodi J, Benetti DD. Valorizing Organic Waste Through Black Soldier Fly Larvae (Hermetia illucens): A Sustainable Solution for Aquafeeds with Key Nutrients and Natural Bioactive Polyphenols. Sustainability. 2025; 17(5):1788. https://doi.org/10.3390/su17051788
Chicago/Turabian StyleCamperio, Julio, Jorge A. Suarez, Justin Simonton, Eli Paresky, Jorge Parodi, and Daniel D. Benetti. 2025. "Valorizing Organic Waste Through Black Soldier Fly Larvae (Hermetia illucens): A Sustainable Solution for Aquafeeds with Key Nutrients and Natural Bioactive Polyphenols" Sustainability 17, no. 5: 1788. https://doi.org/10.3390/su17051788
APA StyleCamperio, J., Suarez, J. A., Simonton, J., Paresky, E., Parodi, J., & Benetti, D. D. (2025). Valorizing Organic Waste Through Black Soldier Fly Larvae (Hermetia illucens): A Sustainable Solution for Aquafeeds with Key Nutrients and Natural Bioactive Polyphenols. Sustainability, 17(5), 1788. https://doi.org/10.3390/su17051788