Influence of Additives on Solar-Controlled Anaerobic and Aerobic Processes of Cow Manure and Tomato Waste
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Experimental System
2.2. Substrate and Inoculum
2.3. Experimental Procedures
2.4. Determination Index and Methods
3. Results and Discussion
3.1. Temperature Control Performance of the System
3.2. Biogas Production Performance of the System
3.3. Methane Production Performance of the System
3.4. BF Production Performance of the System
3.4.1. Change in the pH Value of the System Digestive Fluid
3.4.2. Change in the EC Value of the System Digestive Fluid
3.4.3. Change in the -N Content of the System Digestive Fluid
3.4.4. BF Production Quality Evaluation of the System
3.4.5. Comprehensive Performance Evaluation of Biogas and BF Production in the System with Regulated HRT
4. Conclusions
- (1)
- In cold regions, the system demonstrates the ability to thermostatically control the DS, maintaining stable operation within a temperature range of (26 ± 2 °C) even during three consecutive days of cloudy and snowy weather. Both the BG and the two control groups achieved continuous and stable biogas and BF production while simultaneously reducing greenhouse gas emissions. This is a key advantage of the system, as the AD device overcomes issues related to heat expansion, cold contraction, and discharge difficulties. The system is capable of performing a range of AD reactions, including batch, continuous, intermittent, dry, and wet AD. The AT tank facilitates rapid aeration treatment of BS, improving its biological effectiveness.
- (2)
- The addition of appropriate amounts of two exogenous additives—plant ash and urea—was found to be feasible. These additives promote biogas production and result in the production of BF with higher nutrient content. Furthermore, the BS of UG achieved the highest decomposition degree within the shortest AT time. The content of total soluble organic and inorganic nutrients in the UG that decomposed the fastest was 7.01 g/L, with a GI of 100.4% and -N at 862 mg/L. Thus, the application of an appropriate amount of exogenous additives can further drive the reaction process of the entire technology and accelerate the decomposition of DS.
- (3)
- Regarding the reaction period of this experiment, the BG demonstrated the optimal biogas and methane production performance at the terminal stage of AD. In terms of BF production characteristics, the UG showed the best BS decomposition rate and nutrient retention capacity. To shorten the HRT and based on a comprehensive assessment of the annual biogas and methane production, BF production, and OLTC, the UG with an AD cycle of 29 days was the most favorable operation strategy. Meanwhile, the system operation strategy can be adjusted in accordance with the actual requirements.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AD | Anaerobic digestion |
AT | Aerobic treatment |
VW | Vegetable waste |
OLTC | Organic load treatment capacity |
CBP | Cumulative biogas production |
CMP | Cumulative methane production |
BS | Biogas slurry |
DS | Digestive solution |
HRT | Hydraulic residence time |
BF | Biogas fertilizer |
VS | Volatile solid |
TS | Total solid |
EC | Electrical conductivity |
TDS | Total dissolved solids |
-N | Ammonia nitrogen |
GI | Germination index |
DBP | Daily biogas production |
DMP | Daily methene production |
UG | Urea group |
PG | Plant ash group |
BG | Blank group |
References
- Purdy, A.; Pathare, P.B.; Wang, Y.; Roskilly, A.P.; Huang, Y. Towards sustainable farming: Feasibility study into energy recovery from bio-waste on a small-scale dairy farm. J. Clean. Prod. 2018, 174, 899–904. [Google Scholar] [CrossRef]
- Lawson, A.; Ahmad, F.M. Decarbonizing US Transportation. Climate Innovation. (7). 2018. Available online: https://www.c2es.org/wp-content/uploads/2018/07/innovation-transportation-background-brief-07-18.pdf (accessed on 2 November 2024).
- Massé, D.I.; Saady, N.M.C. High rate psychrophilic anaerobic digestion of undiluted dairy cow feces. Bioresour. Technol. 2015, 187, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Metyouy, K.; González, R.; Gómez, X.; González-Arias, J.; Martínez, E.J.; Chafik, T.; Sánchez, M.E.; Cara-Jiménez, J. Hydrothermal carbonization vs. anaerobic digestion to valorize fruit and vegetable waste: A comparative technical and energy assessment. J. Environ. Chem. Eng. 2023, 11, 109925. [Google Scholar] [CrossRef]
- Singh, R.; Paritosh, K.; Pareek, N.; Vivekanand, V. Integrated system of anaerobic digestion and pyrolysis for valorization of agricultural and food waste towards circular bioeconomy: Review. Bioresour. Technol. 2022, 360, 127596. [Google Scholar] [CrossRef]
- Vlachokostas, C. Closing the Loop Between Energy Production and Waste Management: A Conceptual Approach Towards Sustainable Development. Sustainability 2020, 12, 5995. [Google Scholar] [CrossRef]
- EBA. European Biogas Association Statistical Report 2020. 2020. Available online: https://uabio.org/en/materials/7524/ (accessed on 2 November 2024).
- Yu, Q.; Liu, R.H.; Li, K.; Ma, R.J. A review of crop straw pretreatment methods for biogas production by anaerobic digestion in China. Renew. Sustain. Energy Rev. 2019, 107, 51–58. [Google Scholar] [CrossRef]
- Li, J.P.; Wan, D.D.; Jin, S.R.; Ren, H.W.; Gong, S.Y.; Novakovic, V. Feasibility of annual wet anaerobic digestion temperature-controlled by solar energy in cold areas. Appl. Therm. Eng. 2023, 219, 119333. [Google Scholar] [CrossRef]
- Liu, Y.X.; Lv, Y.Y.; Cheng, H.; Zou, L.P.; Li, Y.Y.; Liu, J.Y. High-efficiency anaerobic co-digestion of food waste and mature leachate using expanded granular sludge blanket reactor. Bioresour. Technol. 2022, 362, 127847. [Google Scholar] [CrossRef] [PubMed]
- Zhan, Y.H.; Cao, X.X.; Xiao, Y.T.; Wei, X.Y.; Wu, S.; Zhu, J. Start-up of co-digestion of poultry litter and wheat straw in anaerobic sequencing batch reactor by gradually increasing organic loading rate: Methane production and microbial community analysis. Bioresour. Technol. 2022, 354, 127232. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.; Ju, H.; Lee, J.; Kim, S. Alkaline-mechanical pretreatment process for enhanced anaerobic digestion of thickened waste activated sludge with a novel crushing device: Performance evaluation and economic analysis. Bioresour. Technol. 2014, 165, 183–190. [Google Scholar] [CrossRef]
- Chen, W.D.; Tang, H.M.; Xu, D.D.; Li, W.J.; Pan, C.; Guo, L.Y.; Kang, D.; Hu, B.L.; Zheng, P.; Zhang, M. Ecological distribution of anaerobic granular sludge towards efficient anaerobic reactor. Bioresour. Technol. 2023, 386, 129495. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.T.; Liu, W.; Zhao, Y.H.; He, H.B.; Ma, J.T.; Cui, Z.J.; Yuan, X.F. Optimization of semi-continuous dry anaerobic digestion process and biogas yield of dry yellow corn straw: Based on “gradient anaerobic digestion reactor”. Bioresour. Technol. 2023, 389, 129804. [Google Scholar] [CrossRef] [PubMed]
- Peña, M.r.; Rodriguéz, J.; Mara, D.D.; Sepulveda, M. UASBs or anaerobic ponds in warm climates? a preliminary answer from Colombia. Water Sci. Technol. 2000, 42, 59–65. [Google Scholar] [CrossRef]
- Yacob, S.; Ali Hassan, M.; Shirai, Y.; Wakisaka, M.; Subash, S. Baseline study of methane emission from anaerobic ponds of palm oil mill effluent treatment. Sci. Total Environ. 2006, 366, 187–196. [Google Scholar] [CrossRef]
- Makamure, F.; Mukumba, P.; Makaka, G. Biogas Production from a Solar-Heated Temperature-Controlled Biogas Digester. Sustainability 2024, 16, 9894. [Google Scholar] [CrossRef]
- Setboonsarng, S.; Gilman, J. Alternative Agriculture in Thailand and Japan. Asia-Pac. J. Rural. Dev. 1998, 8, 71–86. [Google Scholar] [CrossRef]
- Adisa, I.O.; Pullagurala, V.L.R.; Peralta-Videa, J.R.; Dimkpa, C.O.; Elmer, W.H.; Gardea-Torresdey, J.L.; White, J.C. Recent advances in nano-enabled fertilizers and pesticides: A critical review of mechanisms of action. Environ. Sci. Nano 2019, 6, 2002–2030. [Google Scholar] [CrossRef]
- Erisman, J.W.; Galloway, J.N.; Seitzinger, S.; Bleeker, A.; Dise, N.B.; Petrescu, A.M.R.; Leach, A.M.; Vries, W.D. Consequences of human modification of the global nitrogen cycle. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20130116. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, P.A. Tripling crop yields in tropical Africa. Nat. Geosci. 2010, 3, 299–300. [Google Scholar] [CrossRef]
- Tudi, M.; Ruan, H.D.; Wang, L.; Lyu, J.; Sadler, R.; Connell, D.; Chu, C.; Phung, D.T. Agriculture Development, Pesticide Application and Its Impact on the Environment. Int. J. Environ. Res. Public Health 2021, 18, 1112. [Google Scholar] [CrossRef]
- van Midden, C.; Harris, J.; Shaw, L.; Sizmur, T.; Pawlett, M. The impact of anaerobic digestate on soil life: A review. Appl. Soil Ecol. 2023, 191, 105066. [Google Scholar] [CrossRef]
- Gao, P.L.; Shi, D.L.; Liu, C.; He, Y.T.; Xue, G. Research progress on denitrification technology for biogas slurry from anaerobic fermentation of organic wastes. Mod. Chem. Ind. 2024, 44, 48–53. [Google Scholar] [CrossRef]
- Aziz, Y.; Shah, G.A.; Rashid, M.I. ZnO nanoparticles and zeolite influence soil nutrient availability but do not affect herbage nitrogen uptake from biogas slurry. Chemosphere 2019, 216, 564–575. [Google Scholar] [CrossRef]
- Alfa, M.I.; Adie, D.B.; Igboro, S.B.; Oranusi, U.S.; Dahunsi, S.O.; Akali, D.M. Assessment of biofertilizer quality and health implications of anaerobic digestion effluent of cow dung and chicken droppings. Renew. Energy 2014, 63, 681–686. [Google Scholar] [CrossRef]
- Stürmer, B. Biogas–Part of Austria’s future energy supply or political experiment? Renew. Sustain. Energy Rev. 2017, 79, 525–532. [Google Scholar] [CrossRef]
- Mukhtiar, A.; Mahmood, A.; Zia, M.A.; Ameen, M.; Dong, R.; Shoujun, Y.; Javaid, M.M.; Khan, B.A.; Nadeem, M.A. Role of biogas slurry to reclaim soil properties providing an eco-friendly approach for crop productivity. Bioresour. Technol. Rep. 2024, 25, 101716. [Google Scholar] [CrossRef]
- Samoraj, M.; Mironiuk, M.; Izydorczyk, G.; Witek-Krowiak, A.; Szopa, D.; Moustakas, K.; Chojnacka, K. The challenges and perspectives for anaerobic digestion of animal waste and fertilizer application of the digestate. Chemosphere 2022, 295, 133799. [Google Scholar] [CrossRef] [PubMed]
- Stürmer, B.; Pfundtner, E.; Kirchmeyr, F.; Uschnig, S. Legal requirements for digestate as fertilizer in Austria and the European Union compared to actual technical parameters. J. Environ. Manag. 2020, 253, 109756. [Google Scholar] [CrossRef] [PubMed]
- GB/T 40750-2021; Biogas Slurry for Agricultural Use. China Standards Publishing House: Beijing, China, 2021; pp. 2–3, (In Chinese with English Abstract).
- Li, J.P.; Wan, D.D.; Jin, S.R.; Ren, H.W.; Wang, Y.R.; Huang, J.J.; Li, H.; Zhang, G.Q. Fast treatment and recycling method of large-scale vegetable wastes. Sci. Total Environ. 2023, 892, 164308. [Google Scholar] [CrossRef]
- Al-Mutairi, N.Z. Aerobic selectors in slaughterhouse activated sludge systems: A preliminary investigation. Bioresour. Technol. 2009, 100, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Farooq, R.; Ahmad, Z. Slaughterhouse Wastewater: Treatment, Management and Resource Recovery. In Physico-Chemical Wastewater Treatment and Resource Recovery; IntechOpen: Rijeka, Croatia, 2017; Chapter 8. [Google Scholar] [CrossRef]
- Lischeid, G.; Kalettka, T.; Holländer, M.; Steidl, J.; Merz, C.; Dannowski, R.; Hohenbrink, T.; Lehr, C.; Onandia, G.; Reverey, F.; et al. Natural ponds in an agricultural landscape: External drivers, internal processes, and the role of the terrestrial-aquatic interface. Limnologica 2018, 68, 5–16. [Google Scholar] [CrossRef]
- Sengar, A.; Aziz, A.; Farooqi, I.H.; Basheer, F. Development of denitrifying phosphate accumulating and anammox micro-organisms in anaerobic hybrid reactor for removal of nutrients from low strength domestic sewage. Bioresour. Technol. 2018, 267, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Ai, P.; Jin, K.; Alengebawy, A.; Elsayed, M.; Meng, L.; Chen, M.; Ran, Y. Effect of application of different biogas fertilizer on eggplant production: Analysis of fertilizer value and risk assessment. Environ. Technol. Innov. 2020, 19, 101019. [Google Scholar] [CrossRef]
- Wang, L.; Guo, S.R.; Wang, Y.; Yi, D.D.; Wang, J. Poultry biogas slurry can partially substitute for mineral fertilizers in hydroponic lettuce production. Environ. Sci. Pollut. Res. 2019, 26, 659–671. [Google Scholar] [CrossRef]
- Zhang, B.X.; Sun, Q.P.; Li, S.Y.; Li, G.X.; Du, L.L.; Wang, Y.Y.; Yuan, J.; Zhang, D.F. Aeration parameter optimization for improving biological effectiveness of biogas slurry. Trans. CSAE 2016, 32, 226–232. [Google Scholar] [CrossRef]
- Shi, C.; Wang, K.; Zheng, M.; Liu, Y.; Ma, J.; Li, K. The efficiencies and capacities of carbon conversion in fruit and vegetable waste two-phase anaerobic digestion: Ethanol-path vs. butyrate-path. Waste Manag. 2021, 126, 737–746. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Xie, Y.; Liu, M.; Bin, S.; Liu, Y.; Huan, C.; Ji, G.; Wang, X.; Yan, Z.; Lyu, Q. Study on anaerobic co-digestion of municipal sewage sludge and fruit and vegetable wastes: Methane production, microbial community and three-dimension fluorescence excitation-emission matrix analysis. Bioresour. Technol. 2022, 347, 126748. [Google Scholar] [CrossRef] [PubMed]
- Bres, P.; Beily, M.E.; Young, B.J.; Gasulla, J.; Butti, M.; Crespo, D.; Candal, R.; Komilis, D. Performance of semi-continuous anaerobic co-digestion of poultry manure with fruit and vegetable waste and analysis of digestate quality: A bench scale study. Waste Manag. 2018, 82, 276–284. [Google Scholar] [CrossRef] [PubMed]
- Sha, H.; Wang, Q.; Dong, Z.; Cao, S.; Zhao, B.; Wang, G.; Duan, J. NaOH-urea pretreatment enhanced H2 and CH4 yields via optimizing mixed alkali ratio, pretreatment time, and organic loading rate during anaerobic digestion of corn stover. Energy 2024, 288, 129595. [Google Scholar] [CrossRef]
- Xie, Z.; Zou, H.; Zheng, Y.; Fu, S.-F. Improving anaerobic digestion of corn straw by using solid-state urea pretreatment. Chemosphere 2022, 293, 133559. [Google Scholar] [CrossRef]
- Qu, Y.; Zhai, Y.; Ma, C.; Shi, W.; Zhao, M.; Huang, Z.; Ruan, W. Rapid start-up of anaerobic digestion reactor with rice-straw ash addition for treating high salinity organic wastewater. Process Saf. Environ. Prot. 2023, 175, 806–813. [Google Scholar] [CrossRef]
- Qu, Y.H.; Guan, Q.Y.; Du, Y.; Shi, W.S.; Zhao, M.X.; Huang, Z.X.; Ruan, W.Q. Insight into the effect of rice-straw ash on enhancing the anaerobic digestion performance of high salinity organic wastewater. Chemosphere 2023, 340, 139920. [Google Scholar] [CrossRef]
- Ezieke, A.H.; Serrano, A.; Clarke, W.; Villa-Gomez, D.K. Bottom ash from smouldered digestate and coconut coir as an alkalinity supplement for the anaerobic digestion of fruit waste. Chemosphere 2022, 296, 134049. [Google Scholar] [CrossRef] [PubMed]
- Dalke, R.; Demro, D.; Khalid, Y.; Wu, H.; Urgun-Demirtas, M. Current status of anaerobic digestion of food waste in the United States. Renew. Sustain. Energy Rev. 2021, 151, 111554. [Google Scholar] [CrossRef]
- Cui, W.D. Study on the Methane Production Properties of the Mixture with Synergistic Anaerobic Digestion. Master’s thesis, Lanzhou University of Technology, Lanzhou, China, 2018. [Google Scholar]
- Wang, H.X.; Xu, J.L.; Sheng, L.X.; Liu, X.J. Effect of addition of biogas slurry for anaerobic fermentation of deer manure on biogas production. Energy 2018, 165, 411–418. [Google Scholar] [CrossRef]
- Li, J.P.; Shan, S.X.; Dong, T. Characteristic of gas production of over-ground household thermostatic biogas digester heated by solar energy. Trans. CSAE 2015, 31, 287–291. [Google Scholar] [CrossRef]
- Li, J.P.; Zhen, X.F.; Yang, A.R.; Huang, J.J.; Dong, T. Gas characteristics of household solar biogas production system with constant temperature in whole year. Trans. CSAE 2016, 32, 220–225. [Google Scholar] [CrossRef]
- Sun, Q.; Zhang, Z.Y.; Li, G.X.; Du, L.L. Effects of different aeration conditions on nutrients and biological toxicity of biogas slurry for drip irrigation. China Biogas 2017, 35, 43–47. [Google Scholar]
- NYT 1977-2010; Water-soluble Fertilizers-Determination of Total Nitrogen, Phosphorus and Potassium Content. Ministry of Agriculture and Rural Affairs of the Peoples Republic of China: Beijing, China, 2010; pp. 1–8, (In Chinese with English Abstract).
- De Vrieze, J.; Saunders, A.M.; He, Y.; Fang, J.; Nielsen, P.H.; Verstraete, W.; Boon, N. Ammonia and temperature determine potential clustering in the anaerobic digestion microbiome. Water Res. 2015, 75, 312–323. [Google Scholar] [CrossRef]
- Kim, M.S.; Kim, D.H.; Yun, Y.M.J.F. Effect of operation temperature on anaerobic digestion of food waste: Performance and microbial analysis. Fuel 2017, 209, 598–605. [Google Scholar] [CrossRef]
- Cremonez, P.A.; Teleken, J.G.; Weiser Meier, T.R.; Alves, H.J. Two-Stage anaerobic digestion in agroindustrial waste treatment: A review. J. Environ. Manag. 2021, 281, 111854. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.F.; Wu, P.W.; Sun, Y.M.; Guo, Y.F.; Song, B.; Huang, Y.; Xing, T.; Li, L.H. Comparison of microbial communities during anaerobic digestion of kitchen waste: Effect of substrate sources and temperatures. Bioresour. Technol. 2020, 317, 124016. [Google Scholar] [CrossRef]
- Zhang, X.M.; Yun, S.N.; Du, Y.F.; Du, T.T.; Gai, G.S.; Zhang, W.Q. Recent progress and outlook of biocatalysts for anaerobic fermentation in biogas production process. Trans. CSAM 2015, 46, 141–155. [Google Scholar] [CrossRef]
- He, Y.; Yan, X.X.; Li, Y.; Liu, H.H.; Yang, H.; Duan, X.Y.; Lu, X.Y.; Tian, Y.; Wang, C. Progress in anaerobic digestion of exogenous additives. EnEng 2024, 42, 175–186. [Google Scholar] [CrossRef]
- Lu, Y.; Yuan, H.R.; Yan, B.B.; Zuo, X.Y.; Li, X.J. Improved performance of corn stover anaerobic digestion by low-temperature hydrothermal pretreatment with urea enhancement. Biomass Bioenergy 2022, 164, 106553. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Peng, Z.; Liao, Q.; Zhu, X.; Li, J.; Wang, H.; Ding, Y.D.; Ye, D.D. Effect of supplements on biogas production characteristics in anaerobic digester with anti-scum device. Acta Energiae Solaris Sin. 2013, 34, 116–122. [Google Scholar] [CrossRef]
- Yin, C.K.; Shen, Y.W.; Zhu, N.W.; Huang, Q.J.; Lou, Z.Y.; Yuan, H.P. Anaerobic digestion of waste activated sludge with incineration bottom ash: Enhanced methane production and CO2 sequestration. Appl. Energy 2018, 215, 503–511. [Google Scholar] [CrossRef]
- Duan, N.; Lin, C.; Tian, H.; Zhong, M.; Zhang, D.; Liang, S. Effects of urea and inorganic saline soil on anaerobic digestion of straw. Trans. CSAE 2015, 31, 254–260. [Google Scholar] [CrossRef]
- Jena, S.P.; Mishra, S.; Acharya, S.K.; Mishra, S.K. An experimental approach to produce biogas from semi dried banana leaves. Sustain. Energy Technol. Assess. 2017, 19, 173–178. [Google Scholar] [CrossRef]
- Toufexis, C.; Makris, D.-O.; Vlachokostas, C.; Michailidou, A.V.; Christos, M.; Vachtsiavanou, A. Bridging the Gap between Biowaste and Biomethane Production: A Systematic Review Meta-Analysis Methodological Approach. Sustainability 2024, 16, 6433. [Google Scholar] [CrossRef]
- Li, J.P.; Zhou, D.D.; Zhang, Q.F.; Zhai, P.P.; Feng, R. Effect of temperature on the composition of biogas produced by high concentration constant temperature anaerobic fermentation. J. Lanzhou Univ. Technol. 2012, 38, 44–48. [Google Scholar] [CrossRef]
- Zhang, W.L.; Wang, X.; Xing, W.L.; Li, R.D.; Yang, T.H. Responses of anaerobic digestion of food waste to coupling effects of inoculum origins, organic loads and pH control under high load: Process performance and microbial characteristics. J. Environ. Manag. 2020, 279, 111772. [Google Scholar] [CrossRef]
- Ma, J.Y.; Pan, J.T.; Gao, T.L.; Qiu, L.; Liu, H.B. Enhanced anaerobic digestion of chicken manure by bentonite addition. Res. Environ. Sci. 2016, 29, 442–448. [Google Scholar] [CrossRef]
- Negri, M.; Bacenetti, J.; Fiala, M.; Bocchi, S. Evaluation of anaerobic degradation, biogas and digestate production of cereal silages using nylon-bags. Bioresour. Technol. 2016, 209, 40–49. [Google Scholar] [CrossRef]
- Reinhold, G.; Breitschuh, G.; Herold, L. Standpunkt zur Ermittlung der Nährstoffgehalte und zur Nährstoffbilanzierung bei Einsatz von Biogasgülle. 2006. Available online: https://www.db-thueringen.de/receive/dbt_mods_00024413 (accessed on 2 November 2024).
- Procházka, J.; Dolej, P.; Máca, J.; Dohányos, M. Stability and inhibition of anaerobic processes caused by insufficiency or excess of ammonia nitrogen. Appl. Microbiol. Biotechnol. 2012, 93, 439–447. [Google Scholar] [CrossRef] [PubMed]
- Rajagopal, R.; Massé, D.I.; Singh, G. A critical review on inhibition of anaerobic digestion process by excess ammonia. Bioresour. Technol. 2013, 143, 632–641. [Google Scholar] [CrossRef]
- Jiang, Y.; McAdam, E.; Zhang, Y.; Heaven, S.; Banks, C.; Longhurst, P. Ammonia inhibition and toxicity in anaerobic digestion: A critical review. J. Water Process. Eng. 2019, 32, 100899. [Google Scholar] [CrossRef]
- Huang, G.Q.; Huang, J.; Zhang, Y.; Han, L.J. Feasibility Analysis of Rapid Prediction of Seed Germination Index during Digestate Aerobic Composting. Trans. CSAM 2016, 47, 177–182. [Google Scholar] [CrossRef]
- Di Maria, F.; Sordi, A.; Cirulli, G.; Gigliotti, G.; Massaccesi, L.; Cucina, M. Co-treatment of fruit and vegetable waste in sludge digesters. An analysis of the relationship among bio-methane generation, process stability and digestate phytotoxicity. Waste Manag. 2014, 34, 1603–1608. [Google Scholar] [CrossRef]
- Zeng, G.M.; Huang, D.L.; Huang, G.H.; Hu, T.J.; Jiang, X.Y.; Feng, C.L.; Chen, Y.N.; Tang, L.; Liu, H.L. Composting of lead-contaminated solid waste with inocula of white-rot fungus. Bioresour. Technol. 2007, 98, 320–326. [Google Scholar] [CrossRef] [PubMed]
- Zucconi, F.; Pera, A.; Forte, M.; Bertoldi, M.D. Evaluating toxicity of immature compost. BioCycle 1981, 22, 54–57. [Google Scholar] [CrossRef]
- Manu, M.K.; Li, D.Y.; Liwen, L.; Jun, Z.; Varjani, S.; Wong, J.W.C. A review on nitrogen dynamics and mitigation strategies of food waste digestate composting. Bioresour. Technol. 2021, 334, 125032. [Google Scholar] [CrossRef] [PubMed]
- Verdi, L.; Kuikman, P.J.; Orlandini, S.; Mancini, M.; Napoli, M.; Dalla Marta, A. Does the use of digestate to replace mineral fertilizers have less emissions of N2O and NH3? Agr. Forest Meteorol. 2019, 269–270, 112–118. [Google Scholar] [CrossRef]
- Zhang, L.; Lee, Y.-W.; Jahng, D. Ammonia stripping for enhanced biomethanization of piggery wastewater. J. Hazard. Mater. 2012, 199–200, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Ağdağ, O.N.; Sponza, D.T. Effect of alkalinity on the performance of a simulated landfill bioreactor digesting organic solid wastes. Chemosphere 2005, 59, 871–879. [Google Scholar] [CrossRef] [PubMed]
- Baun, A.; Ledin, A.; Reitzel, L.A.; Bjerg, P.L.; Christensen, T.H. Xenobiotic organic compounds in leachates from ten Danish MSW landfills—Chemical analysis and toxicity tests. Water Res. 2004, 38, 3845–3858. [Google Scholar] [CrossRef] [PubMed]
- Zilio, M.; Orzi, V.; Chiodini, M.E.; Riva, C.; Acutis, M.; Boccasile, G.; Adani, F. Evaluation of ammonia and odour emissions from animal slurry and digestate storage in the Po Valley (Italy). Waste Manag. 2020, 103, 296–304. [Google Scholar] [CrossRef]
- DB33 699-2008; Quality and Safety Requirements for Organic Liquid Fertilizer and Organic-Inorganic Compound Liquid Fertilizer. Zhejiang Provincial Bureau of Quality and Technical Supervision: Hangzhou, China, 2008; pp. 1–5, (In Chinese with English Abstract).
- HG/T4365-2012; Water Soluble Fertilizer. The Chemical Industry Press: Beijing, China, 2012; pp. 1–19, (In Chinese with English Abstract).
- Risberg, K.; Cederlund, H.; Pell, M.; Arthurson, V.; Schnürer, A. Comparative characterization of digestate versus pig slurry and cow manure—Chemical composition and effects on soil microbial activity. Waste Manag. 2017, 61, 529–538. [Google Scholar] [CrossRef] [PubMed]
- Kothari, R.; Pandey, A.K.; Kumar, S.; Tyagi, V.V.; Tyagi, S.K. Different aspects of dry anaerobic digestion for bio-energy: An overview. Renew. Sustain. Energy Rev. 2014, 39, 174–195. [Google Scholar] [CrossRef]
- Wu, G.Y. Analysis of influencing factors of anaerobic fermentation of livestock and poultry manure. Anhui Agric. Sci. 2020, 48, 211–224. [Google Scholar] [CrossRef]
Device | Name | Parameter |
---|---|---|
Anaerobic fermentation device | Size of device | 1 m long, 0.7 m wide, and 0.8 m high, volume is 0.56 m3, bottom wall is 5 mm thick, the lateral and top wall are 3 mm thick, up and down combination design |
Feeding hole (Figure 2a (1)) | 0.7 m long, upper side width 0.3 m, lower side width 0.15 m, depth of 0.45 m | |
Window (Figure 2a (4)) | Square border with a side length of 0.21 m, the material is a plexiglass one | |
Separation net (Figure 2a (5)) | 2 mm thick, grid spacing 2.5 cm and wire spacing 5 mm | |
Overflow port (Figure 2a (6)) | 8 cm in diameter and 20 cm long | |
Coiled pipes (Figure 2a (12)) | Inner diameter 12 cm, outer diameter 16 cm, a total of four layers, each layer spacing 10 cm | |
Insulation method | 15 cm thick rubber–plastic thermal insulation cotton | |
Aerobic treatment tank | Size of device | Material: polyethylene plastic; size: 40 cm long, 30 cm wide, 45 cm high |
Coiled pipes (Figure 2b (3)) | Inner diameter 16 mm, outer diameter 20 mm, spacing 46 mm, and winding 6 circles | |
Insulation method | 12 cm-thick rubber-plastic thermal insulation cotton |
Material | Cow Dung | Tomato Stalks and Leaves | Inoculation Fluid |
---|---|---|---|
TS/% | 32.56 ± 1.25 | 10.43 ± 1.00 | 1.10 ± 0.05 |
VS/% | 11.70 ± 0.25 | 8.60 ± 0.29 | 0.46 ± 0.06 |
TC/% | 34.22 ± 0.89 | 32.15 ± 0.20 | |
TN/% | 1.41 ± 0.07 | 3.45 ± 0.15 |
No. | Instrument Name | Instrument Manufacturing Company |
---|---|---|
1 | RJM-23-10 muffle furnace | Shenyang Energy Saving Electric Furnace Factory Co., Ltd., Shenyang, China |
2 | SHZ-82 constant temperature oscillator | Changzhou Guohua Electric Appliance Co., Ltd., Changzhou, China |
3 | SH220N graphite digestion instrument | Jinan Haineng Instrument Co., Ltd., Jinan, China |
4 | GZX-9240MBE digital display blast drying oven | Shanghai Boxun Industry Co., Ltd., Shanghai, China |
5 | BIOGAS 5000 portable biogas analyser | Shenzhen Angwei Electronics Co., Ltd., Shenzhen, China |
6 | TG16 high-speed table centrifuge | Changsha Yingtai Instrument Co., Ltd., Changsha, China |
7 | SC300G1.6 type gas meter | Chongqing Shancheng Gas Equipment Co., Ltd., Chongqing, China |
8 | 5B-3C (V8) type COD -N dual parameter tester | Lanzhou Lianhua Environmental Protection Technology Co., Ltd., Lanzhou, China |
9 | 752N UV/Visible Spectrophotometer | Shanghai Yiden Analytical Instrument Co., Ltd., Shanghai, China |
10 | 5B-1 (V8) Intelligent multi-parameter digester | Lanzhou Lianhua Environmental Protection Technology Co., Ltd., Lanzhou, China |
11 | Leici PHBJ-260 portable pH meter | Shanghai Yidian Scientific Instrument Co., Ltd., Shanghai, China |
12 | CT-3031 conductance meter | Shenzhen Kodida Electronics Co., Ltd., Shenzhen, China |
13 | K9840 automatic Kjeldahl nitrogen analyser | Jinan Haineng Instrument Co., Ltd., Jinan, China |
14 | Pt100 temperature sensor | Beijing West China Aviation Technology Co., Ltd., Beijing, China |
15 | Agilent 34980A | Agilent Technology Co., Ltd., Beijing, China |
Types | Number of Seeds | Number of Germination Seeds | Total Root Length/mm | Average Root Length/mm | Germination Index |
---|---|---|---|---|---|
Blank group | 20 | 3 | 3 | 1 | 1.7 |
Plant ash group | 20 | 14 | 18.5 | 1.3 | 47.8 |
Urea group | 20 | 11 | 13.5 | 1.2 | 27.4 |
Anaerobic Fermentation Stage (g·L−1) | Aerobic Fermentation Stage (g·L−1) | ||||||
---|---|---|---|---|---|---|---|
Time/d | No-Adding | Plant Ash | Urea | Time/h | No-Adding | Plant Ash | Urea |
1 | 4.15 | 3.80 | 4.65 | 1 | 5.67 | 5.85 | 7.01 |
8 | 5.95 | 6.35 | 6.93 | 2 | 5.66 | 5.69 | 6.96 |
15 | 6.43 | 6.50 | 7.11 | 3 | 5.53 | 5.54 | 6.89 |
22 | 6.56 | 6.81 | 7.17 | 4 | 5.40 | 5.35 | 6.83 |
29 | 6.73 | 6.99 | 7.34 | 5 | 5.37 | 5.30 | 6.81 |
36 | 6.55 | 6.96 | 7.30 | 6 | 5.29 | 5.22 | 6.63 |
43 | 6.51 | 6.59 | 7.15 | 7 | 5.23 | 5.12 | 6.66 |
49 | 6.41 | 6.49 | 7.16 | 8 | 5.16 | 5.08 | 6.62 |
Types | Hydraulic Retention Time/d | Annual Biogas Production/L | Annual Methane Production/L | Annual Biogas Slurry Production/kg | TDS Concentration of Biogas Slurry (g/L) | Disposal Amount of Tomato Stem and Leaf VWs/kg |
---|---|---|---|---|---|---|
Blank group | 29 | 33,382.0 | 10,376.8 | 5567.8 | 6.73 | 1311.5 |
Plant ash group | 54,774.7 | 13,181.9 | 6.99 | |||
Urea group | 61,542.7 | 22,041.2 | 7.34 | |||
Blank group | 31 | 34,588.1 | 11,802.1 | 5214.3 | 6.68 | 1228.3 |
Plant ash group | 53,232.1 | 13,496.2 | 6.98 | |||
Urea group | 58,550.6 | 21,217.7 | 7.33 | |||
Blank group | 33 | 36,391.0 | 13,515.3 | 4903.0 | 6.63 | 1154.9 |
Plant ash group | 51,546.7 | 13,600.7 | 6.97 | |||
Urea group | 56,199.1 | 20,674.0 | 7.32 | |||
Blank group | 36 | 40,080.0 | 16,707.2 | 4500.0 | 6.55 | 1060.0 |
Plant ash group | 49,700.0 | 14,005.1 | 6.96 | |||
Urea group | 52,830.0 | 19,799.3 | 7.30 | |||
Blank group | 38 | 43,079.5 | 19,185.4 | 4266.2 | 6.54 | 1004.9 |
Plant ash group | 48,815.2 | 14,427.0 | 6.85 | |||
Urea group | 50,796.6 | 19,249.6 | 7.26 | |||
Blank group | 40 | 44,764.3 | 24,414.1 | 4055.6 | 6.53 | 955.3 |
Plant ash group | 48,171.0 | 17,819.9 | 6.75 | |||
Urea group | 48,910.0 | 19,559.5 | 7.21 | |||
Blank group | 43 | 45,511.7 | 21,812.8 | 3775.9 | 6.51 | 889.4 |
Plant ash group | 47,718.5 | 15,841.1 | 6.59 | |||
Urea group | 46,300.5 | 17,941.5 | 7.15 | |||
Blank group | 45 | 44,858.9 | 21,731.3 | 3609.9 | 6.48 | 850.3 |
Plant ash group | 46,695.9 | 15,861.7 | 6.56 | |||
Urea group | 44,642.3 | 17,410.1 | 7.15 | |||
Blank group | 47 | 45,306.1 | 22,314.8 | 3457.9 | 6.44 | 814.5 |
Plant ash group | 45,928.5 | 15,976.0 | 6.52 | |||
Urea group | 43,062.3 | 16,876.8 | 7.16 | |||
Blank group | 49 | 45,842.5 | 22,939.3 | 3318.2 | 6.41 | 781.6 |
Plant ash group | 45,665.6 | 16,389.8 | 6.49 | |||
Urea group | 41,462.5 | 16,289.2 | 7.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Cheng, D.; Huang, J.; Kang, J.; Jin, B.; Novakovic, V.; Sun, Y. Influence of Additives on Solar-Controlled Anaerobic and Aerobic Processes of Cow Manure and Tomato Waste. Sustainability 2025, 17, 1690. https://doi.org/10.3390/su17041690
Li J, Cheng D, Huang J, Kang J, Jin B, Novakovic V, Sun Y. Influence of Additives on Solar-Controlled Anaerobic and Aerobic Processes of Cow Manure and Tomato Waste. Sustainability. 2025; 17(4):1690. https://doi.org/10.3390/su17041690
Chicago/Turabian StyleLi, Jinping, Da Cheng, Juanjuan Huang, Jian Kang, Baohong Jin, Vojislav Novakovic, and Yasong Sun. 2025. "Influence of Additives on Solar-Controlled Anaerobic and Aerobic Processes of Cow Manure and Tomato Waste" Sustainability 17, no. 4: 1690. https://doi.org/10.3390/su17041690
APA StyleLi, J., Cheng, D., Huang, J., Kang, J., Jin, B., Novakovic, V., & Sun, Y. (2025). Influence of Additives on Solar-Controlled Anaerobic and Aerobic Processes of Cow Manure and Tomato Waste. Sustainability, 17(4), 1690. https://doi.org/10.3390/su17041690