A Techno-Ecological Transformative Approach of Municipal Solid Waste Landfill in Upper-Middle-Income Countries Based on Energy Recovery
Abstract
:1. Introduction
- Inconsistent Waste Characterization: There is a lack of standardized methods for waste characterization, leading to inconsistencies in data collection, analysis, and planning [15]. This inconsistency complicates the development of tailored waste management solutions.
- Limited Focus on Transition Strategies: While the transition from open dumps to sanitary landfills is often discussed in theoretical terms, there is limited research on the practical challenges and ecological consequences of such transitions [16]. This gap is particularly important in upper-middle-income countries, where financial and technical constraints often impede progress.
- Regional Variations in Methane Emission Models: The existing models for estimating methane emissions from landfills often fail to account for regional variations in waste composition, climate, and socio-economic factors [17]. This limitation reduces the accuracy of emission estimates and undermines the effectiveness of mitigation strategies.
- Feasibility of Energy Recovery: The economic and technical feasibility of energy recovery from landfill gases remains controversial, particularly in countries with limited financial resources. While the potential benefits of energy recovery are widely recognized, the practical implementation of such systems is often hindered by high costs and technical challenges.
1.1. Numerical Simulations of Greenhouse Gas Emissions
1.2. Energy Recovery Modeling
1.3. Scenario Analysis
2. Materials and Methods
2.1. Numerical Modeling and Simulations
2.1.1. Greenhouse Gas Emissions
2.1.2. Anaerobic Digestion and Biomethanation
2.1.3. Electrical Energy Recovery
2.1.4. Techno-Ecological Assessment
3. Results and Discussions
3.1. Greenhouse Gas Emissions
3.2. Methane Emission: A Case Study
3.3. Electrical Energy Recovery from Methanation
3.3.1. Rankine–Hirn Cycle Performance
3.3.2. Electricity Generation
3.3.3. Techno-Ecological Assessment
3.3.4. First Transformative Approach: From Uncontrolled Landfilling to Energy Recovery
3.3.5. Second Transformative Approach: From Landfill Gases Flaring to Energy Recovery
4. Discussion
4.1. The Brazilian Example
4.2. The Turkish Example
4.3. The Hungarian and Romanian Examples in Eastern Europe, in Relation to the German Example
4.4. Cross-Country Insights and Methodological Validation
4.5. Challenges and Policy Implications
4.6. Financial Constraints
4.7. Technical Expertise and Regulatory Frameworks
4.8. Limitations and Future Research
- (i)
- The reliance on the LandGEM and IPCC models introduces uncertainties due to assumptions about waste composition, degradation rates, and methane generation potential, which may not fully capture real-world variability. Moreover, the previous models do not adequately consider complex multi-source interactions that influence methane transport. Recent research [87] on reactive solute transport suggests that integrating boundary and internal source dynamics into multi-source models could enhance predictive accuracy, providing a potential avenue for refining landfill gas emission assessments.
- (ii)
- The case study of the Oued Smar landfill in Algeria may not be fully representative of other regions (which can limit the generalization of findings).
- (iii)
- This study focuses primarily on technical and ecological aspects, with limited consideration of economic feasibility, social acceptance, and policy frameworks, which are important for the successful implementation of LFGTE projects.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roy, H.; Alam, S.R.; Bin-Masud, R.; Prantika, T.R.; Pervez, M.N.; Islam, M.S.; Naddeo, V. A Review on Charac-teristics, Techniques, and Waste-to-Energy Aspects of Municipal Solid Waste Management: Bangladesh Perspective. Sustain. Switz. 2022, 14, 10265. [Google Scholar] [CrossRef]
- Abubakar, I.R.; Maniruzzaman, K.M.; Dano, U.L.; AlShihri, F.S.; AlShammari, M.S.; Ahmed, S.M.S.; Al-Gehlani, W.A.G.; Alrawaf, T.I. Environmental Sustainability Impacts of Solid Waste Management Practices in the Global South. Int. J. Environ. Res. Public. Health 2022, 19, 12717. [Google Scholar] [CrossRef] [PubMed]
- Jouhara, H.; Malinauskaite, J.; Spencer, N. Waste Prevention and Technologies in the Context of the EU Waste Framework Directive: Lost in Translation? Eur. Energy Environ. Law Rev. 2017, 26, 66–80. [Google Scholar]
- Eisted, R.; Christensen, T.H. Characterization of Household Waste in Greenland. Waste Manag. 2011, 31, 1461–1466. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Hu, M.; Di Maio, F.; Sprecher, B.; Yang, X.; Tukker, A. An Overview of the Waste Hierarchy Frame-work for Analyzing the Circularity in Construction and Demolition Waste Management in Europe. Sci. Total Environ. 2022, 803, 149892. [Google Scholar] [CrossRef] [PubMed]
- Razzaq, A.; Sharif, A.; Najmi, A.; Tseng, M.-L.; Lim, M.K. Dynamic and Causality Interrelationships from Mu-nicipal Solid Waste Recycling to Economic Growth, Carbon Emissions, and Energy Efficiency Using a Novel Boot-strapping Autoregressive Distributed Lag. Resour. Conserv. Recycl. 2021, 166, 105372. [Google Scholar] [CrossRef]
- Crippa, M.; Guizzardi, D.; Pagani, F.; Banja, M.; Muntean, M.; Schaaf, E.; Monforti-Ferrario, F.; Becker, W.; Quadrelli, R.; Risquez Martin, A.; et al. CO₂ Emissions of All World Countries; European Union: Brussels, Belgium, 2023. [Google Scholar]
- Friedrich, E.; Trois, C. Quantification of Greenhouse Gas Emissions from Waste Management Processes for Municipalities - A Comparative Review Focusing on Africa. Waste Manag. 2011, 31, 1585–1596. [Google Scholar] [CrossRef]
- Mihai, F.-C.; Taherzadeh, M.J. Introductory Chapter: Rural Waste Management Issues at Global Level. In Solid Waste Management in Rural Areas; Mihai, F.-C., Ed.; InTech: Houston, TX, USA, 2017; ISBN 978-953-51-3485-5. [Google Scholar]
- Vincevica-Gaile, Z.; Burlakovs, J.; Fonteina-Kazeka, M.; Wdowin, M.; Hanc, E.; Rudovica, V.; Krievans, M.; Grinfelde, I.; Siltumens, K.; Kriipsalu, M.; et al. Case Study-Based Integrated Assessment of Former Waste Disposal Sites Transformed to Green Space in Terms of Ecosystem Services and Land Assets Recovery. Sustainability 2023, 15, 3256. [Google Scholar] [CrossRef]
- Kamaruddin, M.A.; Norashiddin, F.A.; Hanif, M.H.M.; Shadi, A.M.H.; Yusoff, M.S.; Wang, L.K.; Wang, M.-H.S. Characterization and Measurement of Solid Waste; Springer International Publishing: Cham, Switzerland, 2021. [Google Scholar]
- Abderrahim, Y.; Bellal, S.E.; Sahnoun, M. Comparative Study of Waste Management Systems in Algeria and Other Countries : A Literature Review. In Proceedings of the 2023 International Conference on Decision Aid Scienc-es and Applications (DASA), Annaba, Algeria, 16 September 2023; IEEE: New York, NY, USA; pp. 164–169. [Google Scholar]
- Cheniti, H.; Kerboua, K.; Sekiou, O.; Aouissi, H.A.; Benselhoub, A.; Mansouri, R.; Zeriri, I.; Barbari, K.; Gilev, J.B.; Bouslama, Z. Life Cycle Assessment of Municipal Solid Waste Management within Open Dumping and Landfilling Contexts: A Strategic Analysis and Planning Responses Applicable to Algeria. Sustainability 2024, 16, 6930. [Google Scholar] [CrossRef]
- Al-Shemmeri, T.T. Thermodynamics, Performance Analysis and Computational Modelling of Small and Micro Com-bined Heat and Power (CHP) Systems; Woodhead Publishing: Cambridge, UK, 2011. [Google Scholar]
- Torkayesh, A.E.; Rajaeifar, M.A.; Rostom, M.; Malmir, B.; Yazdani, M.; Suh, S.; Heidrich, O. Integrating Life Cycle Assessment and Multi Criteria Decision Making for Sustainable Waste Management: Key Issues and Recom-mendations for Future Studies. Renew. Sustain. Energy Rev. 2022, 168, 112819. [Google Scholar] [CrossRef]
- Ozbay, G.; Jones, M.; Gadde, M.; Isah, S.; Attarwala, T. Design and Operation of Effective Landfills with Min-imal Effects on the Environment and Human Health. J. Environ. Public Health 2021, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Scharff, H.; Soon, H.-Y.; Taremwa, S.R.; Zegers, D.; Dick, B.; Zanon, T.V.B.; Shamrock, J. The Impact of Landfill Management Approaches on Methane Emissions. Waste Manag. Res. 2023, 42, 1052–1064. [Google Scholar] [CrossRef] [PubMed]
- Shovon, S.M.; Akash, F.A.; Rahman, W.; Rahman, M.A.; Chakraborty, P.; Hossain, H.M.Z.; Monir, M.U. Strate-gies of Managing Solid Waste and Energy Recovery for a Developing Country—A Review. Heliyon 2024, 10, e24736. [Google Scholar] [CrossRef]
- dos Muchangos, L.S.; Tokai, A.; Hanashima, A. Greenhouse Gas Emissions and Cost Assessments of Municipal Solid Waste Treatment and Final Disposal in Maputo City. Environ. Dev. Sustain. 2017, 21, 145–163. [Google Scholar] [CrossRef]
- Djemaci, B. La Gestion Des Déchets Municipaux En Algérie: Analyse Prospective et Éléments d’efficacité. Bachelor’s Thesis, Université de Rouen, Rouen, France, 2013. [Google Scholar]
- Gunsilius, E.; Spies, S.; García-Cortés, S.; Medina, M.; Dias, S.; Scheinberg, A.; Sabry, W.; Abdel-Hady, N.; dos Santos, A.-L.F.; Ruiz, S. Recovering Resources, Creating Opportunities. Integrating the Informal Sector into Solid Waste Management; Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH: Eschborn, Germany, 2011. [Google Scholar]
- Ghanimeh, S.; Gómez-Sanabria, A.; Tsydenova, N.; Štrbová, K.; Iossifidou, M.; Kumar, A. Two-Level Compari-son of Waste Management Systems in Low-, Middle-, and High-Income Cities. Environ. Eng. Sci. 2019, 36, 1281–1295. [Google Scholar] [CrossRef]
- GRIFFITHS, U.K.; LEGOOD, R.; PITT, C. Comparison of Economic Evaluation Methods Across Low-Income, Middle-Income and High-Income Countries: What Are The Differences and Why? Health Econ. 2016, 25, 29–41. [Google Scholar] [CrossRef] [PubMed]
- Siddiqua, A.; Hahladakis, J.N.; Al-Attiya, W.A.K.A. An Overview of the Environmental Pollution and Health Effects Associated with Waste Landfilling and Open Dumping. Environ. Sci. Pollut. Res. 2022, 29, 58514–58536. [Google Scholar] [CrossRef] [PubMed]
- Vaverková, M.D. Landfill Impacts on the Environment— Review. Geosci. Switz. 2019, 9, 431. [Google Scholar] [CrossRef]
- Kumar, A.; Sharma, M.P. Estimation of GHG Emission and Energy Recovery Potential from MSW Landfill Sites. Sustain. Energy Technol. Assess. 2014, 5, 50–61. [Google Scholar] [CrossRef]
- Kebaili, F.K.; Baziz-Berkani, A.; Aouissi, H.A.; Mihai, F.-C.; Houda, M.; Ababsa, M.; Azab, M.; Petrisor, A.-I.; Fürst, C. Characterization and Planning of Household Waste Management: A Case Study from the MENA Region. Sustainability 2022, 14, 5461. [Google Scholar] [CrossRef]
- Eddine, B.; Salah, M. Solid Waste as Renewable Source of Energy: Current and Future Possibility in Algeria. Int. J. Energy Environ. Eng. 2012, 3, 17. [Google Scholar] [CrossRef]
- Danel, Q. Étude Numérique et Expérimentale d’un Cycle de Rankine-Hirn de Faible Puissance Pour La Récu-pération d’énergie; Conservatoire National des Arts et Metiers—CNAM: Paris, France, 2016. [Google Scholar]
- Wang, D.; Yuan, W.; Xie, Y.; Fei, X.; Ren, F.; Wei, Y.; Jiao, G.; Li, M. Simulating CH4 Emissions from MSW Land-fills in China from 2003 to 2042 Using IPCC and LandGEM Models. Heliyon 2023, 9, e22943. [Google Scholar] [CrossRef] [PubMed]
- U.S. Environmental Protection Agency Waste Reduction Model (WARM). 2024. Available online: https://www.Epa.Gov/Warm (accessed on 13 January 2025).
- De Medeiros Engelmann, P.; Dos Santos, V.H.J.M.; Da Rocha, P.R.; Dos Santos, G.H.A.; Lourega, R.V.; De Lima, J.E.A.; Pires, M.J.R. Analysis of Solid Waste Management Scenarios Using the WARM Model: Case Study. J. Clean. Prod. 2022, 345, 130687. [Google Scholar] [CrossRef]
- Costello, C.; McGarvey, R.; Birisci, E. Achieving Sustainability beyond Zero Waste: A Case Study from a Col-lege Football Stadium. Sustainability 2017, 9, 1236. [Google Scholar] [CrossRef]
- Riedel, L.M. Environmental and Financial Impact of a Hospital Recycling Program. AANA J. 2011, 79, S8-14. [Google Scholar]
- Mohareb, E.A.; MacLean, H.L.; Kennedy, C.A. Greenhouse Gas Emissions from Waste Management—Assessment of Quantification Methods. J. Air Waste Manag. Assoc. 2011, 61, 480–493. [Google Scholar] [CrossRef] [PubMed]
- Nizar, M.; Munir, E.; Munawar, E.; Irvan, I. Analysis of the Composition of Household Waste from the Com-munity within the Framework of a Waste Prevention and Reduction Strategy. Ecol. Eng. Environ. Technol. 2021, 22, 91–103. [Google Scholar] [CrossRef]
- Zorpas, A.A.; Lasaridi, K.; Voukkali, I.; Loizia, P.; Chroni, C. Household Waste Compositional Analysis Varia-tion from Insular Communities in the Framework of Waste Prevention Strategy Plans. Waste Manag. 2015, 38, 3–11. [Google Scholar] [CrossRef]
- Slagstad, H.; Brattebø, H. Influence of Assumptions about Household Waste Composition in Waste Manage-ment {LCAs}. Waste Manag. 2013, 33, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Daniel Hoornweg and Perinaz Bhada-Tata. What a Waste: A Global Review of Solid Waste; World Bank: Washington, DC, USA, 2012. [Google Scholar]
- Anukam, A.; Mohammadi, A.; Naqvi, M.; Granström, K. A Review of the Chemistry of Anaerobic Digestion: Methods of Accelerating and Optimizing Process Efficiency. Processes 2019, 7, 504. [Google Scholar] [CrossRef]
- Angelidaki, I.; Karakashev, D.; Batstone, D.J.; Plugge, C.M.; Stams, A.J.M. Biomethanation and Its Potential. In Methods in Methane Metabolism, Part A; Rosenzweig, A.C., Ragsdale, S.W.B.T.-M.i.E., Eds.; Academic Press: Cambridge, MA, USA, 2011; Volume 494, pp. 327–351. ISBN 0076-6879. [Google Scholar]
- LeeWays, C.; McCullough, L.L.; Hopple, A.M.; Keller, J.K.; Bridgham, S.D. Homoacetogenesis Competes with Hydrogenotrophic Methanogenesis for Substrates in a Peatland Experiencing Ecosystem Warming. Soil Biol. Biochem. 2022, 172, 108759. [Google Scholar] [CrossRef]
- Serna-García, R.; Tsapekos, P.; Treu, L.; Bouzas, A.; Seco, A.; Campanaro, S.; Angelidaki, I. Unraveling Preva-lence of Homoacetogenesis and Methanogenesis Pathways Due to Inhibitors Addition. Bioresour. Technol. 2023, 376, 128922. [Google Scholar] [CrossRef]
- Fallahizadeh, S.; Rahmatinia, M.; Mohammadi, Z.; Vaezzadeh, M.; Tajamiri, A.; Soleimani, H. Estimation of Methane Gas by LandGEM Model from Yasuj Municipal Solid Waste Landfill, Iran. MethodsX 2019, 6, 391–398. [Google Scholar] [CrossRef] [PubMed]
- Grisales, C.M.; Salazar, L.M.; Garcia, D.P. Treatment of Synthetic Dye Baths by Fenton Processes: Evaluation of Their Environmental Footprint through Life Cycle Assessment. Environ. Sci. Pollut. Res. 2019, 26, 4300–4311. [Google Scholar] [CrossRef]
- Kurniawan, T.A.; Liang, X.; Singh, D.; Othman, M.H.D.; Goh, H.H.; Gikas, P.; Kern, A.O.; Kusworo, T.D.; Shoqeir, J.A. Harnessing Landfill Gas (LFG) for Electricity: A Strategy to Mitigate Greenhouse Gas (GHG) Emissions in Jakarta (Indonesia). J. Environ. Manage. 2022, 301, 113882. [Google Scholar] [CrossRef] [PubMed]
- Stanisavljević, N.; Ubavin, D.; Batinić, B.; Fellner, J.; Vujić, G. Methane Emissions from Landfills in Serbia and Potential Mitigation Strategies: A Case Study. Waste Manag. Res. J. Sustain. Circ. Econ. 2012, 30, 1095–1103. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.; Zhang, H.; Shao, L.-M.; Lü, F.; He, P.-J. Greenhouse Gas Emissions during MSW Landfilling in China: Influence of Waste Characteristics and LFG Treatment Measures. J. Environ. Manage. 2013, 129, 510–521. [Google Scholar] [CrossRef] [PubMed]
- Menikpura, S.; Sang-Arun, J.; Bengtsson, M. Climate Co-Benefits of Energy Recovery from Landfill Gas in De-veloping Asian Cities: A Case Study in Bangkok. Waste Manag. Res. J. Sustain. Circ. Econ. 2013, 31, 1002–1011. [Google Scholar] [CrossRef]
- Pheakdey, D.V.; Noudeng, V.; Xuan, T.D. Landfill Biogas Recovery and Its Contribution to Greenhouse Gas Mitigation. Energies 2023, 16, 4689. [Google Scholar] [CrossRef]
- Caicedo-Concha, D.M.; Sandoval-Cobo, J.J.; Stringfellow, A.; Colmenares-Quintero, R.F. An Evaluation of Fi-nal Disposal Alternatives for Municipal Solid Waste through Life Cycle Assessment: A Case of Study in Colombia. Cogent Eng. 2021, 8, 1956860. [Google Scholar] [CrossRef]
- Badr, O.; Probert, S.D.; O’Callaghan, P.W. Selecting a Working Fluid for a Rankine-Cycle Engine. Appl. Energy 1985, 21, 1–42. [Google Scholar] [CrossRef]
- Abdelli, I.S.; Addou, F.Y.; Dahmane, S.; Abdelmalek, F.; Addou, A. Assessment of Methane Emission and Eval-uation of Energy Potential from the Municipal Solid Waste Landfills. Energy Sources Part Recovery Util. Environ. Eff. 2020, 46, 15688–15707. [Google Scholar] [CrossRef]
- Spokas, K.; Bogner, J.; Chanton, J.P.; Morcet, M.; Aran, C.; Graff, C.; Golvan, Y.M.-L.; Hebe, I. Methane Mass Balance at Three Landfill Sites: What Is the Efficiency of Capture by Gas Collection Systems? Waste Manag. 2006, 26, 516–525. [Google Scholar] [CrossRef]
- Scheutz, C.; Pedersen, G.B.; Costa, G.; Kjeldsen, P. Biodegradation of Methane and Halocarbons in Simulated Landfill Biocover Systems Containing Compost Materials. J. Environ. Qual. 2009, 38, 1363–1371. [Google Scholar] [CrossRef]
- Rafey, A.; Siddiqui, F.Z. Modelling and Simulation of Landfill Methane Model. Clean. Energy Syst. 2023, 5, 100076. [Google Scholar] [CrossRef]
- Moraes, C.A.; Santos, L.D.L.C.D.; Oliveira, A.C.L.D.; Botelho, D.F.; Moltó Berenguer, J.; Renato, N.D.S. Biogas-Based Electricity Production from Landfills in Places of Irregular Disposal: Overview for the Southeast Region of Brazil. Energy 2024, 290, 130161. [Google Scholar] [CrossRef]
- de Barros Miranda Gomes, M.; Sacomano, J.B.; Papalardo, F.; da Silva, A.E. Production of Sustainable Electricity in Landfills: The Case of the Bandeirantes Landfill. In Advances in Production Management Systems. Innovative and Knowledge-Based Production Management in a Global-Local World; Grabot, B., Vallespir, B., Gomes, S., Bouras, A., Kiritsis, D., Eds.; IFIP Advances in Information and Communication Technology; Springer: Berlin/Heidelberg, Germany, 2014; Volume 439, pp. 366–373. ISBN 978-3-662-44736-9. [Google Scholar]
- Lattanzi, I.E.; Prata Filho, D.D.A.; Quelhas, O.L.G. Modelagem Da Geração de Biogás Aplicando Metodologia CDM Para Redução de Emissões de Gases de Efeito Estufa: Estudo de Caso Do Aterro MTR Santa Maria Madalena, RJ, Brasil. Sist. Gest. 2020, 14, 483–491. [Google Scholar] [CrossRef]
- Yılmaz, İ.H.; Abdulvahitoğlu, A. Evaluation of Municipal Solid Waste Options in Turkey: Scenarios for Energy Recovery, Carbon Mitigation and Consequent Financial Strategies. Resour. Conserv. Recycl. 2019, 147, 95–110. [Google Scholar] [CrossRef]
- Kale, C.; Gökçek, M. A Techno-Economic Assessment of Landfill Gas Emissions and Energy Recovery Potential of Different Landfill Areas in Turkey. J. Clean. Prod. 2020, 275, 122946. [Google Scholar] [CrossRef]
- Lise, W. Managing Waste for Energy Use in Turkey. In Towards 100% Renewable Energy; Uyar, T.S., Ed.; Springer Proceedings in Energy; Springer International Publishing: Cham, Switzerland, 2017; pp. 305–312. ISBN 978-3-319-45658-4. [Google Scholar]
- Yaman, C. Investigation of Greenhouse Gas Emissions and Energy Recovery Potential from Municipal Solid Waste Management Practices. Environ. Dev. 2020, 33, 100484. [Google Scholar] [CrossRef]
- Www.Energieberg.de: Energieberg.De. Available online: https://www.energieberg.de/home/ (accessed on 12 January 2025).
- Emoke, I.; Parvesh, T.; Tibor, P.; Peter, F.; Martin, M.; Gábor, M.; Tibor, F.; Gábor, T.; Zsolt, H.; Ulsbold, A. Development of Solar Irradiance and Wind Measuring Systems in the Pusztazamor Landfill Site Development of Solar Irra-diance and Wind Measuring Systems in the Pusztazamor Landfill Site. In Proceedings of the 13th ICEEE-2022, Budapest, Hungary, 17–18 November 2022. [Google Scholar]
- Mircea, M. Depozite de Deşeuri. Doctoral Dissertation, Universitatea Politehnică Timişoara Facultatea de Hidrotehnică, Timișoara, Romania, 2005. [Google Scholar]
- Niculae, N.B.; Gheorghe, M.; Cornelia Aida, B. Depozitele Ecologice de Deşeuri—Componentă A Arhitecturii Dezvoltării Durabile. Bul. AGIR 2008. Available online: https://www.agir.ro/buletine/419.pdf (accessed on 13 January 2025).
- Feodorov, V. Waste. Personal Communication. Maria.Bostenaru@uauim.Ro. Available online: https://www.uauim.ro/en/university/faculty/maria-bostenaru-dan/ (accessed on 13 January 2025). (In Romanian).
- Ramprasad, C.; Teja, H.C.; Gowtham, V.; Vikas, V. Quantification of Landfill Gas Emissions and Energy Pro-duction Potential in Tirupati Municipal Solid Waste Disposal Site by LandGEM Mathematical Model. MethodsX 2022, 9, 101869. [Google Scholar] [CrossRef]
- Atabi, F.; Ali Ehyaei, M.; Ahmadi, M.H. Calculation of CH4 and CO2 Emission Rate in Kahrizak Landfill Site with Land GEM Mathematical Model. In Proceedings of the 4th World Sustainability Forum (Online), Basel, Switzerland, 1–30 November 2014. [Google Scholar] [CrossRef]
- Alam, A.; Chaudhry, M.N.; Ahmad, S.R.; Ullah, R.; Batool, S.A.; Butt, T.E.; Alghamdi, H.A.; Mahmood, A. Ap-plication of Landgem Mathematical Model for the Estimation of Gas Emissions From Contaminated Sites. a Case Study of a Dumping Site in Lahore, Pakistan. Environ. Prot. Eng. 2022, 48, 69–81. [Google Scholar] [CrossRef]
- Powell, J.T.; Chertow, M.R.; Esty, D.C. Where Is Global Waste Management Heading? An Analysis of Solid Waste Sector Commitments from Nationally-Determined Contributions. Waste Manag. 2018, 80, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Kaza, S.; Yao, L.C.; Bhada-Tata, P.; Van Woerden, F. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050; World Bank: Washington, DC, USA, 2018. [Google Scholar]
- Dieter, M.; Dirk, H.; Christoph, H.; Thomas, G. Waste-to-Energy Options in Municipal Solid Waste Management: A Guide for Decision Makers in Developing and Emerging Countries; Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH: Eschborn, Germany, 2017. [Google Scholar]
- Pujara, Y.; Pathak, P.; Sharma, A.; Govani, J. Review on Indian Municipal Solid Waste Management Practices for Reduction of Environmental Impacts to Achieve Sustainable Development Goals. J. Environ. Manag. 2019, 248, 109238. [Google Scholar] [CrossRef]
- Ministry of New and Renewable Energy, Waste to Energy Programme: Programme on Energy from Urban, Industrial and Agricultural Wastes/Residues; New Delhi, India. 2022. Available online: https://mnre.gov.in/en/document/programme-on-energy-from-urban-industrial-agricultural-wastes-residues-and-municipal-solid-waste-2019-20-revised-guidelines-of-waste-to-energy-programme-reg/ (accessed on 13 January 2025).
- Azis, M.M.; Kristanto, J.; Purnomo, C.W. A Techno-economic Evaluation of Municipal Solid Waste (Msw) Conversion to Energy in Indonesia. Sustain. Switz. 2021, 13, 7232. [Google Scholar] [CrossRef]
- Rodriguez, M.B. Cost-Benefit Analysis of a Waste to Energy Plant for Montevideo; and Waste to Energy in Small Islands. Master’s Thesis, Columbia University, New York, NY, USA, 2011. [Google Scholar]
- Lino, F.A.M.; Ismail, K.A.R.; Castañeda-Ayarza, J.A. Municipal Solid Waste Treatment in Brazil: A Compre-hensive Review. Energy Nexus 2023, 11, 100232. [Google Scholar] [CrossRef]
- ISWA Working Group Energy Recovery. Waste-to-Energy Market in Brazil; ISWA Working Group Energy Recovery, ARBEN, WtERT–Brasil. 2020. Available online: https://wtert.org/wp-content/uploads/2020/11/Waste-to-Energy-Market-in-Brazil_ISWA-WGER-october2020.pdf (accessed on 13 January 2025).
- Moreira, H.M.; Giometti, A.B.D.R. Protocolo de Quioto e as Possibilidades de Inserção Do Brasil No Mecanis-mo de Desenvolvimento Limpo Por Meio de Projetos Em Energia Limpa. Contexto Int. 2008, 30, 9–47. [Google Scholar] [CrossRef]
- Markgraf, C.; Kaza, S. Financing Landfill Gas Projects in Developing Countries; World Bank: Washington, DC, USA, 2016. [Google Scholar]
- Caciagli, V. Emission Trading Schemes and Carbon Markets in the NDCs: Their Contribution to the Paris Agreement. In Theory and Practice of Climate Adaptation; Alves, F., Leal Filho, W., Azeiteiro, U., Eds.; Climate Change Management; Springer International Publishing: Cham, Switzerland, 2018; pp. 539–571. ISBN 978-3-319-72873-5. [Google Scholar]
- Mabuza, L.O.K.; Brent, A.C.; Mapako, M. The Transfer of Energy Technologies in a Developing Country Con-text—Towards Improved Practice from Past Successes and Failures. Proc. World Acad. Sci. Eng. Technol. 2007, 22. Available online: https://www.researchgate.net/publication/242511628_The_Transfer_of_Energy_Technologies_in_a_Developing_Country_Context_-_Towards_Improved_Practice_from_Past_Successes_and_Failures (accessed on 13 January 2025).
- Talkington, C.; Pilcher, R.C.; Ruiz, F.A. Addressing Barriers to Global Deployment of Best Practices to Reduce Methane Emissions from Coal Mines. Carbon Manag. 2014, 5, 587–594. [Google Scholar] [CrossRef]
- Weko, S.; Goldthau, A. Bridging the Low-Carbon Technology Gap? Assessing Energy Initiatives for the Global South. Energy Policy 2022, 169, 113192. [Google Scholar] [CrossRef]
- Ding, X.-H.; Luo, B.; Zhou, H.-T.; Chen, Y.-H. Generalized Solutions for Advection–Dispersion Transport Equa-tions Subject to Time- and Space-Dependent Internal and Boundary Sources. Comput. Geotech. 2025, 178, 106944. [Google Scholar] [CrossRef]
Characteristic | Value |
---|---|
Maximum power output | 11 MW |
Turbine speed | ≤9500 rpm |
Inlet steam temperature | ≤500 °C |
Inlet steam pressure | ≤65 bar |
Back pressure | 13 bar |
Condensing pressure | Vacuum |
−11,311 | 84,627 | −177,580 | 137,470 | 215 | |
1671.8 | 379.5841 | 377.4131 | −141 | 4.56 | |
1210.1 | 379.5841 | 377.4131 | −141 | 4.56 |
Input Parameters | Value |
---|---|
14.182 kPa | |
7300 kPa | |
7300 kPa | |
6500 kPa | |
6500 kPa | |
1300 kPa | |
325 K | |
325 K | |
561 K | |
561 K | |
773 K | |
423 K | |
1011.429 cm3/kg | |
1010.000 cm3/kg | |
1361.655 cm3/kg | |
30,974.136 cm3/kg | |
52,088.759 cm3/kg | |
1089.787 cm3/kg |
Output Parameters | Value |
---|---|
−6.245 103 J/kg | |
1.06 106 J/kg | |
−1.15 103 J/kg | |
4.36 105 J/kg | |
0 J/kg | |
1.493 106 J/kg | |
6.25 103 J/kg | |
−2.57 103 J/kg | |
1.15 103 J/kg | |
−1.37 105 J/kg | |
5.39 105 J/kg | |
5.45 105 J/kg | |
217,070.56 J/kg | |
223,315.56 J/kg | |
36.01% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kerboua, K.; Cheniti, H.; Bouvett, C.F.; Gasmi, I.; Aouissi, H.A.; Petrisor, A.-I.; Boştenaru-Dan, M. A Techno-Ecological Transformative Approach of Municipal Solid Waste Landfill in Upper-Middle-Income Countries Based on Energy Recovery. Sustainability 2025, 17, 1479. https://doi.org/10.3390/su17041479
Kerboua K, Cheniti H, Bouvett CF, Gasmi I, Aouissi HA, Petrisor A-I, Boştenaru-Dan M. A Techno-Ecological Transformative Approach of Municipal Solid Waste Landfill in Upper-Middle-Income Countries Based on Energy Recovery. Sustainability. 2025; 17(4):1479. https://doi.org/10.3390/su17041479
Chicago/Turabian StyleKerboua, Kaouther, Hamza Cheniti, Clyde Falzon Bouvett, Intissar Gasmi, Hani Amir Aouissi, Alexandru-Ionut Petrisor, and Maria Boştenaru-Dan. 2025. "A Techno-Ecological Transformative Approach of Municipal Solid Waste Landfill in Upper-Middle-Income Countries Based on Energy Recovery" Sustainability 17, no. 4: 1479. https://doi.org/10.3390/su17041479
APA StyleKerboua, K., Cheniti, H., Bouvett, C. F., Gasmi, I., Aouissi, H. A., Petrisor, A.-I., & Boştenaru-Dan, M. (2025). A Techno-Ecological Transformative Approach of Municipal Solid Waste Landfill in Upper-Middle-Income Countries Based on Energy Recovery. Sustainability, 17(4), 1479. https://doi.org/10.3390/su17041479