Optimizing Water Conservation in South Africa’s Arid and Semi-Arid Regions Through the Cultivation of Indigenous Climate-Resilient Food Crops
Abstract
:1. Introduction
2. Methodology
3. An Overview of Indigenous Climate-Resilient Food Crops of South Africa
- Pearl millet (Pennisetum glaucum) is of the Poaceae family. Pearl millets are rich in fiber, phytochemicals, and fatty acids. This crop is drought-tolerant.
- Sorghum bicolor L. (sorghum) is a crop that is part of the Graminea family and has a high carbohydrate content. It is a drought-tolerant and climate-resistant crop. This crop plays a huge role in the fight against food insecurity and hunger in Northeast Africa.
- Cowpea (vigna unguiculate) is a member of the Fabaceae family. The cowpea is cultivated for its grain which can be consumed dry or fresh and their leaves as Morogo. Cowpeas are nutrient-rich, containing nutrients that are good for human health including plant-based proteins, fiber, Vitamins (A, C, thiamine, folate, and B6), Iron, Selenium, Zinc, Magnesium, Phosphorus, and Copper.
- Bambara groundnut (vigna subterranean) groundnut is an underutilized indigenous legume species that is widely grown in the drier regions of sub-Saharan Africa, including South Africa. It is an annual plant that takes three to six months to mature, depending on the weather and variety.
- Amaranthus is in the Amaranthaceae family, and there are around 70 distinct genera of Amaranthus in Africa, and different types are consumed, while others are considered as weeds that have spread naturally from other places around the world.
4. The Superiority of Indigenous Crops for Water Conservation and Agricultural Sustainability
5. SWOT Analysis of Water Conservation Strategies in Arid and Semi-Arid Regions of South Africa
6. Evidence of Water Conservation Potential Through Indigenous Food Crops
6.1. Indigenous Grains and Legumes
6.2. Water Use Efficiency
6.3. Drought Tolerance of Indigenous Crops
- Cowpeas.
- Bambara Groundnut.
- Wild Mustard.
6.4. Adaptation to High Temperatures
7. Strategies for Promoting Indigenous Food Crops to Optimize Water Conservation
7.1. Research and Development (R&D)
7.2. Improving the Agricultural Value Chain (AVC) and Market
7.3. Improving Post-Harvest Processes and Fruit Preservation Technology
7.4. Policy and Incentives
7.5. Promoting Water Use Efficiency Through Sustainable Water Management Practices
8. Barriers to the Adoption of Indigenous Food Crops in South Africa
8.1. Cultural and Social Constraints
8.2. Lack of Awareness and Knowledge
8.3. Economic and Market Challenges
8.4. Policy and Institutional Barriers
8.5. Climate and Environmental Concerns
9. Policy Implications, Recommendations, and Future Directions
9.1. Policy Implications
9.2. Conclusions and Recommendations
9.3. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization. Resilient Livelihoods: Disaster and Risk Reduction; FAO: Rome, Italy, 2013; Available online: https://openknowledge.fao.org/items/993202cf-6355-4275-9dad-c766468dc1fc (accessed on 7 December 2024).
- Vetter, S. Drought, change and resilience in South Africa’s arid and semi-arid rangelands. S. Afr. J. Sci. 2009, 105, 29–33. [Google Scholar] [CrossRef]
- FAO. Sustainable Food Systems: Concept and Framework; Food and Agriculture Organization of the United Nations: Rome, Italy, 2018; Available online: https://openknowledge.fao.org/server/api/core/bitstreams/b620989c-407b-4caf-a152-f790f55fec71/content (accessed on 6 December 2024).
- Roy, M.M.; Tiwari, J.C. Agroforestry for climate resilient agriculture and livelihood in the arid region of India. Indian J. Agrofor. 2012, 14, 49–59. [Google Scholar]
- Aich, A.; Dey, D.; Roy, A. Climate change resilient agricultural practices: A learning experience from indigenous communities over India. PLoS Sustain. Transform. 2022, 1, e0000022. [Google Scholar] [CrossRef]
- Das, M. Clean India Action for Water. 2007. Available online: https://devalt.org/newsletter/jun05/of_1.htm (accessed on 8 December 2024).
- Kumari, M.; Singh, J. Water conservation: Strategies and solutions. Int. J. Adv. Res. Rev. 2016, 1, 75–79. [Google Scholar]
- Walia, S.S.; Kaur, K.; Kaur, T. Soil and water conservation techniques in rainfed areas. In Agriculture and Watershed Management; Springer Nature: Singapore, 2024; pp. 115–124. [Google Scholar] [CrossRef]
- Morepje, M.T. Redesigning Production Systems for Water-Use Efficiency Amongst Smallholder Farmers at Numbi, South Africa. Master’s Thesis, University of Mpumalanga, Mbombela, South Africa, 2024. [Google Scholar]
- Sithole, M.Z.; Agholor, A.I. Assessing the Adoption of Conservation Agriculture Towards Climate Change Adaptation: A Case of Nkomazi, Mpumalanga Province. Proc. Int. Conf. Agric. 2021, 6, 68–80. [Google Scholar] [CrossRef]
- Agholor, I.A.; Sithole, M.Z.; Morepje, M.T.; Ndlovu, S.M.; Msweli, N.S.; Thabane, V.N.; Mgwenya, L.I. Smart Agriculture Practices for Climate Change Relief: Insights from Smallholder Farmers in Bushbuckridge, South Africa. Preprints 2024, 1–16. [Google Scholar] [CrossRef]
- Modi, A.T.; Mabhaudhi, T. Developing a research agenda for promoting underutilised, indigenous and traditional crops. WRC Rep. No. KV 2016, 362, 16. Available online: https://www.wrc.org.za/wp-content/uploads/mdocs/KV362_17.pdf (accessed on 26 January 2025).
- GoK. Kenya National Adaptation Plan 2015–2030. Enhanced Climate Resilience Towards the Attainment of Vision 2030 and Beyond. 2016. Available online: http://www4.unfccc.int/nap/DocumentsNAP/Kenya_NAP_Final.pdf (accessed on 23 November 2024).
- Davis, C.L.; Hoffman, M.T.; Roberts, W. Recent trends in the climate of Namaqualand, a megadiverse arid region of South Africa. S. Afr. J. Sci. 2016, 112, 215–217. [Google Scholar] [CrossRef]
- Ngugi, I.K.; Gitau, R.; Nyoro, J.K. Access to High Value Markets by Smallholder Farmers of African Indigenous Vegetables in Kenya; Regoverning Markets Innovative Practice Series; IIED: London, UK, 2006. [Google Scholar]
- Stöber, S.; Chepkoech, W.; Neubert, S.; Kurgat, B.; Bett, H.; Lotze-Campen, H. Adaptation pathways for African indigenous vegetables’ value chains. In Climate Change Adaptation in Africa, Fostering Resilience and Capacity to Adapt, Climate Change Management; Filho, W.L., Belay, S., Kalangu, J., Menas, W., Munishi, P., Musiyiwa, K., Eds.; Springer International: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Giller, K.E.; Tittonell, P.; Rufino, M.C.; van Wijk, M.T.; Zingore, S.; Mapfumo, P.; Adjei-Nsiah, S.; Herrero, M.; Chikowo, R.; Corbeels, M.; et al. Communicating complexity: Integrated assessment of trade-offs concerning soil fertility management within African farming systems to support innovation and development. Agric. Syst. 2011, 104, 191–203. [Google Scholar] [CrossRef]
- Bryan, E.; Ringler, C.; Okoba, B.; Roncoli, C.; Silvestri, S.; Herrero, M. Adapting agriculture to climate change in Kenya: Household strategies and determinants. J. Environ. Manag. 2013, 114, 26–35. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Moher, D. Updating Guidance for Reporting Systematic Reviews: Development of the PRISMA 2020 Statement. J. Clin. Epidemiol. 2021, 134, 103–112. [Google Scholar] [CrossRef]
- Selçuk, A.A. A Guide for Systematic Reviews: PRISMA. Turk. Arch. Otorhinolaryngol. 2019, 57, 57–58. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, 71. [Google Scholar] [CrossRef] [PubMed]
- Scells, H.; Zuccon, G.; Koopman, B.; Clark, J. Automatic Boolean Query Formulation for Systematic Review Literature Search. In Proceedings of the Web Conference 2020, Taipei, Taiwan, 20–24 April 2020; ACM: New York, NY, USA, 2020; pp. 1071–1081. [Google Scholar] [CrossRef]
- Foo, Y.Z.; O’Dea, R.E.; Koricheva, J.; Nakagawa, S.; Lagisz, M. A Practical Guide to Question Formation, Systematic Searching, and Study Screening for Literature Reviews in Ecology and Evolution. Methods Ecol. Evol. 2021, 12, 1705–1720. [Google Scholar] [CrossRef]
- Dodd, A.L.; Reilly, S.; Ahmed, F.; Thomas, C. Critical Appraisal: How to Examine and Evaluate the Research Evidence. In Handbook of Theory and Methods in Applied Health Research; Edward Elgar Publishing: Cheltenham, UK, 2020; pp. 5–22. [Google Scholar] [CrossRef]
- Backeberg, G.R.; Water, A.S. Underutilised indigenous and traditional crops: Why is research on water use important for South Africa? S. Afr. J. Plant Soil 2010, 27, 291–292. [Google Scholar] [CrossRef]
- Mabhaudhi, T.; Modi, A.T. Sowing the seeds of knowledge on underutilised crops: Indigenous crops-feature. Water Wheel 2016, 15, 40–41. [Google Scholar]
- Mabhaudhi, T.; Chibarabada, T.; Chimonyo, V.; Murugani, V.; Pereira, L.; Sobratee, N.; Govender, L.; Slotow, R.; Modi, A. Mainstreaming Underutilized Indigenous and Traditional Crops into Food Systems: A South African Perspective. Sustainability 2018, 11, 172. [Google Scholar] [CrossRef] [PubMed]
- Mathews, C. An overview of indigenous crop development by the Mpumalanga Department of Agriculture and Land Administration (DALA). S. Afr. J. Plant Soil 2010, 27, 337–340. [Google Scholar] [CrossRef]
- Modi, A.T.; Mabhaudhi, T. Water Use and Drought Tolerance of Selected Traditional Crops; Report to the Water Research Commission. WRC Report No. 1771/1/13; Water Research Commission: Pretoria, South Africa, 2013; ISBN 978-1-4312-0434-2. [Google Scholar]
- Rapholo, M.T.; Diko Makia, L. Are smallholder farmers’ perceptions of climate variability supported by climatological evidence? Case study of a semi-arid region in South Africa. Int. J. Clim. Chang. Strateg. Manag. 2020, 12, 571–585. [Google Scholar] [CrossRef]
- Bhattarai, B.; Singh, S.; West, C.P.; Ritchie, G.L.; Trostle, C.L. Water depletion pattern and water use efficiency of forage sorghum, pearl millet, and corn under water limiting condition. Agric. Water Manag. 2020, 238, 106206. [Google Scholar] [CrossRef]
- Mwamahonje, A.; Eleblu, J.S.Y.; Ofori, K.; Deshpande, S.; Feyissa, T.; Tongoona, P. Drought tolerance and application of marker-assisted selection in sorghum. Biology 2021, 10, 1249. [Google Scholar] [CrossRef] [PubMed]
- Tesfuhuney, W.; Ravuluma, M.; Dzvene, A.R.; Bello, Z.; Andries, F.; Walker, S.; Cammarano, D. In-Field Rainwater Harvesting Tillage in Semi-Arid Ecosystems: I Maize–Bean Intercrop Performance and Productivity. Plants 2023, 12, 3027. [Google Scholar] [CrossRef]
- Matimolane, S.; Strydom, S.; Mathivha, F.I.; Chikoore, H. Determinants of rainwater harvesting practices in rural communities of Limpopo Province, South Africa. Water Sci. 2023, 37, 276–289. [Google Scholar] [CrossRef]
- Onuche, U.; Ibitoye, S.J.; Anthony, T. Profitability and efficiency of Bambara groundnut production in Nigeria: A case study. Rev. Agric. Appl. Econ. 2020, 23, 92–101. [Google Scholar] [CrossRef]
- Lengwati, D.M.; Mathews, C.; Dakora, F.D. Rotation benefits from N2-fixing grain legumes to cereals: From increases in seed yield and quality to greater household cash-income by a following maize crop. Front. Sustain. Food Syst. 2020, 4, 94. [Google Scholar] [CrossRef]
- Mayes, S.; Ho, W.K.; Chai, H.H.; Gao, X.; Kundy, A.C.; Mateva, K.I.; Zahrulakmal, M.; Hahiree, M.K.I.M.; Kendabie, P.; Licea, L.C.S.; et al. Bambara groundnut: An exemplar underutilised legume for resilience under climate change. Planta 2019, 250, 803–820. [Google Scholar] [CrossRef] [PubMed]
- Woyessa, Y.E. Sustainable Management of Water Resources in a Semi-arid River Basin Under Climate Change: A Case Study in South Africa. In BRICS Countries: Sustainable Water Resource Management and Pollution Control: Challenges and Opportunities; Springer Nature: Singapore, 2024; pp. 183–209. [Google Scholar] [CrossRef]
- Ngwenya, M.; Simatele, M.D. Modeling future (2021–2050) meteorological drought characteristics using CMIP6 climate scenarios in the Western Cape Province, South Africa. Model. Earth Syst. Environ. 2024, 10, 2957–2975. [Google Scholar] [CrossRef]
- Pati, D.; Lorusso, L.N. How to write a systematic review of the literature. Health Environ. Res. Des. J. 2018, 11, 15–30. [Google Scholar] [CrossRef]
- Vickers, A. Water Use and Conservation; Water Plow Press: Amherst, MA, USA, 2002; p. 434. ISBN 1-931579-07-5. [Google Scholar]
- Oweis, T.; Hachum, A. Water harvesting and supplemental irrigation for improved water productivity of dry farming systems in West Asia and North Africa. Agric. Water Manag. 2006, 80, 57–73. [Google Scholar] [CrossRef]
- Kahinda, J.M.; Taigbenu, A.E.; Sejamoholo, B.B.P. A GISbased decision support system for rainwater harvesting (RHADESS). J. Phys. Chem. Earth 2009, 34, 767–775. [Google Scholar] [CrossRef]
- Jasrotia, A.S.; Majh, A.; Singh, S. Water balance approach for rainwater harvesting using remote sensing and GIS techniques, Jammu Himalaya. J. Water Resour. Manag. 2009, 23, 3035–3055. [Google Scholar] [CrossRef]
- Xie, J.H.; Zhang, R.Z.; Li, L.L.; Chai, Q.; Luo, Z.Z.; Cai, L.Q.; Qi, P. Effects of plastic film mulching patterns on maize grain yield, water use efficiency, and soil water balance in the farming system with one film used two years. Acta Ecol. Sci. 2018, 29, 6. [Google Scholar]
- Wang, J.; Lv, S.; Zhang, M.; Chen, G.; Zhu, T.; Zhang, S.; Luo, Y. Effects of plastic film residues on occurrence of phthalates and microbial activity in soils. Chemosphere 2016, 151, 171–177. [Google Scholar] [CrossRef]
- Subrahmaniyan, K.; Mathieu, N. Polyethylene and biodegradable mulches for agricultural applications: A review. Agron. Sustain. Dev. 2012, 32, 501–529. [Google Scholar]
- Cuello, J.P.; Hwang, H.Y.; Gutierrez, J.; Kim, S.Y.; Kim, P.J. Impact of plastic film mulching on increasing greenhouse gas emissions in temperate upland soil during maize cultivation. Appl. Soil Ecol. 2015, 91, 48–57. [Google Scholar] [CrossRef]
- Kansiime, M.K.; Ochieng, J.; Kessy, R.; Karanja, D.; Romney, D.; Afari-Sefa, V. Changing Knowledge and Perceptions of African Indigenous Vegetables: The Role of Community-Based Nutritional Outreach. Dev. Pract. 2018, 28, 480–493. [Google Scholar] [CrossRef]
- Demi, S.M. African Indigenous Food Crops: Their Roles in Combatting Chronic Diseases in Ghana; University of Toronto: Toronto, ON, Canada, 2014; Volume 4. [Google Scholar]
- HJ, V.I.; van Rensburg Willem, J.; Van Zijl, J.J.B.; Sonja, L.V. Re-Creating Awareness of Traditional Leafy Vegetables in Communities. Afr. J. Food Agric. Nutr. Dev. 2007, 7, 1–3. [Google Scholar]
- Matenge, S.; Van der Merwe, D.; Kruger, A.; De Beer, H. Utilisation of Indigenous Plant Foods in the Urban and Rural Communities. Indilinga Afr. J. Indig. Knowl. Syst. 2011, 10, 17–37. [Google Scholar]
- Gurinovic, M.; Glibetic, M.; Savic, J.; Mattas, K.; Yercan, M. Causes and Conditions for Reduced Cultivation and Consumption of Underutilized Crops: Is there a solution? Sustainability 2023, 15, 3076. [Google Scholar] [CrossRef]
- Ziervogel, W.; New, M.; Acher van Garden, E.; Midgley, G.; Tylor, A.; Hamann, R. climate change impacts and adaptation in South Africa. Wiley Interdiscip. Rev. 2014, 5, 605–620. [Google Scholar] [CrossRef]
- Shardendu, K.; Singh, K.; Raja, R. Regulation of photosynthesis, fluorescence, stomatal conductance and water-use efficiency of cowpea (Vigna unguiculata [L.] Walp.) under drought. J. Photochem. Photobiol. B Biol. 2011, 105, 40–50. [Google Scholar] [CrossRef]
- Yang, W.; Cicheng, Z.; Xiong, X.; Huawu, W.; Jinghui, Z. Water-use strategies and functional traits explain divergent linkages in physiological responses to simulated precipitation change. Sci. Total Environ. 2024, 908, 168238. [Google Scholar] [CrossRef]
- Zheng, S.; Zhao, W.; Liu, Z.; Geng, Z.; Li, Q.; Liu, B.; Li, B.; Bai, J. Establishment and Maintenance of Heat-Stress Memory in Plants. Int. J. Mol. Sci. 2024, 25, 8976. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sage, R.F. In Encyclopedia of Ecology, C3 Photosynthesis. 2008. Available online: https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/c3-photosynthesis#:~:text=The%20standard%20photosynthetic%20pathway%20is%20C3%20photosynthesis%20named,then%20reduced%20to%20carbohydrate%20in%20the%20Calvin%20cycle (accessed on 10 December 2024).
- Ghannoum, O.; Evans, J.R.; von Caemmerer, S. Chapter 8 Nitrogen and Water Use Efficiency of C4 Plants. In C4 Photosynthesis and Related CO2 Concentrating Mechanisms; Advances in Photosynthesis and Respiration; Raghavendra, A., Sage, R., Eds.; Springer: Dordrecht, The Netherlands, 2011; Volume 32. [Google Scholar] [CrossRef]
- Wasilewska-Dębowska, W.; Zienkiewicz, M.; Drozak, A. How Light Reactions of Photosynthesis in C4 Plants Are Optimized and Protected under High Light Conditions. Int. J. Mol. Sci. 2022, 2, 3626. [Google Scholar] [CrossRef]
- Mgwenya, L.I.; Agholor, I.A.; Ludidi, N.; Morepje, M.T.; Sithole, M.Z.; Msweli, N.S.; Thabane, V.N. Unpacking the Multifaceted Benefits of Indigenous Crops for Food Security: A Review of Nutritional, Economic and Environmental Impacts in Southern Africa. World 2025, 6, 16. [Google Scholar] [CrossRef]
- Everson, C.S.; Dye, P.J.; Gush, M.B.; Everson, T.M. Water use of grasslands, agroforestry systems and indigenous forests. Water SA 2011, 37, 5. [Google Scholar] [CrossRef]
- Chivenge, P.; Mabhaudhi, T.; Modi, A.T.; Mafongoya, P. The Potential Role of Neglected and Underutilised Crop Species as Future Crops under Water Scarce Conditions in Sub-Saharan Africa. Int. J. Environ. Res. Public Health 2015, 26, 5685–5711. [Google Scholar] [CrossRef]
- Dairo, O.O. Genetic Diversity in Cowpea (Vigna unguiculata (L.) Walp) under Two Growing Conditions. Adv. Biosci. Biotechnol. 2024, 15, 310–324. [Google Scholar] [CrossRef]
- Sharma, P.K.; Kumar, S. Soil Temperature and Plant Growth. In Soil Physical Environment and Plant Growth; Springer: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- Santos, R.; Carvalho, M.; Rosa, E.; Carnide, V.; Castro, I. Root and Agro-Morphological Traits Performance in Cowpea under Drought Stress. Agronomy 2020, 10, 1604. [Google Scholar] [CrossRef]
- Nkhoma, N.; Shimelis, H.; Laing, M.S.; Shayanowako, A.; Mathew, M. Assessing the genetic diversity of cowpea [Vigna unguiculata (L.) Walp.] germplasm collections using phenotypic traits and SNP markers. BMC Genet. 2020, 21, 110. [Google Scholar] [CrossRef]
- Bapela, T.; Shimelis, H.; Tsilo, T.J.; Mathew, I. Genetic improvement of wheat for drought tolerance: Progress, challenges and opportunities. Plants 2022, 11, 1331. [Google Scholar] [CrossRef] [PubMed]
- Hafeez, A.; Ali, B.; Javed, M.A.; Saleem, A.; Fatima, M.; Fathi, A.; Afridi, M.S.; Aydin, V.; Oral, M.A.; Soudy, F.A. Plant breeding for harmony between sustainable agriculture, the environment, and global food security: An era of genomics-assisted breeding. Planta 2023, 258, 97. [Google Scholar] [CrossRef]
- Rakshit, S.; Prabhakar; Kumar, P. Maize and Millets. In Trajectory of 75 Years of Indian Agriculture After Independence; Springer Nature: Singapore, 2023; pp. 163–187. [Google Scholar]
- Negri, L.; Bosi, S.; Fakaros, A.; Ventura, F.; Magagnoli, S.; Masetti, A.; Lami, F.; Oliveti, G.; Poggi, G.M.; Bertinazzi, L.; et al. Millets and sorghum as promising alternatives to maize for enhancing climate change adaptation strategies in the Mediterranean Basin. Field Crops Res. 2024, 318, 109–563. [Google Scholar] [CrossRef]
- Ngompe Deffo, T.; Kouam, E.B.; Mandou, M.S.; Bara, R.A.T.; Chotangui, A.H.; Souleymanou, A.; Beyegue Djonko, H.; Tankou, C.M. Identifying critical growth stage and resilient genotypes in cowpea under drought stress contributes to enhancing crop tolerance for improvement and adaptation in Cameroon. PLoS ONE 2024, 19, 304–674. [Google Scholar] [CrossRef] [PubMed]
- Chibarabada, T.P.; Modi, A.T.; Mabhaudhi, T. Water use of selected grain legumes in response to varying irrigation regimes. Water SA 2019, 45, 110–120. [Google Scholar] [CrossRef]
- Alidu, M.S. Genetic Variability for Flowering Time, Maturity and Drought Tolerance in Cowpea [Vigna unguiculata (L.) Walp.]: A Review Paper. J. Agric. Ecol. Res. Int. 2019, 17, 1–18. [Google Scholar] [CrossRef]
- Okori, P.; Munthali, W.; Msere, H.; Charlie, H.; Chitaya, S.; Sichali, F.; Chilumpha, E.; Chirwa, T.; Seetha, A.; Chinyamuyamu, B.; et al. Improving efficiency of knowledge and technology diffusion using community seed banks and farmer-to-farmer extension: Experiences from Malawi. Agric. Food Secur. 2022, 11, 38. [Google Scholar] [CrossRef]
- Sithole, M.Z.; Agholor, I.A.; Msweli, N.S.; Morepje, M.T. Towards Sustainable Agriculture: The Opportunities and Challenges of Artificial Intelligence in Agricultural Advisory Services. Proc. NEMISA Digi 2024, 6, 1–12. [Google Scholar]
- Hunter, D.; Borelli, T.; Beltrame, D.M.; Oliveira, C.N.; Coradin, L.; Wasike, V.W.; Wasilwa, L.; Mwai, J.; Manjella, A.; Samarasinghe, G.W.; et al. The potential of neglected and underutilized species for improving diets and nutrition. Planta 2019, 250, 709–729. [Google Scholar] [CrossRef]
- Siddique, K.H.; Li, X.; Gruber, K. Rediscovering Asia’s forgotten crops to fight chronic and hidden hunger. Nat. Plants 2021, 7, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Patil, N.D.; Bains, A.; Chawla, P. Amaranth. In Cereals and Nutraceuticals; Springer Nature: Singapore, 2024; pp. 251–284. [Google Scholar]
- Borelli, T.; Hunter, D.; Padulosi, S.; Amaya, N.; Meldrum, G.; de Oliveira Beltrame, D.M.; Samarasinghe, G.; Wasike, V.W.; Güner, B.; Tan, A.; et al. Local solutions for sustainable food systems: The contribution of orphan crops and wild edible species. Agronomy 2020, 10, 231. [Google Scholar] [CrossRef]
- Marson, M.; Vaggi, G. Sustainable Value Chains in Agriculture; The African Indigenous Vegetables in Southern Nakuru County (No. 174); University of Pavia, Department of Economics and Management: Pavia, Italy, 2019. [Google Scholar]
- Pieterse, E.; Millan, E.; Schönfeldt, H.C. Consumption of edible flowers in South Africa: Nutritional benefits, stakeholders’ views, policy and practice implications. Br. Food J. 2023, 125, 2099–2122. [Google Scholar] [CrossRef]
- Melović, B.; Cirović, D.; Backovic-Vulić, T.; Dudić, B.; Gubiniova, K. Attracting green consumers as a basis for creating sustainable marketing strategy on the organic market—Relevance for sustainable agriculture business development. Foods 2020, 9, 1552. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, M.; Tenorio, M.J.; Ramirez, C.; Jaques, A.; Nuñez, H.; Simpson, R.; Vega, O. Optimization of hot-air drying conditions for cassava flour for its application in gluten-free pasta formulation. Food Sci. Technol. Int. 2019, 25, 414–428. [Google Scholar] [CrossRef] [PubMed]
- Mariyono, J. Stepping up to market participation of smallholder agriculture in rural areas of Indonesia. Agric. Financ. Rev. 2019, 79, 255–270. [Google Scholar] [CrossRef]
- Fajinmi, O.O.; Olarewaju, O.O.; Van Staden, J. Propagation of Medicinal Plants for Sustainable Livelihoods, Economic Development, and Biodiversity Conservation in South Africa. Plants 2023, 12, 1174. [Google Scholar] [CrossRef]
- Bhrijavasi, G.; Anusha, D.A.P.S.; Mishra, K.; Chawla, R. Underutilized fruit crops in semi-arid climates: Challenges, innovations, and future prospects. Int. J. Adv. Biochem. Res. 2024, 8, 488–496. [Google Scholar] [CrossRef]
- Thorpe, G. Alternative and emerging storage practices and technologies. In Storage of Cereal Grains and Their Products; Woodhead Publishing: Sawston, UK, 2022; pp. 81–111. [Google Scholar]
- Joseph, M.; Alavi, S.; Adedeji, A.A.; Zhu, L.; Gwirtz, J.; Thiele, S. Adaptation of conventional wheat flour mill to refine sorghum, corn, and cowpea. AgriEngineering 2024, 6, 1959–1971. [Google Scholar] [CrossRef]
- Kuyu, C.G.; Bereka, T.Y. Review on contribution of indigenous food preparation and preservation techniques to attainment of food security in Ethiopian. Food Sci. Nutr. 2020, 8, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Nag, M.K. Development and inner environment analysis of advance and eco-friendly cementitious silo for postharvest grain protection and shelf-life extension for medium and small-scale farmers. J. Stored Prod. Res. 2024, 106, 102290. [Google Scholar] [CrossRef]
- Imathiu, S. Neglected and underutilized cultivated crops with respect to indigenous African leafy vegetables for food and nutrition security. J. Food Secur. 2021, 9, 115–125. [Google Scholar] [CrossRef]
- Moussa, M. Innovative Millet Foods to Improve Nutrition and Expand Markets in West Africa. Ph.D. Dissertation, Purdue University, West Lafayette, IN, USA, 2019. [Google Scholar]
- Akinola, R. Exploring the Potential for Amaranth (Amaranthus spp.) (Grain and Leaves) in Mainstream South African Diets. Ph.D. Dissertation, Stellenbosch University, Stellenbosch, South Africa, 2021. [Google Scholar]
- Prasad, J.V.N.S.; Loganandhan, N.; Ramesh, P.R.; Rama Rao, C.A.; Raju, B.M.K.; Rao, K.V.; Subba Rao, A.V.M.; Rejani, R.; Kundu, S.; Pankaj, P.K.; et al. Assessment of Resilience Due to Adoption of Technologies in Frequently Drought-Prone Regions of India. Sustainability 2024, 16, 7339. [Google Scholar] [CrossRef]
- Kolapo, A.; Muhammed, O.A.; Kolapo, A.J.; Olowolafe, D.E.; Eludire, A.I.; Didunyemi, A.J.; Falana, K.; Osungbure, I.D. Adoption of drought tolerant maize varieties and farmers’ access to credit in Nigeria: Implications on productivity. Sustain. Futures 2023, 6, 100–142. [Google Scholar] [CrossRef]
- Paradi-Dolgos, A.; Bareith, T.; Vancsura, L.; Csonka, A. The Uptake of Green Finance Tools in Agriculture: Results of a Q-methodology. Financ. Econ. Rev. 2023, 22, 99–123. [Google Scholar] [CrossRef]
- Rashid, F.N. Achieving SDGs in Tanzania: Is there a nexus between land tenure security, agricultural credits and rice productivity? Resour. Conserv. Recycl. 2021, 164, 105216. [Google Scholar] [CrossRef]
- Morepje, M.T.; Agholor, I.A.; Sithole, M.Z.; Mgwenya, L.I.; Msweli, N.S.; Thabane, V.N. An Analysis of the Acceptance of Water Management Systems among Smallholder Farmers in Numbi, Mpumalanga Province, South Africa. Sustainability 2024, 16, 1952. [Google Scholar] [CrossRef]
- Msweli, N.S.; Agholor, I.A.; Sithole, M.Z.; Morepje, M.T.; Thabane, V.N.; Mgwenya, L.I. The determinants and acceptance of climate smart agriculture practices in South Africa. Afr. J. Food Agric. Nutr. Dev. 2024, 24, 24591–24610. [Google Scholar] [CrossRef]
- Morepje, M.T.; Agholor, I.A.; Sithole, M.Z.; Msweli, N.S.; Thabane, V.N.; Mgwenya, L.I. Examining the Barriers to Redesigning Smallholder Production Practices for Water-Use Efficiency in Numbi, Mbombela Local Municipality, South Africa. Water 2024, 16, 3221. [Google Scholar] [CrossRef]
- Thabane, V.N.; Agholor, I.A.; Sithole, M.Z.; Morepje, M.T.; Msweli, N.S.; Mgwenya, L.I. Socio-Demographic Determinants of Climate-Smart Agriculture Adoption Among Smallholder Crop Producers in Bushbuckridge, Mpumalanga Province of South Africa. Climate 2024, 12, 202. [Google Scholar] [CrossRef]
- Chipomho, J.; Moreblessing, C.; Makore, F.; Cosmas, P. Rainwater Harvesting Technologies and Soil Moisture Conservation in Marginalised Semi-Arid Soils of Southern Africa. In The Marginal Soils of Africa: Rethinking Uses, Management and Reclamation; Springer Nature: Cham, Switzerland, 2024; pp. 361–375. [Google Scholar]
- Lenga, F.; Gicheha, M.; Ndegwa, G. Effect of tillage, mulching, herbicide application, intercropping and agroforestry on soil moisture maize yield and rainwater use efficiency in semi-arid Kenya: A case study of Laikipia East. J. Agric. Sci. Technol. 2024, 23, 26–62. [Google Scholar]
- Afari-Sefa, V.; Rajendran, S.; Kessy, R.F.; Karanja, D.K.; Musebe, R.; Samali, S.; Makaranga, M. Impact of Nutritional Perceptions of Traditional African Vegetables on Farm Household Production Decisions: A Case Study of Smallholders in Tanzania. Exp. Agric. 2016, 52, 300–313. [Google Scholar] [CrossRef]
- Muhanji, G.; Roothaert, R.L.; Webo, C.; Stanley, M. African Indigenous Vegetable Enterprises and Market Access for Small-Scale Farmers in East Africa. Int. J. Agric. Sustain. 2011, 9, 194–202. [Google Scholar] [CrossRef]
- Faber, M.; Van Jaarsveld, P.J.; Wenhold, F.A.M.; Van Rensburg, J. African Leafy Vegetables Consumed by Households in the Limpopo and KwaZulu-Natal Provinces in South Africa. J. Clin. Nutr. 2010, 23, 30–38. [Google Scholar] [CrossRef]
- Yang, R.Y.; Keding, G.B. Nutritional Contributions of Important African Indigenous Vegetables. In African Indigenous Vegetables in Urban Agriculture; Shackleton, C.M., Pasquini, M.W., Drescher, A.W., Eds.; Earthscan: London, UK, 2009; pp. 105–143. [Google Scholar]
- Weinberger, K.; Msuya, J. Indigenous Vegetables in Tanzania: Significance and Prospects; Technical Bulletin No. 31, AVRDC Publication 04–600; AVRDC—The World Vegetable Center: Shanhua, Taiwan, 2004. [Google Scholar]
- Lansing, K.J.; Markiewicz, A. Technology Diffusion and Increasing Income Inequality. In Proceedings of the 11th CDMA Conference, Erasmus University Rotterdam, Rotterdam, The Netherlands, 31 August–2 September 2011; Available online: https://archive.st-andrews.ac.uk/other/cdma/conf11papers/Agnieszka%20Markiewicz.pdf (accessed on 18 January 2025).
- Afari-Sefa, V.; Chagomoka, T.; Karanja, D.K.; Njeru, E.; Samali, S.; Katunzi, A.; Mtwaenzi, H.; Kimenye, L. Private contracting versus community seed production systems: Experiences from farmer-led seed enterprise development of indigenous vegetables in Tanzania. Acta Hortic. 2013, 1007, 671–680. [Google Scholar] [CrossRef]
- Rankoana, S.A. Indigenous knowledge and innovative practices to cope with impacts of climate change on small-scale farming in Limpopo Province, South Africa. Int. J. Clim. Chang. Strateg. Manag. 2022, 14, 180–190. [Google Scholar] [CrossRef]
- Keatinge, J.D.; Ledesma, D.; Keatinge, F.J.; Hughes, J.d. Projecting Annual Air Temperature Changes to 2025 and beyond: Implications for Vegetable Horticulture Worldwide. J. Agric. Sci. 2012, 152, 38–57. [Google Scholar] [CrossRef]
- Akinola, R.; Pereira, L.M.; Mabhaudhi, T.; de Bruin, F.-M.; Rusch, L. A Review of Indigenous Food Crops in Africa and the Implications for more Sustainable and Healthy Food Systems. Sustainability 2020, 12, 3493. [Google Scholar] [CrossRef] [PubMed]
- Kuhnlein, H.V.; Erasmus, B.; Spigelski, D.; Burlingame, B. Indigenous Peoples’ Food Systems Well-Being Interventions Policies for Healthy Communities; FAO: Rome, Italy, 2013. [Google Scholar]
- Nhamo, G. Farmers’ choice for indigenous practices and implications for cli-mate-smart agriculture in northern Ghana. Heliyon 2023, 9, 22162. [Google Scholar] [CrossRef]
- Mebratu, N.; Tekie, A.; Fitsum, H.; Amare, H. Determinants of adoption of climate smart agricultural practices among farmers in Bale-Eco region, Ethiopia. Heliyon 2022, 8, e09824. [Google Scholar] [CrossRef]
- Sara, B.S.; Edwin, H.S.; Tafadzwanashe, M.; Rob, S.R.; Carole, D. Climate change impacts on water sustainability of South African crop production. Environ. Res. Lett. 2022, 17, 084017. [Google Scholar] [CrossRef]
Water Conservation Strategy | Strengths | Weaknesses | Opportunities | Threats | Citation |
---|---|---|---|---|---|
Rainwater harvesting |
|
|
|
| [41,42,43,44] |
Drip irrigation |
|
|
|
| [7,41] |
Mulching |
|
|
|
| [45,46,47,48] |
Cultivation of indigenous crops |
|
|
|
| [49,50,51,52] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Msweli, N.S.; Agholor, I.A.; Morepje, M.T.; Sithole, M.Z.; Nkambule, T.B.; Thabane, V.N.; Mgwenya, L.I.; Nkosi, N.P. Optimizing Water Conservation in South Africa’s Arid and Semi-Arid Regions Through the Cultivation of Indigenous Climate-Resilient Food Crops. Sustainability 2025, 17, 1149. https://doi.org/10.3390/su17031149
Msweli NS, Agholor IA, Morepje MT, Sithole MZ, Nkambule TB, Thabane VN, Mgwenya LI, Nkosi NP. Optimizing Water Conservation in South Africa’s Arid and Semi-Arid Regions Through the Cultivation of Indigenous Climate-Resilient Food Crops. Sustainability. 2025; 17(3):1149. https://doi.org/10.3390/su17031149
Chicago/Turabian StyleMsweli, Nomzamo Sharon, Isaac Azikiwe Agholor, Mishal Trevor Morepje, Moses Zakhele Sithole, Tapelo Blessing Nkambule, Variety Nkateko Thabane, Lethu Inneth Mgwenya, and Nombuso Precious Nkosi. 2025. "Optimizing Water Conservation in South Africa’s Arid and Semi-Arid Regions Through the Cultivation of Indigenous Climate-Resilient Food Crops" Sustainability 17, no. 3: 1149. https://doi.org/10.3390/su17031149
APA StyleMsweli, N. S., Agholor, I. A., Morepje, M. T., Sithole, M. Z., Nkambule, T. B., Thabane, V. N., Mgwenya, L. I., & Nkosi, N. P. (2025). Optimizing Water Conservation in South Africa’s Arid and Semi-Arid Regions Through the Cultivation of Indigenous Climate-Resilient Food Crops. Sustainability, 17(3), 1149. https://doi.org/10.3390/su17031149