Strategies for Multigeneration in Residential Energy Systems: An Optimization Approach
Abstract
:1. Introduction
2. Material and Methods
2.1. Energy Demands
2.2. Superstructure and Equipment Specification
2.3. Modeling and Programming
3. Results and Discussion
3.1. Sensitivity Analysis
3.1.1. Electricity Demands
3.1.2. Electricity Tariff
3.1.3. Natural Gas and Diesel Tariffs
3.1.4. Biomass Price
3.1.5. Change in Equipment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Atn | Production of utility n by technology t |
AA | Ambient air |
AG | Chilled water |
AQ | Hot water |
AR | Cooling water |
BM | Biomass |
Cfix | Capital cost |
Cinv | Investment cost |
Cmrhn | Consumption of utility n in month m, day r, and time h |
cmt | Cost of technology maintenance cost t |
Cvar | Variable cost |
ct | Cost of technology t |
Ctot | Total cost |
CABM | Hot water boiler that consumes biomass |
CADI | Hot water boiler that consumes diesel |
CAEE | Hot water boiler that consumes electricity |
CAGN | Hot water boiler that consumes natural gas |
CCOM | Fuel cell |
CHAQ | Single-effect absorption chiller |
CHEE | Mechanical chiller |
Dmrhn | Demand of utility n in month m, day r, and time h |
DI | Diesel |
Emrhn | Excess of utility n in month m, day r, and time h |
EE | Electricity |
fci | Factor of indirect costs |
fcr | Capital recovery factor |
GDGN | Natural gas generator |
GDDI | Diesel generator |
GN | Natural gas |
h | Hour |
i | Initial investment cost of technology |
m | Month |
n | Utility |
O&M | Operation and maintenance |
Pmrhn | Production of utility n in month m, day r, and time h |
Qmrhnt | Excess of utility n used by technology i in month m, day r, and hour h |
r | Representative day |
RDEE | Electric grid |
Smrhn | Purchase of utility n in month m, day r, and time h |
SIFV | Photovoltaic system (panels and inverters) |
SisFV | Capital cost of the solar PV system |
SisTS | Capital cost of thermosolar system |
SITS | Thermosolar system (solar collectors and boiler) |
t | Type of equipment |
TCAQ | Heat exchanger (hot water − cooling water) |
TRAR | Cooling tower |
Unt | How much, proportionally, technology t uses of n |
Wmrhn | Waste of utility n in month m, day r, and time h |
xmrht | Use of technology t during month m, day r, and hour h |
y | Number of installed equipment |
Yt | Maximum amount of technology t used |
Appendix A
Equipment | Description |
SIFV | Modeled according to Brazilian Standards NBR 16724, using Canadian Solar—CS3W 455MS, and inverter on-grid 25 kW with Wi-fi Fox ESS-T25 |
GDGN | QT Series Home Backup Generator—GENERAC, 180 kVA |
GDDI | NAGANO Diesel Triphase 165 kVA 220–380 V |
CADI | ECAL VRI-500 |
CAGN | ECAL VRI-500 |
CABM | WECO HA300 |
CAEE | ECAL PE-150 |
CHAQ | CARRIER C16JLH003 |
CHEE | CARRIER 160TR-30HRP |
TRAR | ALPINA, model TSI-34/3-A19-II |
TCAQ | Alfaengenharia, 400 kW |
CCOM | PC25C, UTC Fuel Cells |
SITS | Modeled according to Brazilian Standards NBR 17003, using HELIOTEK MC 2000TF20 solar collector |
References
- Kumar, K.; Kumar, M.; Soomro, A.M. To Design an off Gird PV System for un electrified area of District Tharparkar, Pakistan. Int. J. Green Energy 2021, 18, 920–932. [Google Scholar] [CrossRef]
- Sheikh, H.I.; Rathi, M.K.; Soomro, A.M. Optimal integration of battery energy-storage system with high penetration of renewable energy in radial distribution network. Clean Energy 2022, 6, 404–411. [Google Scholar] [CrossRef]
- Kumar, M.; Nallagownden, P.; Elamvazuthi, I. Multi-objective PSO based optimal placement of solar power DG in radial distribution system. J. Electr. Syst. 2017, 13, 322–331. [Google Scholar]
- IEA International Energy Agency. Tracking Buildings. 2023. Available online: https://www.iea.org/energy-system/buildings (accessed on 3 January 2025).
- EPE National Energy Balance 2022. Available online: https://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-675/topico-638/BEN2022.pdf (accessed on 17 December 2024).
- National Renewable Energy Laboratory (NREL). NREL Researchers Reveal How Buildings Across United States Do—And Could—Use Energy. 2023. Available online: https://www.nrel.gov/news/features/2023/nrel-researchers-reveal-how-buildings-across-the-united-states-do-and-could-use-energy.html#:~:text=Buildings%20are%20responsible%20for%2040,of%20the%20nation’s%20carbon%20emissions (accessed on 3 January 2025).
- Yuksel, Y.E.; Ozturk, M.; Dincer, I. Development and assessment of a biomass-gasification based multigenerational plant for production of hydrogen and ammonia fuels. Fuel 2025, 380, 133187. [Google Scholar] [CrossRef]
- Dincer, I.; Bicer, Y. Integrated Energy Systems for Multigeneration; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Di Fraia, S.; Shah, M.; Vanoli, L. Biomass Polygeneration Systems Integrated with Buildings: A Review. Sustainability 2024, 16, 1654. [Google Scholar] [CrossRef]
- Jana, K.; Ray, A.; Majoumerd, M.M.; Assadi, M.; De, S. Polygeneration as a Future Sustainable Energy Solution—A Comprehensive Review. Appl. Energy 2017, 202, 88–111. [Google Scholar] [CrossRef]
- Pedram, O.; Asadi, E.; Chenari, B.; Moura, P.; Gameiro da Silva, M. A review of methodologies for managing energy flexibility resources in buildings. Energies 2023, 16, 6111. [Google Scholar] [CrossRef]
- Wirtz, M.; Hahn, M.; Schreiber, T.; Müller, D. Design optimization of multi-energy systems using mixed-integer linear programming: Which model complexity and level of detail is sufficient? Energy Convers. Manag. 2021, 240, 114249. [Google Scholar] [CrossRef]
- Souza, R.J.; Reini, M.; Serra, L.M.; Lozano, M.A.; Nadalon, E.; Casisi, M. Multi-Objective Optimization of an Energy Community Powered by a Distributed Polygeneration System. Energies 2024, 17, 3085. [Google Scholar] [CrossRef]
- Algieri, A.; Beraldi, P.; Pagnotta, G.; Spadafora, I. The Optimal Design, Synthesis and Operation of Polygeneration Energy Systems: Balancing Life Cycle Environmental and Economic Priorities. Energy Convers. Manag. 2021, 243, 19. [Google Scholar] [CrossRef]
- Pinto, E.S.; Serra, L.M.; Lázaro, A. Energy Communities Approach Applied to Optimize Polygeneration Systems in Residential Buildings: Case Study in Zaragoza, Spain. Sustain. Cities Soc. 2022, 82, 17. [Google Scholar] [CrossRef]
- Pina, E.A.; Lozano, M.A.; Serra, L.M. Assessing the Influence of Legal Constraints on the Integration of Renewable Energy Technologies in Polygeneration Systems for Buildings. Renew. Sustain. Energy Rev. 2021, 149, 20. [Google Scholar] [CrossRef]
- Pinto, E.S.; Amante, B. Polygeneration system optimization for building energy system retrofit: A case of study for TR5 building of UPC-Terrassa. Energy Build. 2022, 273, 112375. [Google Scholar] [CrossRef]
- Martin, R.; Arthur, T.; Jonathan, V.; Mathieu, T.; Enora, G.; Robin, G. SHAPE: A temporal optimization model for residential buildings retrofit to discuss policy objectives. Appl. Energy 2024, 361, 122936. [Google Scholar] [CrossRef]
- Brazil. Law N°14,300, of 6 January 2022. Institutes the Legal Framework of Distributed Micro- and Mini-Generation of Electricity. Diário Oficial da União, Brasília, DF. 7 January 2022. Available online: https://www.planalto.gov.br/ccivil_03/_ato2019-2022/2022/lei/L14300.htm (accessed on 17 December 2024).
- ABNT 5410; Low Voltage Electrical Installations. Brazilian Association of Technical Standards: Rio de Janeiro, Brazil, 2004.
- ENERGISA Technical Standards: Basic Criteria for Preparing Urban Air Distribution Network Projects. Available online: https://www.energisa.com.br/Documents/Normas%20t%C3%A9cnicas/NDU%20006%20Crit%C3%A9rios%20B%C3%A1sicos%20para%20Elabora%C3%A7%C3%A3o%20de%20Projetos%20de%20Redes%20de%20Distribui%C3%A7%C3%A3o%20A%C3%A9reas%20Urbanas%20Vers%C3%A3o%206.0%20.pdf (accessed on 29 December 2024).
- ABNT NBR 15569; Direct Circuit Solar Water Heating System—Design and Installation Requirements. Brazilian Association of Technical Standards: Rio de Janeiro, Brazil, 2021.
- Erbs, G.D.; Kiein, A.S.; Beckman, A.W. Estimation of degree-days and ambient temperature bin data from monthly-average temperatures. ASHARE J. 1983, 25, 60–65. [Google Scholar]
- SINAPI CAIXA. Available online: https://www.caixa.gov.br/site/Paginas/downloads.aspx#categoria_652 (accessed on 17 December 2024).
- Delgado DD, M.; Carvalho, M.; Coelho Junior, L.M.; Chacartegui, R. Analysis of biomass-fired boilers in a polygeneration system for a hospital. Front. Manag. Res. 2018, 2, 1–13. [Google Scholar]
- PROCON Procon Paraíba. 2022. Available online: https://procon.pb.gov.br/pesquisas (accessed on 10 December 2022).
- ENERGISA Rate Types. 13 January 2023. Available online: https://www.energisa.com.br/Paginas/informacoes/taxas-prazos-e-normas/tipostarifas.aspx (accessed on 13 January 2023).
- PBGÁS Gas Company of Paraíba. 2022. Available online: https://pbgas.com.br/tarifas/ (accessed on 13 November 2022).
- IBM ILOG CPLEX Optimization Studio. Available online: https://www.ibm.com/products/ilog-cplex-optimization-studio (accessed on 16 December 2024).
- EPE Ten-Year Plan for the Expansion of Electricity 2032 in Brazil. Available online: https://www.epe.gov.br/pt/publicacoes-dados-abertos/publicacoes/plano-decenal-de-expansao-de-energia-2032 (accessed on 29 December 2024).
- Melo, F.M.; Pina, E.A.; Carvalho, M. Optimization and sensitivity analyses of a combined cooling, heat and power system for a residential building. Therm. Sci. 2021, 25, 3969–3986. [Google Scholar] [CrossRef]
- Mohammadi, M.; Mohammadi, H. Optimization of the microcombined heat and power systems considering objective functions, components andoperation strategies by an integrated approach. Energy Convers. Manag. 2020, 208, 17. [Google Scholar] [CrossRef]
- Jeon, S.; Bae, S. Integrated optimization for sizing, placement, and energy management of hybrid energy storage systems in renewable power systems. J. Energy Storage 2025, 106, 114793. [Google Scholar] [CrossRef]
- Queiroz, F.A.O.; Morte IB, B.; Borges, C.L.; Morgado, C.R.; de Medeiros, J.L. Beyond clean and affordable transition pathways: A review of issues and strategies to sustainable energy supply. Int. J. Electr. Power Energy Syst. 2024, 155, 109544. [Google Scholar]
- Delgado DB, M. Study of the Multigeneration Potential for Residential and Commercial Consumer Units in Brazil. Doctoral Thesis, . Graduate Program in mechanical Engineering, Federal University of Paraíba, 2023. Available online: https://repositorio.ufpb.br/jspui/bitstream/123456789/27982/1/DanielleBandeiraDeMelloDelgado_Tese.pdf (accessed on 29 December 2024).
Utilities | Description |
---|---|
EE | Electricity |
GN | Natural gas |
DI | Diesel |
BM | Biomass |
AR | Cooling water |
AA | Ambient air |
Demands | Description |
EE | Electricity |
AQ | Hot water |
AG | Chilled water |
Equipment | Description |
---|---|
RDEE | Electric grid |
SIFV | Photovoltaic system (panels + inverters) |
GDGN | Natural gas generator |
GDDI | Diesel generator |
CADI | Hot water boiler that consumes diesel |
CAGN | Hot water boiler that consumes natural gas |
CABM | Hot water boiler that consumes biomass |
CAEE | Hot water boiler that consumes electricity |
CHAQ | Single-effect absorption chiller |
CHEE | Mechanical chiller |
TRAR | Cooling tower |
TCAQ | Heat exchanger (hot water − cooling water) |
CCOM | Fuel cell |
SITS | Thermosolar system (solar collectors + boiler) |
Technical Coefficients | Equipment | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
EE | DI | BM | GN | AQ | AG | VA | AR | AA | Investment Cost Cinv (103 BRL) | O&M (BRL/h) | Nominal Power (MW) | |
RDEE | 1.00 | 0.00 | 0.00 | 0.07 | ||||||||
SIFV | 1.00 | 13.36 | 0.50 | 0.45 | ||||||||
GDGN | 1.00 | −3.70 | 2.95 | 2.12 | 158.10 | 3.69 | 0.17 | |||||
GDDI | 1.00 | −2.03 | 1.45 | 1.48 | 73.05 | 1.70 | 0.33 | |||||
CADI | −1.09 | 1.00 | 49.30 | 1.15 | 0.38 | |||||||
CAGN | −1.09 | 1.00 | 49.30 | 1.15 | 0.38 | |||||||
CABM | −1.25 | 1.00 | 56.52 | 1.32 | 0.37 | |||||||
CAEE | −1.10 | 1.00 | 28.20 | 0.66 | 0.35 | |||||||
CHAQ | −0.01 | −1.26 | 1.00 | 2.23 | 150.00 | 3.50 | 0.10 | |||||
CHEE | −0.32 | 1.00 | 1.32 | 145.00 | 2.61 | 0.06 | ||||||
TRAR | −0.01 | −0.98 | 1.00 | 23.99 | 0.56 | 0.36 | ||||||
TCAQ | −1.10 | 1.00 | 7.40 | 0.17 | 0.40 | |||||||
CCOM | 1.00 | −2.75 | 1.03 | 3500.00 | 81.67 | 0.20 | ||||||
SITS | 1.00 | 10.52 | 0.50 | 0.02 |
Equipment/Utility | Economic Optimization | |
---|---|---|
Reference System | Optimal System | |
Electric grid | 1 (300 kW) | 1 (300 kW) |
Natural gas boiler | 1 (385 W) | - |
Biomass boiler | - | 1 (370 kW) |
Mechanical chiller | 1 (60 kW) | 1 (60 kW) |
Cooling tower | 1 (360 kW) | 1 (360 kW) |
PV panels | - | 102 panels (0.455 kW) |
Energy flows (MWh/year) | ||
Imported electricity | 824.66 | 641.04 |
Purchase of natural gas | 238.83 | - |
Purchase of biomass | - | 345.32 |
Annual Costs (BRL/year) | ||
Capital costs | 27,702 | 47,510 |
O&M | 25,974 | 29,575 |
Purchase of electricity | 294,294 | 228,620 |
Purchase of natural gas | 107,806 | - |
Purchase of biomass | - | 26,935 |
Total Annual Cost (BRL/year) | 455,776 | 332,640 |
Progress Report | Year | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | |
Solution (s) | 0.47 | 0.55 | 0.47 | 0.56 | 0.66 | 0.81 | 0.83 | 0.85 | 0.59 | 0.73 | 0.71 |
Interactions | 1421 | 1444 | 1403 | 1418 | 1453 | 1429 | 1379 | 1397 | 1439 | 1432 | 1419 |
GAP | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% |
Economic Optimization | |||||||||||
Equip. | Number of Equipment | ||||||||||
RDEE | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
CABM | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
CHEE | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
TRAR | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
SIFV | 102 | 104 | 108 | 111 | 115 | 117 | 122 | 126 | 128 | 133 | 137 |
Annual Energy Flows (MWh/year) | |||||||||||
Imported electricity | 641.04 | 661.16 | 680.96 | 704.27 | 724.66 | 748.52 | 771.33 | 797.30 | 822.28 | 847.41 | 874.49 |
Purchase biomass | 345.32 | 345.32 | 345.32 | 345.32 | 345.32 | 345.32 | 345.32 | 345.32 | 345.32 | 345.32 | 345.32 |
Annual Costs (BRL/year) | |||||||||||
Capital costs | 47,509.81 | 47,877.05 | 48,611.51 | 49,162.36 | 49,896.82 | 50,264.05 | 51,182.13 | 51,916.60 | 52,283.83 | 53,201.91 | 53,936.37 |
O&M | 29,574.64 | 29,586.16 | 29,609.20 | 29,626.48 | 29,649.52 | 29,661.04 | 29,689.84 | 29,712.88 | 29,724.40 | 29,753.20 | 29,776.24 |
Purchase electricity | 228,599.51 | 235,965.51 | 242,838.51 | 251,150.51 | 258,421.51 | 266,928.51 | 275,065.51 | 284,325.51 | 293,321.51 | 302,194.51 | 311,852.51 |
Purchase biomass | 26,934.90 | 26,934.90 | 26,934.90 | 26,934.90 | 26,934.90 | 26,934.90 | 26,934.90 | 26,934.90 | 26,934.90 | 26,934.90 | 26,934.90 |
Annual Cost (BRL/year) | 332,618.86 | 340,363.61 | 347,994.11 | 356,874.24 | 364,902.75 | 373,788.50 | 382,872.38 | 392,889.88 | 402,174.63 | 412,084.51 | 422,500.02 |
Economic Optimization | ||
---|---|---|
With biomass boiler | Without biomass boiler | |
Solution time | 0.63 s | 0.63 s |
No. of interactions | 1408 | 1594 |
GAP | 0.00% | 0.00% |
Equip. | Number of equipment | |
Electric grid | 1 (300 kW) | 1 (300 kW) |
Biomass boiler | 1 (370 kW) | - |
Electric boiler | - | 1 (348 kW) |
Absorption chiller | - | 1 (100 kW) |
Mechanical chiller | 1 (60 kW) | 1 (60 kW) |
Cooling tower | 1 (360 kW) | 1 (360 kW) |
PV system | 102 modules (0.455 kW) | - |
Thermosolar system | 70 collectors (2 kW) | |
Annual Energy Flows (MWh/year) | ||
Imported electricity | 641.04 | 765.62 |
Purchased biomass | 345.32 | - |
Annual Costs (BRL/year) | ||
Capital costs | 47,510 | 85,725 |
O&M | 29,575 | 26,429 |
Purchase electricity | 228,600 | 273,028 |
Purchase biomass | 26,935 | - |
Annual Cost (BRL/year) | 332,620 | 385,182 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delgado, D.B.M.; Costa e Silva Neto, I.; Carvalho, M. Strategies for Multigeneration in Residential Energy Systems: An Optimization Approach. Sustainability 2025, 17, 1016. https://doi.org/10.3390/su17031016
Delgado DBM, Costa e Silva Neto I, Carvalho M. Strategies for Multigeneration in Residential Energy Systems: An Optimization Approach. Sustainability. 2025; 17(3):1016. https://doi.org/10.3390/su17031016
Chicago/Turabian StyleDelgado, Danielle Bandeira Mello, Iderval Costa e Silva Neto, and Monica Carvalho. 2025. "Strategies for Multigeneration in Residential Energy Systems: An Optimization Approach" Sustainability 17, no. 3: 1016. https://doi.org/10.3390/su17031016
APA StyleDelgado, D. B. M., Costa e Silva Neto, I., & Carvalho, M. (2025). Strategies for Multigeneration in Residential Energy Systems: An Optimization Approach. Sustainability, 17(3), 1016. https://doi.org/10.3390/su17031016