The Living Water of Policies: How Can Water Rights Trading Pilots Promote the Net Carbon Sink Intensity of the Planting Industry
Abstract
1. Introduction
2. Theoretical Analysis
2.1. Direct Effect Analysis
2.2. Indirect Effect Analysis
2.2.1. Reducing the Proportion of Food Crop Cultivation
2.2.2. Enhancing the Intensity of Irrigation Water Use
2.2.3. Reduce the Use of Chemical Fertilizers
3. Research Design and Data Sources
3.1. Selection and Explanation of Main Variables
3.1.1. Explained Variable
3.1.2. Core Explanatory Variable: Implementation Status of the Water Rights Trading Policy
3.1.3. Control Variables
3.2. Empirical Model Specification
3.2.1. PSM-DID Model
3.2.2. Mechanism Testing Model
3.2.3. Spatial Durbin Test Model
3.3. Data Sources and Descriptive Statistics of Variables
4. Empirical Results and Analysis
4.1. Analysis of Benchmark Regression Results
4.2. DID Estimation Validity Test
4.2.1. Parallel Trend Test Analysis
4.2.2. Placebo Test Analysis
4.3. Robustness Test
4.3.1. Propensity Score Matching Test
4.3.2. Other Robustness Tests
5. Further Analysis
5.1. Mechanism Analysis
5.2. Heterogeneity Analysis
5.2.1. Heterogeneity of Water Resource Endowments
5.2.2. Heterogeneity of Income Levels
5.2.3. Heterogeneity Across Eastern, Central, and Western Regions
5.3. Spatial Spillover Effect Analysis
6. Conclusions, Implications, and Limitations
6.1. Conclusions
6.2. Implications
6.3. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singh, J.; Kumar, S. Responses of soil microbial community structure and greenhouse gas fluxes to crop rotations that include winter cover crops. Geoderma 2020, 385, 114843. [Google Scholar]
- Yun, T.; Junbiao, Z.; Bo, L. Agricultural carbon emissions in China: Calculation, spatial-temporal comparison and decoupling effects. Resour. Sci. 2012, 34, 2097–2105. [Google Scholar]
- Li, J.; Shen, J.; Song, J. Analysis of the spatial and temporal evolution and drivers of net carbon efficiency of plantations in China. J. Clean. Prod. 2024, 445, 141346. [Google Scholar] [CrossRef]
- Liu, D.; Yu, N.; Wan, H.; Ou, J.; Yao, S.; Wang, Q. Water rights trading and corporate productivity: Evidence from a quasi-natural experiment of China’s pilot policy. J. Econ. Surv. 2024, 38, 1846–1872. [Google Scholar] [CrossRef]
- Ministry of Water Resources. Notice on Issuing the Interim Measures for the Management of Water Rights Trading. Available online: http://www.mwr.gov.cn/zwgk/gknr/201604/t20160420_1441989.html (accessed on 25 April 2016).
- Ministry of Water Resources; National Development and Reform Commission; Ministry of Finance. Guiding Opinions on Promoting Water Rights Reform. Available online: http://www.gov.cn/zhengce/zhengceku/2022-09/01/content_5707831.htm (accessed on 26 August 2022).
- General Office of the CPC Central Committee; General Office of the State Council. Opinions on Improving the Market-Oriented Allocation System for Resource and Environmental Elements. Available online: https://www.gov.cn/zhengce/202505/content_7025725.htm (accessed on 29 May 2025).
- Shen, J.; Wu, F.; Yu, Q.; Zhang, Z.; Zhang, L.; Zhu, M.; Fang, Z. Standardization of exchanged water with different properties in China’s water rights trading. Int. J. Environ. Res. Public Health 2020, 17, 1730. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.Y.; Wu, F.P.; Li, F.; Xu, X. Dynamic adjustment model of the water rights trading price based on water resource scarcity value analysis. Int. J. Environ. Res. Public Health 2021, 18, 2281. [Google Scholar] [PubMed]
- Zhang, H.; Zhou, Q.; Zhang, C. Evaluation of agricultural water-saving effects in the context of water rights trading: An empirical study from China’s water rights pilots. J. Clean. Prod. 2021, 313, 127725. [Google Scholar] [CrossRef]
- Lin, F.; Wu, F. Can water rights trading scheme promote regional water conservation in China? Evidence from a time-varying DID analysis. Int. J. Environ. Res. Public Health 2020, 17, 6679. [Google Scholar]
- Gohar, A.A.; Ward, F.A. Gains from expanded irrigation water trading in Egypt: An integrated basin approach. Ecol. Econ. 2010, 69, 2535–2548. [Google Scholar] [CrossRef]
- Lyu, H.; Xing, H.; Duan, T. Optimizing water resource allocation for food security: An evaluation of China’s water rights trading policy. Sustainability 2024, 16, 10443. [Google Scholar] [CrossRef]
- Pan, J.; Peng, J.; Yang, X.; Xuan, S. Does water rights trading promote resource utilization efficiency and green growth? Evidence from China’s resources trading policy. Resour. Policy 2023, 86, 104235. [Google Scholar] [CrossRef]
- Qi, M.; Wei, S.; Lin, T.; Yang, N.; Liu, Y. Water rights and firm productivity: Evidence from the water rights trading policy in China. Appl. Econ. 2025, 57, 6650–6664. [Google Scholar] [CrossRef]
- Huang, J.; Sun, Z.; Zhong, P. The spatial disequilibrium and dynamic evolution of the net agriculture carbon effect in China. Sustainability 2022, 14, 13975. [Google Scholar] [CrossRef]
- Li, J.; Ning, J.; Song, J.; Chen, X. Analysis of the spatial mismatch pattern of net carbon in agriculture and its influencing factors. Environ. Impact Assess. Rev. 2024, 106, 107522. [Google Scholar] [CrossRef]
- Cui, Y.; Khan, S.U.; Deng, Y.; Zhao, M. Regional difference decomposition and its spatiotemporal dynamic evolution of Chinese agricultural carbon emission: Considering carbon sink effect. Environ. Sci. Pollut. Res. 2021, 28, 38909–38928. [Google Scholar] [CrossRef]
- Guo, H.; Xie, S.; Pan, C. The impact of planting industry structural changes on carbon emissions in the three northeast provinces of China. Int. J. Environ. Res. Public Health 2021, 18, 705. [Google Scholar]
- Zhu, Y.; Zhang, Y.; Piao, H. Does agricultural mechanization improve the green total factor productivity of China’s planting industry? Energies 2022, 15, 940. [Google Scholar] [CrossRef]
- Alchian, A.; Demsetz, H. The property right paradigm. J. Econ. Hist. 1973, 33, 16–27. [Google Scholar] [CrossRef]
- Liu, X.; Wang, S.; Zhuang, Q.; Jin, X.; Bian, Z.; Zhou, M.; Zhang, Y. A review on carbon source and sink in arable land ecosystems. Land 2022, 11, 580. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, Q. Assessing ecological infrastructure investments—A case study of water rights trading in Lu’an City, Anhui Province, China. Int. J. Environ. Res. Public Health 2022, 19, 2443. [Google Scholar] [CrossRef] [PubMed]
- Klozen, W.H. Water markets between Mexican water user associations. Water Policy 1998, 1, 437–455. [Google Scholar] [CrossRef]
- Chen, Y.; Cai, M.; Zhang, Z.; Li, M. The impact of land transfer-in on crop planting structure and its heterogeneity among farmers: Evidence from China. Land 2024, 13, 87. [Google Scholar] [CrossRef]
- Sun, S.K.; Wu, P.T.; Wang, Y.B.; Zhao, X.N. Impact of changing crop pattern on the regional agricultural water productivity. J. Agric. Sci. 2015, 153, 767–778. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.; Huang, J.; Yan, T.; Sun, T. Growing water scarcity, food security and government responses in China. Global Food Sec. 2017, 14, 9–17. [Google Scholar] [CrossRef]
- Li, C.; Zhou, Y. Non-agricultural use of water resources and the vulnerability of food production. J. South China Agric. Univ. (Soc. Sci. Ed.) 2023, 22, 25–37. [Google Scholar]
- Zhu, M.; Wu, F.; Shen, J.; Bi, F. Water rights trading application to water-rich regions in southern China. J. Water Resour. Plan. Manag. 2021, 147, 05021013. [Google Scholar] [CrossRef]
- Liu, D.; Yu, N.; Wan, H. Does water rights trading affect corporate investment? The role of resource allocation and risk mitigation channels. Econ. Model. 2022, 117, 106063. [Google Scholar] [CrossRef]
- Shi, C.; Li, L.; Chiu, Y.-H.; Pang, Q.; Zeng, X. Spatial differentiation of agricultural water resource utilization efficiency in the Yangtze River Economic Belt under changing environment. J. Clean. Prod. 2022, 346, 131200. [Google Scholar] [CrossRef]
- Sapkota, A.; Haghverdi, A.; Avila, C.C.E.; Ying, S.C. Irrigation and greenhouse gas emissions: A review of field-based studies. Soil Syst. 2020, 4, 20. [Google Scholar] [CrossRef]
- Han, Z.; Hou, H.; Yao, X.; Qian, X.; Zhou, M. Substituting partial chemical fertilizers with bio-organic fertilizers to reduce greenhouse gas emissions in water-saving irrigated rice fields. Agronomy 2024, 14, 544. [Google Scholar] [CrossRef]
- Fangueiro, D.; Becerra, D.; Albarrán, Á.; Peña, D.; Sanchez-Llerena, J.; Rato-Nunes, J.M.; López-Piñeiro, A. Effect of tillage and water management on GHG emissions from Mediterranean rice growing ecosystems. Atmos. Environ. 2017, 150, 303–312. [Google Scholar]
- Gillabel, J.; Denef, K.; Brenner, J.; Merckx, R.; Paustian, K. Carbon sequestration and soil aggregation in center-pivot irrigated and dryland cultivated farming systems. Soil Sci. Soc. Am. J. 2007, 71, 1020–1028. [Google Scholar] [CrossRef]
- Trost, B.; Prochnow, A.; Drastig, K.; Meyer-Aurich, A.; Ellmer, F.; Baumecker, M. Irrigation, soil organic carbon and N2O emissions: A review. Agron. Sustain. Dev. 2013, 33, 733–749. [Google Scholar] [CrossRef]
- She, W.; Wu, Y.; Huang, H.; Chen, Z.D.; Cui, G.X.; Zheng, H.B.; Guan, C.Y.; Chen, F. Integrative analysis of carbon structure and carbon sink function for major crop production in China’s typical agriculture regions. J. Clean. Prod. 2017, 162, 702–708. [Google Scholar] [CrossRef]
- Smith, K.R.; Waring, B.G. Broad-scale patterns of soil carbon (C) pools and fluxes across semiarid ecosystems are linked to climate and soil texture. Ecosystems 2018, 22, 742–753. [Google Scholar] [CrossRef]
- Yue, K.; Peng, Y.; Peng, C.; Yang, W.; Peng, X.; Wu, F. Stimulation of terrestrial ecosystem carbon storage by nitrogen addition: A meta-analysis. Sci. Rep. 2016, 6, 19895. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liu, C.; Zhang, J.; Liu, J.; Hu, W. Evolution trends in carbon emissions and sustainable development paths in China’s planting industry from the perspective of carbon sources. Sustainability 2025, 17, 2772. [Google Scholar] [CrossRef]
- Yang, N.; Sun, X.; Qi, Q. Impact of factor quality improvement on agricultural carbon emissions: Evidence from China’s high-standard farmland. Front. Environ. Sci. 2022, 10, 989684. [Google Scholar] [CrossRef]
- Tang, F.; Tan, J.; Qiu, F.; Gu, S. How agricultural technological innovation influences carbon emissions: Insights from China. Front. Sustain. Food Syst. 2025, 9, 1596762. [Google Scholar] [CrossRef]
- Liu, X.; Ye, Y.; Ge, D.; Wang, Z.; Liu, B. Study on the evolution and trends of agricultural carbon emission intensity and agricultural economic development levels—Evidence from Jiangxi Province. Sustainability 2022, 14, 14265. [Google Scholar] [CrossRef]
- Wan, Y.; Yang, J.; Duan, C. Research on the spatial-temporal patterns of carbon effects and carbon-emission reduction strategies for farmland in China. Sustainability 2023, 15, 10314. [Google Scholar]
- Min, J.; Hu, H. Estimation of greenhouse gas emissions from agricultural production in China. China Popul. Resour. Environ. 2012, 22, 21–27. [Google Scholar]
- Liu, D.; Zhu, X.; Wang, Y. China’s agricultural green total factor productivity based on carbon emission: An analysis of evolution trend and influencing factors. J. Clean. Prod. 2021, 278, 123692. [Google Scholar] [CrossRef]
- Yan, Z.; Hou, F.; Hou, F. Energy balances and greenhouse gas emissions of agriculture in the Shihezi Oasis of China. Atmosphere 2020, 11, 781. [Google Scholar] [CrossRef]
- Dachraoui, M.; Sombrero, A. Effect of tillage systems and different rates of nitrogen fertilisation on the carbon footprint of irrigated maize in a semiarid area of Castile and Leon, Spain. Soil Till. Res. 2020, 196, 104472. [Google Scholar] [CrossRef]
- Zhu, L.; Li, W.; Huang, Y.; Li, J. Spatiotemporal evolution and features of net carbon sink of farmland vegetation in Chongqing, China. Int. J. Sustain. Dev. Plan. 2020, 20, 219–226. [Google Scholar] [CrossRef]
- Torn, M.S.; Swanston, C.W.; Castanha, C.; Trumbore, S.E. Storage and turnover of organic matter in soil. In Biophysico-Chemical Processes Involving Natural Nonliving Organic Matter in Environmental Systems; Wiley Publishing: Hoboken, NJ, USA, 2009; pp. 219–272. [Google Scholar]
- Xu, Q.; Zhang, G. The spatial spillover effect of agricultural mechanization on agricultural carbon emission intensity: An empirical study based on panel data from 282 cities. China Popul. Resour. Environ. 2022, 32, 23–33. [Google Scholar]
- Intergovernmental Panel on Climate Change. Special Report on Climate Change and Land. In Proceedings of the Intergovernmental Panel on Climate Change (IPCC), Geneva, Switzerland, 2–6 August 2019; IPCC: Georgia Batumi, Switzerland, 2019. [Google Scholar]
- West, T.O.; Post, W.M. Soil organic carbon sequestration rates by tillage and crop rotation: A global data analysis. Soil Sci. Soc. Am. J. 2002, 66, 1930–1946. [Google Scholar] [CrossRef]
- Chen, X.; Shuai, C.; Wu, Y.; Zhang, Y. Analysis on the carbon emission peaks of China’s industrial, building, transport, and agricultural sectors. Sci. Total Environ. 2020, 709, 135768. [Google Scholar] [CrossRef]
- Zhou, J.; Chen, C.; He, Z.; Tang, J. Carbon emissions and economic growth in the planting industry: Evidence from China. Sustainability 2025, 17, 2570. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, S. China’s Agricultural Carbon Emission: Structure, Efficiency and Its Determinants. Issues Agric. Econ. 2014, 35, 18–26+110. [Google Scholar]
- Jia, L.; Wang, M.; Yang, S.; Zhang, F.; Wang, Y.; Li, P.; Wang, M. Analysis of agricultural carbon emissions and carbon sinks in the Yellow River Basin based on LMDI and Tapio decoupling models. Sustainability 2024, 16, 468. [Google Scholar] [CrossRef]
- Zhu, C.; Yang, S.; Liu, P. Study on the factors influencing the carbon emissions of Shaanxi Province’s transportation industry in China. Sustainability 2022, 14, 8610. [Google Scholar] [CrossRef]
- Jin, B.; Cui, C.; Wen, L.; Shi, R.; Zhao, M. Regional differences and convergence of agricultural carbon efficiency in China: Embodying carbon sink effect. Ecol. Indic. 2024, 169, 112929. [Google Scholar] [CrossRef]
- Zhu, B.; Zhang, M.; Huang, L.; Wang, P.; Su, B.; Wei, Y.M. Exploring the effect of carbon trading mechanism on China’s green development efficiency: A novel integrated approach. Energy Econ. 2020, 85, 104601. [Google Scholar]
- Guo, X.; Xiao, B.; Song, L. Emission reduction and energy-intensity enhancement: The expected and unexpected consequences of China’s coal consumption constraint policy. J. Clean. Prod. 2020, 271, 122691. [Google Scholar] [CrossRef]
- Chang, G.; Liu, H.; Yin, Z.; Wang, J.; Li, K.; Gao, T. Agricultural production can be a carbon sink: A case study of Jinchang City. Sustainability 2023, 15, 12872. [Google Scholar] [CrossRef]
- Zhang, X.; Shen, M.; Luan, Y.; Cui, W.; Lin, X. Spatial evolutionary characteristics and influencing factors of urban industrial carbon emission in China. Int. J. Environ. Res. Public Health 2022, 19, 11227. [Google Scholar] [PubMed]
- Guo, J.; Zhou, D. The impact of national innovative city policy on urban green development performance: Based on the mediating role of technological innovation and resource dependence. Soft Sci. 2021, 35, 85–92. [Google Scholar]
- Greening, L.A.; Greene, D.L.; Difiglio, C. Energy efficiency and consumption—The rebound effect—A survey. Energy Policy 2000, 28, 389–401. [Google Scholar] [CrossRef]
- Chen, L.; Peng, J.; Chen, Y.; Cao, Q. Will agricultural infrastructure construction promote land transfer? Analysis of China’s high-standard farmland construction policy. Sustainability 2024, 16, 9234. [Google Scholar] [CrossRef]
- Li, R.; Zhou, W.; Guo, S.; Song, J.; Xu, D. The impact of high-standard farmland construction on farmland abandonment by farm households: Evidence from rural China. Appl. Econ. 2025, 1–17. [Google Scholar] [CrossRef]
- Liu, W.; Fei, X.; Wang, C. Study on the influencing factors of excessive fertilizer application behavior. Ecol. Rural Environ. 2018, 8, 726–732. [Google Scholar]
- Xu, H.; Song, J. Drivers of the irrigation water rebound effect: A case study of Hetao irrigation district in the Yellow River basin, China. Agric. Water Manag. 2022, 266, 107567. [Google Scholar] [CrossRef]
- Song, J.; Guo, Y.; Wu, P.; Sun, S. The agricultural water rebound effect in China. Ecol. Econ. 2018, 146, 497–506. [Google Scholar] [CrossRef]
- Sheng, J.; Zhang, R.; Yang, H.; Chen, C. Water markets and water rebounds: China’s water rights trading policy. Ecol. Econ. 2025, 229, 108471. [Google Scholar]
- Crase, L.; O’Keefe, S.; Dollery, B. Talk is cheap, or is it? The cost of consulting about uncertain reallocation of water in the Murray–Darling Basin, Australia. Ecol. Econ. 2013, 88, 206–213. [Google Scholar] [CrossRef]
- Lu, S.; Lian, Z.; Sun, H.; Wu, X.; Bai, X.; Wang, C. Simulating trans-boundary watershed water resources conflict. Res. Policy 2021, 73, 102139. [Google Scholar]
- Orlova, L.V.; Safin, R.I.; Knurova, G.V.; Platonov, V.I.; Vasenev, I.I.; Ermolaeva, D.R.; Gerasimov, E.S. Carbon footprint of crop production using soil-protective and resource-saving farming technologies, Russia. Zemledelie 2024, 7, 9–13. [Google Scholar]


| Water Rights Trading | Net Carbon Sink in Agriculture |
|---|---|
| The goals and issues of water rights trading [8] | The calculation methods and spatio-temporal characteristics of net carbon sinks in agriculture [16] |
| The formation mechanism of water rights trading prices [9] | Influencing factors of net carbon sinks in agriculture [17] |
| The economic effects of water rights trading (including water conservation [10,11], farmers’ income increase [12], and grain production [13]) | Measurement and spatio-temporal characteristics of net carbon sinks in the planting industry [18] |
| The green development effect of water rights trading on agriculture [14] | The driving factors of net carbon sinks in the planting industry (including planting structure [19] and agricultural mechanization [20]) |
| Carbon Source | Carbon Emissions Coefficient | Reference Sources |
|---|---|---|
| Diesel Oil | 0.59 kg/kg | IPCC2013 [52] |
| Chemical Fertilizers | 0.89 kg/kg | Oak Ridge National Laboratory [53] |
| Pesticides | 4.93 kg/kg | |
| Agricultural Plastic Films | 5.18 kg/kg | Agricultural Resource and Ecological Environment Research Institute, Nanjing Agricultural University [54] |
| Irrigation | 266.48 kg/hm2 | Zhou [55] |
| Tillage | 312.60 kg/km2 | Zhang [56] |
| Variety | Economic Coefficient | Water Content (%) | Carbon Absorption Rate | Coefficient Value |
|---|---|---|---|---|
| Rice | 0.45 | 12 | 0.414 | 0.8096 |
| Wheat | 0.4 | 12 | 0.485 | 1.0670 |
| Corn | 0.4 | 13 | 0.471 | 1.0244 |
| Beans | 0.34 | 13 | 0.45 | 1.1515 |
| Tubers | 0.7 | 70 | 0.423 | 0.1813 |
| Cotton | 0.1 | 8 | 0.45 | 4.1400 |
| Rapeseed | 0.25 | 10 | 0.450 | 1.6200 |
| Peanut | 0.43 | 10 | 0.45 | 0.9419 |
| Vegetable | 0.6 | 90 | 0.450 | 0.0750 |
| Sugar cane | 0.5 | 50 | 0.450 | 0.4500 |
| Beet | 0.7 | 75 | 0.407 | 0.1454 |
| Tobacco | 0.55 | 85 | 0.450 | 0.1227 |
| Variable Name | Variable Symbol | Variable Representation | Obs | Mean | Std. Dev. | Min | Max |
|---|---|---|---|---|---|---|---|
| Net carbon sink intensity | Nck | (Carbon sink—carbon emission)/total sown area of crops(T·hm−2) | 4365 | 6.542 | 6.175 | −0.199 | 102.932 |
| Water rights trading policy | Did | Whether it is a transaction item after 2014 and whether it is a pilot city for water rights trading | 4365 | 0.199 | 0.400 | 0.000 | 1.000 |
| Industrial structure | Industry | Output value of the primary industry/GDP(%) | 4365 | 12.488 | 8.184 | 0.030 | 62.199 |
| The logarithm of the total water resources | ln_water | Logarithm of total water resources(×104 m3) | 4365 | 12.779 | 1.210 | 9.057 | 17.165 |
| The logarithm of rural residents’ income | ln_income | The logarithm of per capita disposable income of rural residents(yuan) | 4365 | 9.413 | 0.524 | 7.712 | 10.920 |
| The intensity of agricultural machinery usage | Machine | Total power of agricultural machinery/total sown area of crops(×104 w·hm−2) | 4365 | 7.377 | 6.692 | 0.000 | 118.491 |
| The total number of agricultural patent applications | Tech | Total number of agricultural patent applications (one hundred pieces) | 4365 | 2.493 | 4.676 | 0.000 | 64.120 |
| The number of agricultural employees | Employ | The proportion of people employed in the primary industry (%) | 4365 | 2.428 | 6.549 | 0.000 | 73.969 |
| The proportion of food crop cultivation | Grain | Sown area of food crops/total sown area of crops (%) | 4365 | 65.980 | 17.778 | 0.000 | 99.471 |
| The logarithm of the intensity of irrigation water usage | ln_irrigation | Water consumption for farmland irrigation/total sown area of crops (m3·hm−2) | 4365 | 7.564 | 0.875 | 1.337 | 10.598 |
| The amount of chemical fertilizer applied per unit sown area | Fertilizer | Fertilizer usage (×104 t × 103 hm−2) | 4275 | 1.793 | 6.442 | 0.041 | 120.869 |
| Variable | (1) | (2) |
|---|---|---|
| Did | 0.953 *** (0.295) | 1.110 *** (0.285) |
| Industry | 0.056 ** (0.025) | |
| ln_water | −0.184 (0.132) | |
| ln_income | −2.490 ** (0.963) | |
| Machine | −0.174 *** (0.023) | |
| Tech | 0.063 ** (0.028) | |
| Employ | 0.036 *** (0.009) | |
| Cons | 6.298 *** (0.099) | 28.198 *** (9.309) |
| N | 4365 | 4365 |
| R2 | 0.038 | 0.132 |
| City | Yes | Yes |
| Year | Yes | Yes |
| Variable | Nearest-Neighbor Matching Within Caliper (After Matching) | Kernel Matching (After Matching) | ||||
|---|---|---|---|---|---|---|
| t-Value | p-Value | % Bias | t-Value After Matching | p-Value | % Bias | |
| Industry | 0.65 | 0.517 | 2.4 | 0.32 | 0.753 | 1.2 |
| ln_water | −0.41 | 0.681 | −1.7 | −0.84 | 0.399 | −3.3 |
| ln_income | −1.27 | 0.203 | −4.9 | −0.57 | 0.571 | −2.2 |
| Machine | 1.23 | 0.218 | 3.6 | 0.30 | 0.768 | 0.9 |
| Tech | −0.93 | 0.352 | −2.8 | −0.95 | 0.343 | −2.9 |
| Employ | 0.36 | 0.718 | 1.1 | −0.02 | 0.981 | −0.1 |
| Variable | (1) | (2) | (3) | (4) | (5) | (6) |
|---|---|---|---|---|---|---|
| Caliper Nearest-Neighbor Matching | Kernel Matching | Exclude Municipalities Directly under the Central Government | Adjust the Year | Winsorization | Replace the Dependent Variable | |
| Nck | Nck | Nck | Nck | Nck | Nc | |
| Did | 1.204 *** | 1.112 *** | 1.100 *** | 1.102 *** | 1.076 *** | 6.512 ** |
| (0.290) | (0.285) | (0.283) | (0.270) | (0.269) | (2.979) | |
| Controls | yes | yes | yes | yes | yes | yes |
| Cons | 31.541 *** | 30.179 *** | 31.010 *** | 22.870 ** | 28.444 *** | 318.560 *** |
| (9.623) | (8.605) | (8.461) | (9.214) | (7.472) | (98.348) | |
| City | yes | yes | yes | yes | yes | yes |
| Year | yes | yes | yes | yes | yes | yes |
| N | 3230 | 4362 | 4305 | 2910 | 4365 | 4365 |
| R2 | 0.113 | 0.132 | 0.133 | 0.095 | 0.222 | 0.188 |
| Variable | (1) | (2) | (3) | (4) | (5) | (6) |
|---|---|---|---|---|---|---|
| Grain | Nck | Ln_Irrigation | Nck | Fertilizer | Nck | |
| Did | −1.075 *** | 1.028 *** | 0.010 | 1.135 *** | −0.291 ** | 0.920 *** |
| (0.379) | (0.145) | (0.027) | (0.273) | (0.128) | (0.149) | |
| Grain | −0.075 *** | |||||
| (0.006) | ||||||
| ln_irrigation | −2.500 ** | |||||
| (0.995) | ||||||
| Chemistry | −0.118 *** | |||||
| (0.018) | ||||||
| Control Variables | Yes | Yes | Yes | Yes | Yes | Yes |
| Constant Term | 81.471 *** | 36.354 *** | 7.608 *** | 49.223 *** | 36.342 *** | 33.748 *** |
| (12.535) | (4.828) | (0.992) | (11.825) | (4.158) | (4.893) | |
| City | Yes | Yes | Yes | Yes | Yes | Yes |
| Year | Yes | Yes | Yes | Yes | Yes | Yes |
| Obs | 4365 | 4365 | 4365 | 4365 | 4275 | 4275 |
| R2 | 0.026 | 0.165 | 0.280 | 0.194 | 0.043 | 0.144 |
| Sobel Z-statistic | 2.762 | −0.648 | 2.146 | |||
| Variable | (1) | (2) | (3) | (4) | (5) | (6) |
|---|---|---|---|---|---|---|
| Low Water Resources | Medium Water Resources | High Water Resources | Low Income | Middle Income | High Income | |
| Nck | Nck | Nck | Nck | Nck | Nck | |
| Did | 1.051 *** | 1.039 * | 1.161 * | 0.335 | 0.696 *** | 6.813 *** |
| (0.301) | (0.550) | (0.598) | (0.228) | (0.216) | (1.979) | |
| Control Variables | Yes | Yes | Yes | Yes | Yes | Yes |
| Constant Term | 23.026 *** | 40.741 *** | 22.125 | 7.679 *** | 5.930 *** | 6.564 *** |
| (7.180) | (13.480) | (16.699) | (1.405) | (1.718) | (1.371) | |
| City | Yes | Yes | Yes | Yes | Yes | Yes |
| Year | Yes | Yes | Yes | Yes | Yes | Yes |
| Observations | 1455 | 1455 | 1455 | 1455 | 1455 | 1455 |
| R2 | 0.114 | 0.194 | 0.147 | 0.520 | 0.070 | 0.201 |
| Variable | (1) | (2) | (3) |
|---|---|---|---|
| Eastern Region | Central Region | Western Region | |
| Nck | Nck | Nck | |
| Did | 2.911 *** | 0.972 *** | 0.044 |
| (0.860) | (0.265) | (0.301) | |
| Control Variables | Yes | Yes | Yes |
| Constant Term | 24.642 | 36.875 *** | 19.743 * |
| (15.409) | (11.060) | (10.777) | |
| City | Yes | Yes | Yes |
| Year | Yes | Yes | Yes |
| Observations | 1515 | 1500 | 1350 |
| R2 | 0.130 | 0.496 | 0.172 |
| Year | Moran’s I | Z | p-Value |
|---|---|---|---|
| 2009 | 0.157 | 4.993 | 0.000 |
| 2010 | 0.154 | 4.892 | 0.000 |
| 2011 | 0.126 | 4.116 | 0.000 |
| 2012 | 0.132 | 4.416 | 0.000 |
| 2013 | 0.130 | 4.413 | 0.000 |
| 2014 | 0.101 | 2.910 | 0.004 |
| 2015 | 0.147 | 4.966 | 0.000 |
| 2016 | 0.129 | 4.404 | 0.000 |
| 2017 | 0.106 | 2.890 | 0.004 |
| 2018 | 0.168 | 5.113 | 0.000 |
| 2019 | 0.193 | 5.858 | 0.000 |
| 2020 | 0.194 | 5.869 | 0.000 |
| 2021 | 0.187 | 5.733 | 0.000 |
| 2022 | 0.187 | 5.692 | 0.000 |
| 2023 | 0.188 | 5.668 | 0.000 |
| Test | LM Value | p-Value |
|---|---|---|
| LM-Lag Test | 178.866 | 0.000 |
| Robust LM-Lag Test | 22.792 | 0.000 |
| LM-Error Test | 165.820 | 0.000 |
| Robust LM-Error Test | 9.746 | 0.002 |
| (1) | (2) | (3) | (4) | |
|---|---|---|---|---|
| Variable | Main Regression | Direct Effect | Indirect Effect | Total Effect |
| Did | 0.616 ** | 0.656 ** | 0.675 * | 1.331 *** |
| (0.278) | (0.272) | (0.361) | (0.208) | |
| Industry | 0.081 *** | 0.080 *** | −0.015 | 0.065 ** |
| (0.017) | (0.016) | (0.025) | (0.026) | |
| ln_water | −0.081 | −0.078 | −0.217 | −0.295 * |
| (0.124) | (0.115) | (0.180) | (0.164) | |
| ln_income | −1.473 ** | −1.559 ** | −1.769 * | −3.328 *** |
| (0.664) | (0.626) | (0.952) | (0.816) | |
| Machine | −0.188 *** | −0.187 *** | 0.036 ** | −0.150 *** |
| (0.011) | (0.010) | (0.017) | (0.016) | |
| Tech | 0.001 *** | 0.001 *** | 0.001 ** | 0.001 *** |
| (0.000) | (0.000) | (0.000) | (0.000) | |
| Employ | 0.009 | 0.015 | 0.119 *** | 0.134 *** |
| (0.012) | (0.012) | (0.022) | (0.025) | |
| Rho | 0.195 *** | |||
| (0.020) | ||||
| Sigma2_e | 3.926 *** | |||
| (0.084) | ||||
| City | Yes | Yes | Yes | Yes |
| Year | Yes | Yes | Yes | Yes |
| Obs | 4365 | 4365 | 4365 | 4365 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Cui, S.; Ji, L.; Xing, Y. The Living Water of Policies: How Can Water Rights Trading Pilots Promote the Net Carbon Sink Intensity of the Planting Industry. Sustainability 2025, 17, 11343. https://doi.org/10.3390/su172411343
Zhao Y, Cui S, Ji L, Xing Y. The Living Water of Policies: How Can Water Rights Trading Pilots Promote the Net Carbon Sink Intensity of the Planting Industry. Sustainability. 2025; 17(24):11343. https://doi.org/10.3390/su172411343
Chicago/Turabian StyleZhao, Yuan, Shaobo Cui, Lin Ji, and Yunfeng Xing. 2025. "The Living Water of Policies: How Can Water Rights Trading Pilots Promote the Net Carbon Sink Intensity of the Planting Industry" Sustainability 17, no. 24: 11343. https://doi.org/10.3390/su172411343
APA StyleZhao, Y., Cui, S., Ji, L., & Xing, Y. (2025). The Living Water of Policies: How Can Water Rights Trading Pilots Promote the Net Carbon Sink Intensity of the Planting Industry. Sustainability, 17(24), 11343. https://doi.org/10.3390/su172411343
