A By-Product Blended Diet to Reduce Enteric Methane Emissions from Sheep in Argentina
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Ethics Statement
2.2. Experimental Setting
2.3. Treatments and Experimental Design
2.4. Body Weight, Dry Matter Intake, Nutrients Intake
2.5. Enteric Methane and Carbon Dioxide
2.6. Rumen Contents
2.7. Chemical Analyses
2.8. Statistical Analysis
3. Results
3.1. Average Daily Gains and Feed Intake
3.2. Enteric Methane and Carbon Dioxide Emission
3.3. Rumen Fermentation Parameters
4. Discussion
4.1. Feed Intake and Body Weight Responses
4.2. Enteric Methane Emissions
4.3. Implications for Sustainable Livestock Systens and Food Security in Argentina
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| CH4 | methane |
| DDGS | corn distillers’ grains |
| SFE | sunflower expeller |
| CON | control diet |
| BAR | diet containing DDGS, SFE and barley brewed grains |
| WHE | diet containing DDGS, SFE and wheat middlings |
| BW | body weight |
| DM | dry matter |
| DMI | dry matter intake |
| GE | gross energy |
| GEI | gross energy intake |
| ME | metabolizable energy |
| GHG | greenhouse gas |
| RC | respiration chamber |
| CP | crude protein |
| NDF | neutral detergent fiber |
| ADF | acid detergent fiber |
| EE | ether extract |
| ADG | average daily gain |
| VFA | volatile fatty acids |
| NH3-N | ammonia nitrogen |
| Ym | methane emission factor |
Appendix A

References
- Kalra, N.; Molina-Pérez, E.; Syme, J.; Esteves, F.; Cortés, H.; Rodríguez-Cervantes, M.T.; Espinoza-Juárez, V.M.; Jaramillo, M.; Baron, R.; Alatorre, C.; et al. The Benefits and Costs of Reaching Net Zero Emissions in Latin America and the Caribbean; Inter American Development Bank (IDB): Washington, DC, USA, 2024. [Google Scholar]
- FAO. Contribution of Terrestrial Animal Source Food to Healthy Diets for Improved Nutrition and Health Outcomes Key Messages; FAO: Rome, Italy, 2022. [Google Scholar]
- United Nations (UN). The Paris Agreement; United Nations: Paris, France, 2015. [Google Scholar]
- Crippa, M.; Solazzo, E.; Guizzardi, D.; Monforti-Ferrario, F.; Tubiello, F.N.; Leip, A. Food Systems Are Responsible for a Third of Global Anthropogenic GHG Emissions. Nat. Food 2021, 2, 198–209. [Google Scholar] [CrossRef] [PubMed]
- MAyDS. Inventario Nacional de Gases de Efecto Invernadero: Argentina 2021; Ministerio de Ambiente y Desarrollo Sostenible: Buenos Aires, Argentina, 2022.
- Ramseyer, F.; Bergero, P. Radiografía Del Complejo Cárnico Argentino: Entre Récords y Cambios de Hábitos. Available online: https://www.bcr.com.ar/es/print/pdf/node/110512 (accessed on 21 October 2025).
- FAOSTAT. Statistical Databases. Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/faostat/en/#rankings/countries_by_commodity (accessed on 21 October 2024).
- Marín, N.; Terré, E.; Calzada, J. Exportaciones Argentinas 2024: Las Cadenas Agroindustriales al Frente, Con El Sector Energético En Ascenso. Available online: https://www.bcr.com.ar/es/print/pdf/node/108435 (accessed on 19 October 2025).
- Arrieta, E.M.; Aguiar, S.; González Fischer, C.; Cuchietti, A.; Cabrol, D.A.; González, A.D.; Jobbágy, E.G. Environmental Footprints of Meat, Milk and Egg Production in Argentina. J. Clean. Prod. 2022, 347, 131325. [Google Scholar] [CrossRef]
- Subsecretaría de Mercados Agropecuarios Evolución de La Molienda Mensual de Cereales. Available online: https://www.magyp.gob.ar/sitio/areas/ss_mercados_agropecuarios/areas/granos/_archivos/000058_Estad%C3%ADsticas/000032_Evolucion%20de%20la%20Molienda%20(Cereales%20y%20Oleaginosas)/000001_Evoluci%C3%B3n%20de%20la%20Molienda%20Mensual%20de%20Cereales%20-%20En%20Ton./000001_Evoluci%C3%B3n%20de%20la%20Molienda%20Mensual%20de%20Cereales%20-%20En%20Ton.php (accessed on 5 December 2024).
- Bragachini, M.; Ustarroz, F.; Bragachini, M.; Mathier, D.; Méndez, J. Hacia Sistemas Ganaderos de Precisión Con Valor Agregado. In Proceedings of the 5ta Jornada Nacional de forrajes conservados. Hacia sistemas ganaderos de precisión con valor agregado, Buenos Aires, Argentina, 9 April 2014; Ediciones INTA: Buenos Aires, Argentina, 2014; pp. 1–18. [Google Scholar]
- Miresa, A.; Mulegeta, M. Review on Utilization of Brewery By-Products as Protein-Rich Feed Source for Efficient Livestock Production. Glob. J. Anim. Sci. Res. 2020, 8, 1–13. [Google Scholar]
- Negash, D. Use of Brewery By-Products as Animal Feeds. J. Nutr. Food Sci. 2021, 4, 100027. [Google Scholar]
- Vastolo, A.; Calabrò, S.; Cutrignelli, M.I. A Review on the Use of Agro-Industrial CO-Products in Animals’ Diets. Ital. J. Anim. Sci. 2022, 21, 577–594. [Google Scholar] [CrossRef]
- Ministerio de Economía. Campaña Girasol 2023/24. Resultados Del Ciclo; Ministerio de Economía: Buenos Aires, Argentina, 2024.
- Beauchemin, K.A.; McGinn, S.M.; Benchaar, C.; Holtshausen, L. Crushed Sunflower, Flax, or Canola Seeds.Pdf. J. Dairy. Sci. 2009, 92, 2118–2127. [Google Scholar] [CrossRef]
- Navarro Marcos, C.; de Evan, T.; Jiménez, C.; Carro, M.D. Potential of Agroindustrial By-Products to Modulate Ruminal Fermentation and Reduce Methane Production: In Vitro Studies. Animals 2022, 12, 3540. [Google Scholar] [CrossRef]
- Smith, P.E.; Kelly, A.K.; Kenny, D.A.; Waters, S.M. Enteric Methane Research and Mitigation Strategies for Pastoral-Based Beef Cattle Production Systems. Front. Vet. Sci. 2022, 9, 958340. [Google Scholar] [CrossRef]
- Niu, M.; Kebreab, E.; Hristov, A.N.; Oh, J.; Arndt, C.; Bannink, A.; Bayat, A.R.; Brito, A.F.; Boland, T.; Casper, D.; et al. Prediction of Enteric Methane Production, Yield, and Intensity in Dairy Cattle Using an Intercontinental Database. Glob. Chang. Biol. 2018, 24, 3368–3389. [Google Scholar] [CrossRef]
- Beauchemin, K.A.; Ungerfeld, E.M.; Eckard, R.J.; Wang, M. Review: Fifty Years of Research on Rumen Methanogenesis: Lessons Learned and Future Challenges for Mitigation. Animal 2020, 14, S2–S16. [Google Scholar] [CrossRef]
- Pophiwa, P.; Mwape, A.; Hassen, A.; du Toit, C.J.L.; van Marle-Koster, E.; Sibanda, L.M. Insights on Agricultural Greenhouse Gas Research and Collaboration in Southern Africa. Reg. Environ. Chang. 2025, 25, 1–12. [Google Scholar] [CrossRef]
- Sokal, K.; Kachel, M. Impact of Agriculture on Greenhouse Gas Emissions—A Review. Energies 2025, 18, 2272. [Google Scholar] [CrossRef]
- NRC (National Research Council). Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids; The National Academies Press: Washington, DC, USA, 2007. [Google Scholar]
- Buraschi, L.; Micoli, F.; Palladino, R.A.; Cuatrín, A.; Calamante, C.; Guerrero, L.; Wehrendt, D.; Gualdrón-Duarte, L.; Tieri, M.P.; Williams, R.; et al. Enteric Methane Emission and Nitrogen Excretion of Lactating Cows Fed Soybean-Hulls as Partial Replacement of Corn Grain. Animals 2025, in press. [Google Scholar]
- Pinares-Patiño, C.; Hunt, C.; Martin, R.; West, J.; Lovejoy, P.; Waghorn, G. New Zealand Ruminant Methane Measurement Centre, AgResearch, Palmerston North. In Technical Manual on Respiration Chamber Designs; Pinares, C., Waghorn, C., Eds.; Ministry of Agriculture and Forestry: Wellington, New Zealand, 2014; pp. 9–28. ISBN 6463518336. [Google Scholar]
- Della Rosa, M.; Janssen, P.; Reid, P.; Sandoval, E.; Luo, D.; Pacheco, D.; Jonker, A. Volatile Fatty Acids (VFA) in Rumen Samples Collected Pre-Feeding Had a Stronger Relationship with Methane Emissions in Lambs Fed Graded Levels of Forage Rape than VFAs in Post-Feeding Samples. New Zealand J. Anim. Sci. Prod. 2021, 81, 168–172. [Google Scholar]
- Ramos-Morales, E.; Arco-Pérez, A.; Martín-García, A.I.; Yáñez-Ruiz, D.R.; Frutos, P.; Hervás, G. Use of Stomach Tubing as an Alternative to Rumen Cannulation to Study Ruminal Fermentation and Microbiota in Sheep and Goats. Anim. Feed. Sci. Technol. 2014, 198, 57–66. [Google Scholar] [CrossRef]
- Muizelaar, W.; Bani, P.; Larsen, M.; Tapio, I.; Yáñez-Ruiz, D.; Gastelen, S. Van Rumen Fluid Sampling via Oral Stomach Tubing Method. In Methods in Cattle Physiology and Behaviour—Recommendations from the SmartCow Consortium; PUBLISSO: Cologne, Germany, 2020; pp. 1–6. [Google Scholar]
- AOAC. Official Methods of Analysis; AOAC International: Arlington, VA, USA, 1990. [Google Scholar]
- Komarek, A.R.; Robertson, J.B.; Van Soest, P.J. Comparison of the Filter Bag Technique to Conventional Filtration in the Van Soest NDF Analysis of 21 Feeds. In Proceedings of the National Conference on Forage Quality, Evaluation and Utilization, Lincoln, NE, USA, 13–15 April 1994; Fahey, G.C., Ed.; Nebraska University: Lincoln, NE, USA, 1994. [Google Scholar]
- Komarek, A.R.; Robertson, J.B.; Van Soest, P.J. A Comparison of Methods for Determining ADF Using the Filter Bag Technique versus Conventional Filtration. J. Dairy. Sci. 1994, 77, 114. [Google Scholar]
- Horneck, D.A.; Miller, R.O. Determination of Total Nitrogen in Plant Tissue. In Handbook of Reference Methods for Plant Analysis; Kalra, Y.P., Ed.; CRC Press: Boca Raton, FL, USA, 1998; pp. 75–83. [Google Scholar]
- AOAC. Official Methods of Analysis, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Karkalas, J. An Improved Enzymic Method for the Determination of Native and Modified Starch. J. Sci. Food Agric. 1985, 36, 1019–1027. [Google Scholar] [CrossRef]
- Van Soest, P.J. Nutritional Ecology of the Ruminant, 2nd ed.; O & B Books: Ithaca, NY, USA, 1994. [Google Scholar]
- Broderick, G.A.; Kang, J.H. Automated Simultaneous Determination of Ammonia and Total Amino Acids in Ruminal Fluid and in Vitro Media. J. Dairy. Sci. 1980, 63, 64–75. [Google Scholar] [CrossRef] [PubMed]
- Erwin, E.S.; Marco, G.J.; Emery, E.M. Volatile Fatty Acid Analyses of Blood and Rumen Fluid by Gas Chromatography. J. Dairy. Sci. 1961, 44, 1768–1771. [Google Scholar] [CrossRef]
- Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D.; R Core Team. Nlme: Linear and Nonlinear Mixed Effects Models. 2021. Available online: https://cran.r-project.org/web/packages/nlme/index.html (accessed on 21 October 2025).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Viena, Austria, 2024. [Google Scholar]
- Koller, M. Robustlmm: An R Package for Robust Estimation of Linear Mixed-Effects Models. J. Stat. Softw. 2016, 75, 1–24. [Google Scholar] [CrossRef]
- Cosgrove, G.P.; Waghorn, G.C.; Anderson, C.B.; Peters, J.S.; Smith, A.; Molano, G.; Deighton, M. The Effect of Oils Fed to Sheep on Methane Production and Digestion of Ryegrass Pasture. Aust. J. Exp. Agric. 2008, 48, 189–192. [Google Scholar] [CrossRef]
- Takahashi, L.S.; Sanches, T.P.; Issakowicz, J.; Bueno, M.S.; Bompadre, T.F.V.; Paro de Paz, C.C.; Abdalla, A.L.; Dias da Costa, R.L. Lipid Supplementation with Macadamia By-Product Reduces Methane Emissions by Sheep. Small Rumin. Res. 2024, 231, 107174. [Google Scholar] [CrossRef]
- NRC (National Research Council). Nutrient Requirements of Dairy Cattle, 7th ed.; National Academy Press: Washington, DC, USA, 2001. [Google Scholar]
- Bhatt, R.S.; Soni, L.; Sahoo, A. Methane Production and Microbial Protein Synthesis in Adult Sheep Fed Total Mixed Ration as Mash and as Complete Feed Block. Carbon. Manag. 2019, 10, 241–253. [Google Scholar] [CrossRef]
- Gere, J.I.; Feksa Frasson, M.; Wawrzkiewicz, M.; Fernández Pepi, M.G.; Ramos, M.L.; Bualó, R.; Cerón-Cucchi, M.E.; Jaurena, G. Enteric Methane Emission from Sheep Fed with Rhodes Grass Hay (Chloris Gayana) Alone or Supplemented with Dried Distillers’ Grains with Solubles. Methane 2022, 1, 210–217. [Google Scholar] [CrossRef]
- Pinares-Patiño, C.S.; McEwan, J.C.; Dodds, K.G.; Cárdenas, E.A.; Hegarty, R.S.; Koolaard, J.P.; Clark, H. Repeatability of Methane Emissions from Sheep. Anim. Feed. Sci. Technol. 2011, 166–167, 210–218. [Google Scholar] [CrossRef]
- Kerr, B.J.; Dozier, W.A.; Shurson, G.C. Effects of Reduced-Oil Corn Distillers Dried Grains with Solubles Composition on Digestible and Metabolizable Energy Value and Prediction in Growing Pigs. J. Anim. Sci. 2013, 91, 3231–3243. [Google Scholar] [CrossRef]
- Wysocka, O.; Pecka, E.; Zawadzki, W. The Potential of Using Corn Dried Distillers Grains with Solubles (DDGS) in Order to Improve the Fermentation Profile in Sheep. Univ. Technol. Stetin. Agric. Aliment. Pisc 2015, 320, 109–120. [Google Scholar]
- Pecka-Kielb, E.; Zachwieja, A.; Mista, D.; Zawadzki, W.; Zielak-Steciwko, A. Use of Corn Dried Distillers Grains (DDGS) in Feeding of Ruminants. In Frontiers in Bioenergy and Biofuels; Jacob-Lopes, E., Zepka, L.Q., Eds.; InTech: Rijeka, Croatia, 2017; ISBN 78-953-51-2892-2. [Google Scholar]
- Ali, M.A.; Lee, C.H.; Kim, S.Y.; Kim, P.J. Effect of Industrial By-Products Containing Electron Acceptors on Mitigating Methane Emission during Rice Cultivation. Waste Manag. 2009, 29, 2759–2764. [Google Scholar] [CrossRef] [PubMed]
- Beauchemin, K.A.; Ungerfeld, E.M.; Abdalla, A.L.; Alvarez, C.; Arndt, C.; Becquet, P.; Benchaar, C.; Berndt, A.; Mauricio, R.M.; McAllister, T.A.; et al. Invited Review: Current Enteric Methane Mitigation Options. J. Dairy. Sci. 2022, 105, 9297–9326. [Google Scholar] [CrossRef] [PubMed]
- Fărcaş, A.C.; Socaci, S.A.; Dulf, F.V.; Tofană, M.; Mudura, E.; Diaconeasa, Z. Volatile Profile, Fatty Acids Composition and Total Phenolics Content of Brewers’ Spent Grain by-Product with Potential Use in the Development of New Functional Foods. J. Cereal Sci. 2015, 64, 34–42. [Google Scholar] [CrossRef]
- Rahman, M.J.; Malunga, L.N.; Eskin, M.; Eck, P.; Thandapilly, S.J.; Thiyam-Hollander, U. Valorization of Heat-Treated Brewers’ Spent Grain through the Identification of Bioactive Phenolics by UPLC-PDA and Evaluation of Their Antioxidant Activities. Front. Nutr. 2021, 8, 634519. [Google Scholar] [CrossRef]
- Kobelev, K.V.; Gribkova, I.N.; Kharlamova, L.N.; Danilyan, A.V.; Zakharov, M.A.; Lazareva, I.V.; Kozlov, V.I.; Borisenko, O.A. Study of Brewer’s Spent Grain Environmentally Friendly Processing Ways. Molecules 2023, 28, 4553. [Google Scholar] [CrossRef]
- Oskoueian, E.; Abdullah, N.; Oskoueian, A. Effects of Flavonoids on Rumen Fermentation Activity, Methane Production, and Microbial Population. Biomed. Res. Int. 2013, 2013, 349129. [Google Scholar] [CrossRef]
- Sinz, S.; Kunz, C.; Liesegang, A.; Braun, U.; Marquardt, S.; Soliva, C.R.; Kreuzer, M. In Vitro Bioactivity of Various Pure Flavonoids in Ruminal Fermentation, with Special Reference to Methane Formation. Czech J. Anim. Sci. 2018, 63, 293–304. [Google Scholar] [CrossRef]
- Nørskov, N.P.; Battelli, M.; Curtasu, M.V.; Olijhoek, D.W.; Chassé, É.; Nielsen, M.O. Methane Reduction by Quercetin, Tannic and Salicylic Acids: Influence of Molecular Structures on Methane Formation and Fermentation in Vitro. Sci. Rep. 2023, 13, 16023. [Google Scholar] [CrossRef] [PubMed]
- Machmüller, A.; Kreuzer, M. Methane Suppression by Coconut Oil and Associated Effects on Nutrient and Energy Balance in Sheep. Can. J. Anim. Sci. 1999, 79, 65–72. [Google Scholar] [CrossRef]
- Lima, P. de M.T.; Oliveira, P.B.; Campeche, A.; Moreira, G.D.; Paim, T. do P.; McManus, C.; Abdalla, A.L.; Dantas, A.M.M.; de Souza, J.R.; Louvandini, H. Methane Emission of Santa Inês Sheep Fed Cottonseed By-Products Containing Different Levels of Gossypol. Trop. Anim. Health Prod. 2014, 46, 285–288. [Google Scholar] [CrossRef]
- de Oliveira, S.G.; Berchielli, T.T.; Pedreira, M. dos S.; Primavesi, O.; Frighetto, R.; Lima, M.A. Effect of Tannin Levels in Sorghum Silage and Concentrate Supplementation on Apparent Digestibility and Methane Emission in Beef Cattle. Anim. Feed. Sci. Technol. 2007, 135, 236–248. [Google Scholar] [CrossRef]
- Duthie, C.A.; Rooke, J.A.; Hyslop, J.J.; Waterhouse, A. Methane Emissions from Two Breeds of Beef Cows Offered Diets Containing Barley Straw with Either Grass Silage or Brewers’ Grains. Animal 2015, 9, 1680–1687. [Google Scholar] [CrossRef]
- Behlke, E.J.; Sanderson, T.; Klopfenstein, T.J.; Miner, J.L. Replacement of Forage with Dried Distillers Grains Reduces Ruminal Methane Production. Neb. Beef Cattle Rep. 2007, 62, 19–21. [Google Scholar]
- Johnson, K.A.; Johnson, D.E. Methane Emissions from Cattle. J. Anim. Sci. 1995, 73, 2483–2492. [Google Scholar] [CrossRef]
- Hristov, A.N.; Oh, J.; Lee, C.; Meinen, R.; Montes, F.; Ott, T.; Firkins, J.; Rotz, A.; Dell, C.; Adesogan, A.; et al. Mitigation of Greenhouse Gas Emissions in Livestock Production. A Review of Technical Options for Non-CO2 Emissions; Gerber, P., Henderson, B., Makkar, H.P.S., Eds.; FAO Animal Production and Health Paper No. 177; FAO: Rome, Italy, 2013; ISBN 8497401735. [Google Scholar]
- Ikram, S.; Huang, L.Y.; Zhang, H.; Wang, J.; Yin, M. Composition and Nutrient Value Proposition of Brewers Spent Grain. J. Food Sci. 2017, 82, 2232–2242. [Google Scholar] [CrossRef] [PubMed]
- Faccenda, A.; Zambom, M.A.; Castagnara, D.D.; de Avila, A.S.; Fernandes, T.; Eckstein, E.I.; Anschau, F.A.; Schneider, C.R. Use of Dried Brewers’ Grains Instead of Soybean Meal to Feed Lactating Cows. Rev. Bras. De Zootec. 2017, 46, 39–46. [Google Scholar] [CrossRef]
- Mekonen, T.; Alemayehu, L.; Eshete, M.; Kebede, A.; Abebe, A.; Bisrat, A.; Teferra, B.; Tsegahun, A.; Getachew, T. Substitution of Concentrate Mixture with Dried Brewery Spent Grains Improved Biological and Economical Performance of 50% Dorper × Menz Crossbred Sheep. Trop. Anim. Health Prod. 2024, 56, 1–8. [Google Scholar] [CrossRef]
- Wang, C.D.; Li, Y.Q.; MaiTiSaiYiDi, T.N.S.; Yang, H.J.; Yang, K.L. Effect of Dietary Gossypol Supplement on Fermentation Characteristics and Bacterial Diversity in the Rumen of Sheep. PLoS ONE 2020, 15, e0234378. [Google Scholar] [CrossRef]
- Jonker, A.; Molano, G.; Antwi, C.; Waghorn, G.C. Enteric Methane and Carbon Dioxide Emissions Measured Using Respiration Chambers, the Sulfur Hexafluoride Tracer Techique, and a GreenFeed Head-Chamber System from Beef Heifers Fed Alfalfa Silage at Three Allowances and Four Feeding Frequencies. J. Anim. Sci. 2016, 94, 4326–4337. [Google Scholar] [CrossRef] [PubMed]
- Clark, P.; Armentano, L. Effectiveness of Neutral Detergent Fiber in Whole Cottonseed and Dry Distillers Grains Compared with Alfalfa Haylage. J. Dairy. Sci. 1993, 76, 2644–2650. [Google Scholar] [CrossRef] [PubMed]
- Mooney, C.S.; Allen, M.S. Physical Effectiveness of the Neutral Detergent Fiber of Whole Linted Cottonseed Relative to That of Alfalfa Silage at Two Lengths of Cut. J. Dairy. Sci. 1997, 80, 2052–2061. [Google Scholar] [CrossRef]
- Sauer, F.D.; Fellner, V.; Kinsman, R.; Kramer, J.K.G.; Jackson, H.A.; Lee, A.J.; Chen, S. Methane Output and Lactation Response in Holstein Cattle with Monensin or Unsaturated Fat Added to the Diet. J. Anim. Sci. 1997, 76, 906–914. [Google Scholar] [CrossRef]
- Aguerre, M.J.; Wattiaux, M.A.; Powell, J.M.; Broderick, G.A.; Arndt, C. Effect of Forage-to-Concentrate Ratio in Dairy Cow Diets on Emission of Methane, Carbon Dioxide, and Ammonia, Lactation Performance, and Manure Excretion. J. Dairy. Sci. 2011, 94, 3081–3093. [Google Scholar] [CrossRef]
- Aubry, A.; Yan, T. Meta-Analysis of Calorimeter Data to Establish Relationships between Methane and Carbon Dioxide Emissions or Oxygen Consumption for Dairy Cattle. Anim. Nutr. 2015, 1, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Hammond, K.J.; Pacheco, D.; Burke, J.L.; Koolaard, J.P.; Muetzel, S.; Waghorn, G.C. The Effects of Fresh Forages and Feed Intake Level on Digesta Kinetics and Enteric Methane Emissions from Sheep. Anim. Feed. Sci. Technol. 2014, 193, 32–43. [Google Scholar] [CrossRef]
- Hall, M.B.; Nennich, T.D.; Doane, P.H.; Brink, G.E. Total Volatile Fatty Acid Concentrations Are Unreliable Estimators of Treatment Effects on Ruminal Fermentation in Vivo. J. Dairy. Sci. 2015, 98, 3988–3999. [Google Scholar] [CrossRef]
- Xiang, R.; McNally, J.; Rowe, S.; Jonker, A.; Pinares-Patino, C.S.; Oddy, V.H.; Vercoe, P.E.; McEwan, J.C.; Dalrymple, B.P. Gene Network Analysis Identifies Rumen Epithelial Cell Proliferation, Differentiation and Metabolic Pathways Perturbed by Diet and Correlated with Methane Production. Sci. Rep. 2016, 6, 39022. [Google Scholar] [CrossRef]
- Seo, S.; Lanzas, C.; Tedeschi, L.O.; Fox, D.G. Development of a Mechanistic Model to Represent the Dynamics of Liquid Flow out of the Rumen and to Predict the Rate of Passage of Liquid in Dairy Cattle. J. Dairy. Sci. 2007, 90, 840–855. [Google Scholar] [CrossRef]
- Sujani, S.; Gleason, C.B.; dos Reis, B.R.; White, R.R. Rumen Fermentation of Meal-Fed Sheep in Response to Diets Formulated to Vary in Fiber and Protein Degradability. J. Anim. Sci. 2024, 102, skad406. [Google Scholar] [CrossRef]
- Bannink, A.; van Lingen, H.J.; Ellis, J.L.; France, J.; Dijkstra, J. The Contribution of Mathematical Modeling to Understanding Dynamic Aspects of Rumen Metabolism. Front. Microbiol. 2016, 7, 1820. [Google Scholar] [CrossRef]
- Rotolo, G.C.; Vassillo, C.; Rodriguez, A.A.; Magnano, L.; Milo Vaccaro, M.; Civit, B.M.; Covacevich, M.S.; Arena, A.P.; Ulgiati, S. Perception and Awareness of Circular Economy Options within Sectors Related to Agriculture in Argentina. J. Clean. Prod. 2022, 373, 133805. [Google Scholar] [CrossRef]
- Areti, H.A.; Muleta, M.D.; Abo, L.D.; Hamda, A.S.; Adugna, A.A.; Edae, I.T.; Daba, B.J.; Gudeta, R.L. Innovative Uses of Agricultural By-Products in the Food and Beverage Sector: A Review. Food Chem. Adv. 2024, 5, 100838. [Google Scholar] [CrossRef]
- World Bank. Towards a More Competitive, Inclusive, and Resilient Agrifood Sector; World Bank: Washington, DC, USA, 2023. [Google Scholar]
- United Nations PAGE in Argentina. Available online: https://www.un-page.org/countries/argentina/ (accessed on 19 October 2025).
| Nutrient Composition | Corn Silage | Sunflower Expeller | Corn Grain | Corn DDG’s 1 | Barley Brewers’ Grain | Wheat Middlings | Urea 2 |
|---|---|---|---|---|---|---|---|
| Dry matter | 467 | 903 | 837 | 891 | 920 | 851 | 1000 |
| Ash | 65 | 77 | 22 | 41 | 41 | 44 | 0.03 |
| Crude protein | 89 | 268 | 103 | 339 | 253 | 161 | 2870 |
| Neutral detergent fiber | 333 | 460 | 133 | 400 | 580 | 313 | |
| Acid detergent fiber | 172 | 290 | 31 | 131 | 208 | 95 | |
| Starch | 393 | 9 | 794 | 21 | 19 | 225 | |
| Ether extract | 41 | 49 | 53 | 101 | 49 | 39 | |
| In vitro DM digestibility | 727 | 586 | 845 | 752 | 584 | 692 | |
| Gross energy (Mcal/kg DM) | 3.97 | 4.98 | 3.94 | 4.73 | 4.50 | 4.11 | |
| Metabolizable energy (Mcal/kg DM) | 2.69 | 2.26 | 3.11 | 2.71 | 1.98 | 2.50 | 0.81 |
| Item | Treatments 1 | ||
|---|---|---|---|
| CON | BAR | WHE | |
| Ingredients proportion | |||
| Corn silage | 600 | 600 | 600 |
| Sunflower expeller | 230 | 128 | 111 |
| Corn grain | 160 | - | - |
| Corn DDG’s 2 | - | 171 | 170 |
| Barley brewers’ grains | - | 102 | - |
| Wheat middlings | - | - | 118 |
| Urea | 10 | - | - |
| Nutrient composition | |||
| Dry matter (g/kg) | 632 | 642 | 633 |
| Ash | 60 | 58 | 60 |
| Crude protein | 160 | 160 | 160 |
| Neutral detergent fiber | 327 | 355 | 356 |
| Acid detergent fiber | 175 | 173 | 169 |
| Starch | 365 | 245 | 267 |
| Ether extract | 44 | 52 | 52 |
| In vitro DM digestibility | 706 | 713 | 711 |
| Gross energy (Mcal/kg DM) | 4.16 | 3.83 | 4.23 |
| Metabolizable energy (Mcal/kg DM) | 2.63 | 2.60 | 2.62 |
| Item | Treatments 1 | SEM | p-Value | ||
|---|---|---|---|---|---|
| CON | BAR | WHE | |||
| Body weight gain, kg | 4.83 | 6.69 | 6.21 | 1.66 | 0.680 |
| Average daily gain, g/d | 91.0 | 124 | 106 | 34.0 | 0.765 |
| Feed intake | |||||
| Dry matter, g/d | 863 | 994 | 1005 | 71.0 | 0.266 |
| Dry matter, %BW | 2.30 | 2.38 | 2.42 | 0.11 | 0.716 |
| Organic matter, g/d | 819 | 950 | 961 | 67.7 | 0.236 |
| Crude protein, g/d | 113 b | 155 a | 147 ab | 11.8 | 0.005 |
| Neutral detergent fiber DF, g/d | 275 b | 378 a | 363 ab | 24.2 | 0.003 |
| Acid detergent fiber, g/d | 151 | 179 | 174 | 13.9 | 0.350 |
| Starch, g/d 2 | 319 | 244 | 261 | 23.0 | 0.058 |
| Ether extract, g/d 3 | 45.7 | 52.7 | 50.1 | 5.38 | 0.616 |
| Metabolizable energy, Mcal/d | 2.27 | 2.62 | 2.64 | 0.187 | 0.266 |
| Item | Treatments 1 | SEM | p-Value | ||
|---|---|---|---|---|---|
| CON | BAR | WHE | |||
| Total CH4, g/d | 12.4 a | 9.63 b | 10.4 ab | 0.66 | 0.006 |
| CH4 yield, g/kg DMI 2 | 13.2 a | 8.67 b | 9.46 ab | 1.01 | 0.002 |
| g/kg digested NDF 3 | 65.5 a | 35.6 b | 40.3 b | 5.77 | <0.001 |
| Ym, % 4 | 4.81 a | 3.00 b | 3.26 ab | 0.51 | 0.017 |
| Total CO2, g/d | 866 b | 1034 a | 1044 a | 58.7 | 0.044 |
| CH4:CO2 ratio | 0.015 a | 0.009 b | 0.010 ab | 0.0015 | 0.016 |
| Item | Treatments 1 | SEM | p-Value | ||
|---|---|---|---|---|---|
| CON | BAR | WHE | |||
| pH | 6.92 | 6.95 | 7.21 | 0.14 | 0.343 |
| Ammonia-N, mg/dL | 7.75 | 8.36 | 8.38 | 1.21 | 0.907 |
| Total VFA, mM | 31.2 | 32.6 | 19.8 | 5.37 | 0.240 |
| VFA molar proportion, mmol/100 mmol | |||||
| Acetic acid | 62.2 | 63.3 | 65.1 | 2.23 | 0.674 |
| Propionic acid | 25.9 | 26.4 | 23.6 | 2.23 | 0.685 |
| Butyric acid | 7.45 | 6.25 | 6.22 | 1.08 | 0.633 |
| Valeric acid | 1.60 | 1.63 | 1.45 | 0.48 | 0.968 |
| Isobutyric acid | 1.28 | 1.13 | 1.63 | 0.22 | 0.294 |
| Isovaleric acid | 1.41 | 1.14 | 1.67 | 0.24 | 0.337 |
| Caproic acid | 0.28 | 0.23 | 0.31 | 0.05 | 0.599 |
| Acet:Prop ratio | 2.51 | 2.46 | 2.8 | 0.27 | 0.678 |
| AcetBut:PropVal ratio | 2.66 | 2.54 | 2.88 | 0.28 | 0.715 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gualdrón-Duarte, L.; Buraschi, L.M.; Cuatrín, A.L.; Villar, M.L.; Ceballos, D.; Ricci, P. A By-Product Blended Diet to Reduce Enteric Methane Emissions from Sheep in Argentina. Sustainability 2025, 17, 11150. https://doi.org/10.3390/su172411150
Gualdrón-Duarte L, Buraschi LM, Cuatrín AL, Villar ML, Ceballos D, Ricci P. A By-Product Blended Diet to Reduce Enteric Methane Emissions from Sheep in Argentina. Sustainability. 2025; 17(24):11150. https://doi.org/10.3390/su172411150
Chicago/Turabian StyleGualdrón-Duarte, Laura, Lucía María Buraschi, Alejandra Lorena Cuatrín, María Laura Villar, Demian Ceballos, and Patricia Ricci. 2025. "A By-Product Blended Diet to Reduce Enteric Methane Emissions from Sheep in Argentina" Sustainability 17, no. 24: 11150. https://doi.org/10.3390/su172411150
APA StyleGualdrón-Duarte, L., Buraschi, L. M., Cuatrín, A. L., Villar, M. L., Ceballos, D., & Ricci, P. (2025). A By-Product Blended Diet to Reduce Enteric Methane Emissions from Sheep in Argentina. Sustainability, 17(24), 11150. https://doi.org/10.3390/su172411150

