Multi-Dimensional Comparison and Sustainable Spatial Optimization of Ecosystem Services Supply–Demand Matching Between Urban and Rural Areas: A Case Study of Zhengzhou City
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Study Area Overview
2.1.2. Data Sources and Preprocessing
2.2. Methods
2.2.1. Real Human Needs (RHN)
- (1)
- Data standardization
- (2)
- Entropy-weight method
- (3)
- Weighted aggregation and urban–rural weighting
- (4)
- Basic needs
- (5)
- Desire needs
- (6)
- Spatial needs
2.2.2. Potential Supply
2.2.3. Actual Supply
- (1)
- Actual supply based on commodity flow
- (2)
- Actual supply based on non-commodity flow
2.2.4. Effective Supply
2.2.5. Analysis of the Driving Force of the Integrated Actual Supply
2.2.6. Spatial Optimization Analysis
3. Results
3.1. Contrasting the RHN of Urban and Rural Areas
3.2. Spatial Contrasts in Potential and Actual Supply Between Urban and Rural Areas
3.3. Spatial Distribution and Hierarchy of Effective Supply in Urban and Rural Areas
3.4. Drivers of Integrated Actual Supply
3.5. Spatial Pattern Optimization-Urban-Rural Comparison
4. Discussion
4.1. Comprehensive Analysis of Differences in ES Between Urban and Rural Areas
4.2. Gaps in Effective Supply and Supply–Demand Matching Between Urban and Rural Areas
4.3. Strategies for Optimizing Urban and Rural ES
4.4. Limitations and Prospects
5. Conclusions
- (1)
- Urban RHN markedly exceeds rural and follows an “east-high/west-low, core-high/periphery-low” pattern, with stronger intra-urban inequality. Urban RHN accounts for 69.70% versus 30.30% in rural (a 39.40 percentage-point gap). Urban values cluster at 0.2–0.4 (median 0.3), whereas rural values concentrate at 0.2 (median 0.2). Moreover, the share of units (grid cells) above the citywide mean is lower in urban than in rural areas.
- (2)
- Zhengzhou exhibits a spatial mismatch—“higher rural potential supply, west > east; actual supply agglomerates toward the urban core”, yielding a net flow from rural to urban. Across multiple ES types, potential supply is overall higher in rural areas with a pronounced western advantage, while bands of high actual supply progressively coalesce in the central city (e.g., food production is higher in the city; Water supply is stronger in rural areas). The southwestern rural zone remains the principal supporting area for composite supply.
- (3)
- Urban effective supply and supply–demand matching efficiency substantially exceeds rural, while rural areas show a “high-potential/low-conversion” gap. The highest grade of effective supply is 37.28% in urban versus 19.28% in rural. For most ES types, urban areas exhibit actual supply > potential supply. Citywide Grade I/II/III shares are 29.18%/34.15%/36.66%, indicating that over one-third of the area remains supply deficient. Urban areas are characterized by high conversion and high matching; rural shortfalls stem from insufficient conversion efficiency rather than inadequate potential, suggesting policies should target improving the conversion rate per unit of potential supply.
- (4)
- FAC (q = 0.676) and TEM (q = 0.585) are the key drivers of composite actual supply; identifying priority optimization zones enhances policy precision. Based on BBN optimization (probability of entering the optimal state 50.06% when FAC = 3, 38.76% when TEM = 3), priority optimization zones are concentrated mainly in rural areas, especially eastern rural towns (e.g., Guanyinsi, Lihe), whereas urban optimization zones are primarily located in peripheral subdistricts (e.g., Dongfeng Road, Xiaoyi).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- La Notte, A.; Marques, A.; Petracco, M.; Paracchini, M.L.; Zurbaran-Nucci, M.; Grammatikopoulou, I.; Tamborra, M. The assessment of nature-related risks: From ecosystem services vulnerability to economic exposure and financial disclosures. Ecol. Econ. 2025, 235, 108636. [Google Scholar] [CrossRef]
- Fan, Q.; Lu, Q.; Yang, X. Spatiotemporal assessment of recreation ecosystem service flow from green spaces in Zhengzhou’s main urban area. Humanit. Soc. Sci. Commun. 2025, 12, 97. [Google Scholar] [CrossRef]
- Fan, Q.; Wang, Y.; Ping, X. Multiscenario simulations and analyses of urban ecological sources using PLUS and MSPA models: Application in Zhengzhou, China. J. Urban Plan. Dev. 2025, 151, 64. [Google Scholar] [CrossRef]
- Bagstad, K.J.; Johnson, G.W.; Voigt, B.; Villa, F. Spatial dynamics of ecosystem service flows: A comprehensive approach to quantifying actual services. Ecosyst. Serv. 2013, 4, 117–125. [Google Scholar] [CrossRef]
- Bagstad, K.J.; Villa, F.; Batker, D.; Harrison-Cox, J.; Voigt, B.; Johnson, G.W. From theoretical to actual ecosystem services: Mapping beneficiaries and spatial flows in ecosystem service assessments. Ecol. Soc. 2014, 19. [Google Scholar] [CrossRef]
- Fang, Y.X.; Meng, F.H.; Luo, M.; Sa, C.; Bao, Y.H.; Lei, J. Coupling coordination framework for assessing balanced development between potential ecosystem services and human activities. Earth’s Future 2025, 13. [Google Scholar] [CrossRef]
- Burkhard, B.; Kandziora, M.; Hou, Y.; Müller, F. Ecosystem service potentials, flows and demands-concepts for spatial localisation, indication and quantification. Landsc. Online 2014, 34. [Google Scholar] [CrossRef]
- Burkhard, B.; Kroll, F.; Nedkov, S.; Müller, F. Mapping ecosystem service supply, demand and budgets. Ecol. Indic. 2012, 21, 17–29. [Google Scholar] [CrossRef]
- Schröter, M.; Barton, D.N.; Remme, R.P.; Hein, L. Accounting for capacity and flow of ecosystem services: A conceptual model and a case study for Telemark, Norway. Ecol. Indic. 2014, 36, 539–551. [Google Scholar] [CrossRef]
- Villamagna, A.M.; Angermeier, P.L.; Bennett, E.M. Capacity, pressure, demand, and flow: A conceptual framework for analyzing ecosystem service provision and delivery. Ecol. Complex. 2013, 15, 114–121. [Google Scholar] [CrossRef]
- Goldenberg, R.; Kalantari, Z.; Cvetkovic, V.; Mörtberg, U.; Deal, B.; Destouni, G. Distinction, quantification and mapping of potential and realized supply-demand of flow-dependent ecosystem services. Sci. Total Environ. 2017, 593, 599–609. [Google Scholar] [CrossRef] [PubMed]
- Dunford, R.; Harrison, P.; Smith, A.; Dick, J.; Barton, D.N.; Martin-Lopez, B.; Kelemen, E.; Jacobs, S.; Saarikoski, H.; Turkelboom, F.; et al. Integrating methods for ecosystem service assessment: Experiences from real world situations. Ecosyst. Serv. 2018, 29, 499–514. [Google Scholar] [CrossRef]
- Koellner, T.; Schröter, M.; Schulp, C.J.E.; Verburg, P.H. Global flows of ecosystem services. Ecosyst. Serv. 2018, 31, 229–230. [Google Scholar] [CrossRef]
- Mitchell, M.G.E.; Suarez-Castro, A.F.; Martinez-Harms, M.; Maron, M.; McAlpine, C.; Gaston, K.J.; Johansen, K.; Rhodes, J.R. Reframing landscape fragmentation’s effects on ecosystem services. Trends Ecol. Evol. 2015, 30, 190–198. [Google Scholar] [CrossRef]
- Dolan, R.; Bullock, J.M.; Jones, J.P.G.; Athanasiadis, I.N.; Martinez-Lopez, J.; Willcock, S. The flows of nature to people, and of people to nature: Applying movement concepts to ecosystem services. Land 2021, 10, 576. [Google Scholar] [CrossRef]
- Lyu, Y.F.; Wu, C.F. Managing the supply-demand mismatches and potential flows of ecosystem services from the perspective of regional integration: A case study of Hangzhou, China. Sci. Total Environ. 2023, 902, 165918. [Google Scholar] [CrossRef]
- Bruno, E.; Falco, E.; Geneletti, D. Combining demand for ecosystem services with ecosystem conditions of Vacant Lots to support land preservation and restoration decisions. Sustainability 2025, 17, 4686. [Google Scholar] [CrossRef]
- Hsu, W.L.; Zhuang, Z.C.; Li, C.; Zhao, J. Optimization of land use patterns in a Typical Coal resource-based city based on the ecosystem service relationships of ‘food-carbon-recreation’. Land 2025, 14, 661. [Google Scholar] [CrossRef]
- Lapointe, M.; Cumming, G.S.; Gurney, G.G. Comparing ecosystem service preferences between urban and rural dwellers. Bioscience 2019, 69, 108–116. [Google Scholar] [CrossRef]
- Cabañas, R.; Maldonado, A.D.; Morales, M.; Aguilera, P.A.; Salmerón, A. Bayesian networks for causal analysis in socioecological systems. Ecol. Inform. 2025, 89, 103173. [Google Scholar] [CrossRef]
- Yu, Y.Y.; Wang, Y.Q.; Li, J.; Han, L.Q.; Zhang, S.J. Optimizing management of the Qinling-Daba mountain area based on multi-scale ecosystem service supply and demand. Land 2023, 12, 1744. [Google Scholar] [CrossRef]
- Carpenter, S.R.; Mooney, H.A.; Agard, J.; Capistrano, D.; DeFries, R.S.; Díaz, S.; Dietz, T.; Duraiappah, A.K.; Oteng-Yeboah, A.; Pereira, H.M.; et al. Science for managing ecosystem services: Beyond the Millennium Ecosystem Assessment. Proc. Natl. Acad. Sci. USA 2009, 106, 1305–1312. [Google Scholar] [CrossRef]
- Huang, Z.X.; Zhang, Y.L.; Wang, F.F.; Cao, W.Z. Advancing a novel large-scale assessment integrating ecosystem service flows and real human needs: A comparison between China and the United States. J. Clean. Prod. 2021, 314, 14. [Google Scholar] [CrossRef]
- Friesen, J.P.; Kay, A.C.; Eibach, R.P.; Galinsky, A.D. Seeking structure in social organization: Compensatory control and the psychological advantages of hierarchy. J. Pers. Soc. Psychol. 2014, 106, 590–609. [Google Scholar] [CrossRef] [PubMed]
- Fisher, B.; Turner, R.K.; Morling, P. Defining and classifying ecosystem services for decision making. Ecol. Econ. 2009, 68, 643–653. [Google Scholar] [CrossRef]
- Gou, M.; Li, L.; Ouyang, S.; Wang, N.; La, L.; Liu, C.; Xiao, W. Identifying and analyzing ecosystem service bundles and their socioecological drivers in the Three Gorges Reservoir Area. J. Clean. Prod. 2021, 307, 127208. [Google Scholar] [CrossRef]
- Tallis, M.; Taylor, G.; Sinnett, D.; Freer-Smith, P. Estimating the removal of atmospheric particulate pollution by the urban tree canopy of London, under current and future environments. Landsc. Urban Plan. 2011, 103, 129–138. [Google Scholar] [CrossRef]
- Nowak, D.J.; Crane, D.E.; Stevens, J.C. Air pollution removal by urban trees and shrubs in the United States. Urban For. Urban Green. 2006, 4, 115–123. [Google Scholar] [CrossRef]
- Cao, Y.; Cao, Y.; Li, G.; Tian, Y.; Fang, X.; Li, Y.; Tan, Y. Linking ecosystem services trade-offs, bundles and hotspot identification with cropland management in the coastal Hangzhou Bay area of China. Land Use Policy 2020, 97, 104689. [Google Scholar] [CrossRef]
- Li, M.; Zhang, J.C.; Gao, H.S.; Ji, G.X.; Li, G.M.; Li, L.; Li, Q.S. Spatiotemporal variation characteristics of ecosystem carbon storage in Henan Province and future multi-scenario simulation prediction. Land 2024, 13, 185. [Google Scholar] [CrossRef]
- Ma, X.Y.; Liu, S.S.; Guo, L.; Zhang, J.Z.; Feng, C.; Feng, M.Y.; Li, Y.L. Evolution and analysis of water yield under the change of land use and climate change based on the PLUS-InVEST model: A case study of the Yellow River Basin in Henan Province. Water 2024, 16, 2551. [Google Scholar] [CrossRef]
- Zhang, J.C.; Li, L.; Li, Q.S.; Chen, W.Q.; Huang, J.C.; Guo, Y.L.; Ji, G.X. Multiscenario land use change simulation and its impact on ecosystem service function in Henan Province based on FLUS-InVEST model. Ecol. Evol. 2025, 15, ece3.71111. [Google Scholar] [CrossRef] [PubMed]
- Zhou, K.; Wei, X.Y.; Wang, Y.J.; Wang, J.H.; Wang, Z.F.; Zhang, Y.C. Spatiotemporal evolution and prediction of blue-green-grey-space carbon stocks in Henan Province, China. Front. Environ. Sci. 2025, 13, 1545455. [Google Scholar] [CrossRef]
- Guo, Z.Q.; Yan, Z.J.; PaErHaTi, M.; He, R.; Yang, H.; Wang, R.; Ci, H. Assessment of soil erosion and its driving factors in the Huaihe region using the InVEST-SDR model. Geocarto Int. 2023, 38, 2213208. [Google Scholar] [CrossRef]
- Schröter, M.; Koellner, T.; Alkemade, R.; Arnhold, S.; Bagstad, K.J.; Erb, K.-H.; Frank, K.; Kastner, T.; Kissinger, M.; Liu, J.; et al. Interregional flows of ecosystem services: Concepts, typology and four cases. Ecosyst. Serv. 2018, 31, 231–241. [Google Scholar] [CrossRef]
- Li, T.; Li, J.; Wang, Y. Carbon sequestration service flow in the Guanzhong-Tianshui economic region of China: How it flows, what drives it, and where could be optimized? Ecol. Indic. 2019, 96, 548–558. [Google Scholar] [CrossRef]
- Costanza, R. Ecosystem services: Multiple classification systems are needed. Biol. Conserv. 2008, 141, 350–352. [Google Scholar] [CrossRef]
- Burkhard, B.; Crossman, N.; Nedkov, S.; Petz, K.; Alkemade, R. Mapping and modelling ecosystem services for science, policy and practice. Ecosyst. Serv. 2013, 4, 1–3. [Google Scholar] [CrossRef]
- Fan, Q.; Zhang, Y.; Wei, G.; Huang, X. Coupling coordination analysis of urban social vulnerability and human activity intensity. Environ. Res. Commun. 2025, 7, 035009. [Google Scholar] [CrossRef]
- Liu, S.; Shen, P.Y.; Huang, Y.S.; Jiang, L.; Feng, Y.J. Spatial distribution changes in nature-based recreation service supply from 2008 to 2018 in Shanghai, China. Land 2022, 11, 1862. [Google Scholar] [CrossRef]
- Łowicki, D.; Walz, U. Gradient of land cover and ecosystem service supply capacities-a comparison of suburban and rural fringes of towns Dresden (Germany) and Poznan (Poland). Proc. Earth Planet. Sci. 2015, 15, 495–501. [Google Scholar] [CrossRef]
- Lapointe, M.; Gurney, G.G.; Cumming, G.S. Perceived availability and access limitations to ecosystem service well-being benefits increase in urban areas. Ecol. Soc. 2020, 25, 15. [Google Scholar] [CrossRef]
- Chen, D.S.; Li, J.; Yang, X.N.; Zhou, Z.X.; Pan, Y.Q.; Li, M.C. Quantifying water provision service supply, demand and spatial flow for land use optimization: A case study in the YanHe watershed. Ecosyst. Serv. 2020, 43, 101117. [Google Scholar] [CrossRef]
- Chen, H.H.; Li, H.J.; Wang, Y.G.; Cheng, B.Q. A comprehensive assessment approach for water-soil environmental risk during railway construction in ecological fragile region based on AHP and MEA. Sustainability 2020, 12, 7910. [Google Scholar] [CrossRef]
- Li, J.; Zhou, H.W.; Cai, Z.Y. Measuring the smart growth spatial performance in developing city of Northwest China plains area. Geofluids 2021, 2021, 6624478. [Google Scholar] [CrossRef]
- Angela, C.B.; Javier, C.J.; Teresa, G.M.; Marisa, M.H. Hydrological evaluation of a peri-urban stream and its impact on ecosystem services potential. Glob. Ecol. Conserv. 2015, 3, 628–644. [Google Scholar] [CrossRef]
- Balzan, M.V.; Caruana, J.; Zammit, A. Assessing the capacity and flow of ecosystem services in multifunctional landscapes: Evidence of a rural-urban gradient in a Mediterranean small island state. Land Use Policy 2018, 75, 711–725. [Google Scholar] [CrossRef]
- Torres, A.B.; MacMillan, D.C.; Skutsch, M.; Lovett, J.C. Payments for ecosystem services and rural development: Landowners’ preferences and potential participation in western Mexico. Ecosyst. Serv. 2013, 6, 72–81. [Google Scholar] [CrossRef]
- Mandle, L.; Angarita, H.; Moreno, J.; Goldstein, J.A.; Melo, S.F.L.; Echeverri, A.; Rojas, N.; Villalba, F.D. Natural capital accounting reveals ecosystems’ role in water and energy security in Colombia’s Sinú Basin. Commun. Earth Environ. 2025, 6, 309. [Google Scholar] [CrossRef]
- Banerjee, O.; Cicowiez, M.; Torres-Rojo, J.M.; Bagstad, K.J.; Vargas, R.; Edens, B.; Salcone, J.; de Larrea, E.M.B.; Lopez-Conlon, M.; Rodríguez-Ortega, C.; et al. Integrating quantitative macroeconomic and ecosystem service modeling methods to assess conservation programs in Mexico. Environ. Resour. Econ. 2025, 88, 1995–2021. [Google Scholar] [CrossRef]
- Wu, S.Y.; Liu, K.D.; Zhang, W.T.; Dou, Y.H.; Chen, Y.Q.; Zhang, T.P.; Li, D.L. An integrated analysis framework of supply, demand, flow, and use to better understand realized ecosystem services. Ecosyst. Serv. 2024, 69, 101649. [Google Scholar] [CrossRef]
- Zhong, Z.; Fang, X.N.; Zhang, Y.; Shu, X.F.; Guo, D. Mapping ecosystem service supply-demand bundles for an integrated analysis of tradeoffs in an urban agglomeration of China. Land 2022, 11, 1558. [Google Scholar] [CrossRef]
- Danielaini, T.T.; Maheshwari, B.; Hagare, D. Defining rural-urban interfaces for understanding ecohydrological processes in West Java, Indonesia: Part II. Its application to quantify rural-urban interface ecohydrology. Ecohydrol. Hydrobiol. 2018, 18, 37–51. [Google Scholar] [CrossRef]
- Fang, G.J.; Sun, X.; Sun, R.H.; Liu, Q.H.; Tao, Y.; Yang, P.; Tang, H.J. Advancing the optimization of urban-rural ecosystem service supply-demand mismatches and trade-offs. Landsc. Ecol. 2024, 39, 32. [Google Scholar] [CrossRef]
- Sun, X.; Liu, H.; Liao, C.; Nong, H.; Yang, P. Understanding recreational ecosystem service supply-demand mismatch and social groups’ preferences: Implications for urban–rural planning. Landsc. Urban Plan. 2024, 241, 104903. [Google Scholar] [CrossRef]
- Cen, L.Y.; Duan, C.C.; Liu, G.Y.; Chen, B.; Wang, H. Optimized layout of nature-based solutions (NbS) facilities for reducing urban flooding risks and improving ecosystem services. Sustain. Cities Soc. 2025, 130, 106667. [Google Scholar] [CrossRef]
- Mu, Y.L.; Wang, J.; Zhao, C.S.; Li, X.W.; Liu, Y.B.; Lv, J.T. Conservation planning of multiple ecosystem services in the Yangtze River Basin by quantifying trade-offs and synergies. Sustainability 2024, 16, 2511. [Google Scholar] [CrossRef]












| Name | Year | Spatial Resolution | Data Source |
|---|---|---|---|
| Land Use | 2020 | 10 m | ESA WorldCover 2020 (https://viewer.esa-worldcover.org/worldcover, accessed on 12 March 2024) |
| PM2.5 | 2020 | 1 km | CNEMC (China’s National Environmental Monitoring Center), MODIS series products, ERA5 atmospheric reanalysis product, MEIC, SRTM & LandScanTM |
| DEM | 2020 | 30 m | Geospatial Data Cloud (https://www.gscloud.cn, accessed on 5 April 2024) |
| Average Temperature in July | 2020 | 1 km | National Earth System Science Data Center (https://www.geodata.cn, accessed on 22 May 2024) |
| Temperature | 2020 | 1 km | Geographic Data Sharing Infrastructure, global resources data cloud (http://www.gis5g.com, accessed on 18 June 2024) |
| PET | 2020 | 1 km | National Earth System Science Data Center (https://www.geodata.cn, accessed on 22 May 2024) |
| Precipitation | 2020 | 1 km | National Earth System Science Data Center (https://www.geodata.cn) |
| Slope | 2020 | 30 m | National Earth System Science Data Center (https://www.geodata.cn) |
| Soil | 2018 | 1 km | Chinese soil dataset from the World Soil Database (HWSD) (https://data.tpdc.ac.cn, accessed on 10 July 2024) |
| Solar Radiation | 2020 | 300 m | National Earth System Science Data Center (https://www.geodata.cn) |
| NPP | 2020 | 500 m | National Earth System Science Data Center, National Science & Technology Infrastructure of China (http://www.geodata.cn) |
| NDVI | 2020 | 1 km | MODIS vegetation index dataset (https://lpdaac.usgs.gov, accessed on 10 July 2024) |
| Nighttime Light | 2020 | 1 km | Plateau Scientific Data Center (https://data.tpdc.ac.cn) |
| Factors | Name | States 1 | Actual Values |
|---|---|---|---|
| Elevation | DEM | 1 | 6–248 |
| 2 | 248–547 | ||
| 3 | 547–1459 | ||
| Average annual temperature | TEM | 1 | 11.6–14.8 |
| 2 | 14.8–15.8 | ||
| 3 | 15.8–16.6 | ||
| Annual precipitation | Prec | 1 | 547.8–614.5 |
| 2 | 614.6–667.1 | ||
| 3 | 667.2–874.8 | ||
| Slope | Slope | 1 | 0–7.4 |
| 2 | 7.4–19.0 | ||
| 3 | 19.0–70.2 | ||
| Soil types | Soil | 1 | 1. Urban area |
| 2 | 2. Rivers; Sandbanks and islands within rivers; Lakes and reservoirs; Tidal soils | ||
| 3 | 3. Coarse-grained soil; Brown soil; Aeolian soil; Yellow loam; New alluvial soil; Chestnut soil | ||
| Land use type | LUCC | 1 | 1. Constructed land; |
| 2 | 2. Forest vegetation; Shrubland; Cropland; Grassland; Bare/scattered vegetation | ||
| 3 | 3. Water bodies; Wetlands | ||
| Net primary productivity | NPP | 1 | 0–154.5 |
| 2 | 154.6–360.5 | ||
| 3 | 360.6–596.9 | ||
| Normalized difference vegetation index | NDVI | 1 | 0.07–0.51 |
| 2 | 0.51–0.68 | ||
| 3 | 0.68–0.92 | ||
| Nighttime light | NTL | 1 | 0–1976 |
| 2 | 1976–4246 | ||
| 3 | 4246–6300 | ||
| Fractional vegetation cover | FAC | 1 | 2981–5,510,391 |
| 2 | 5,510,391–18,677,633 | ||
| 3 | 18,677,633–37,382,701 | ||
| Leaf area index | LAI | 1 | 0–4 |
| 2 | 4–9 | ||
| 3 | 9–25 | ||
| Soil erosion factors | K | 1 | 0.03–0.036 |
| 2 | 0.036–0.041 | ||
| 3 | 0.041–0.052 | ||
| Integrated actual ES supply | IAS | 1 | 0–0.2 |
| 2 | 0.2–0.3 | ||
| 3 | 0.3–1 |
| Factors | q-Value | p-Value | Factors | q-Value | p-Value |
|---|---|---|---|---|---|
| FAC | 0.676 | <0.001 | NPP | 0.257 | <0.001 |
| TEM | 0.585 | <0.001 | K | 0.247 | <0.001 |
| LAI | 0.525 | <0.001 | LUCC | 0.235 | <0.001 |
| DEM | 0.508 | <0.001 | NDVI | 0.159 | <0.001 |
| Slope | 0.489 | <0.001 | Prec | 0.155 | <0.001 |
| Soil | 0.377 | <0.001 | NTL | 0.049 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Fan, Q.; Liu, B.; Wei, G.; Zhang, S.; Hu, J. Multi-Dimensional Comparison and Sustainable Spatial Optimization of Ecosystem Services Supply–Demand Matching Between Urban and Rural Areas: A Case Study of Zhengzhou City. Sustainability 2025, 17, 11049. https://doi.org/10.3390/su172411049
Zhang Y, Fan Q, Liu B, Wei G, Zhang S, Hu J. Multi-Dimensional Comparison and Sustainable Spatial Optimization of Ecosystem Services Supply–Demand Matching Between Urban and Rural Areas: A Case Study of Zhengzhou City. Sustainability. 2025; 17(24):11049. https://doi.org/10.3390/su172411049
Chicago/Turabian StyleZhang, Yuxia, Qindong Fan, Baoguo Liu, Guojie Wei, Shaowei Zhang, and Jian Hu. 2025. "Multi-Dimensional Comparison and Sustainable Spatial Optimization of Ecosystem Services Supply–Demand Matching Between Urban and Rural Areas: A Case Study of Zhengzhou City" Sustainability 17, no. 24: 11049. https://doi.org/10.3390/su172411049
APA StyleZhang, Y., Fan, Q., Liu, B., Wei, G., Zhang, S., & Hu, J. (2025). Multi-Dimensional Comparison and Sustainable Spatial Optimization of Ecosystem Services Supply–Demand Matching Between Urban and Rural Areas: A Case Study of Zhengzhou City. Sustainability, 17(24), 11049. https://doi.org/10.3390/su172411049

