CrackLite-Net: A Sustainable Transportation-Oriented Real-Time Lightweight Network for Adaptive Road Crack Detection
Abstract
1. Introduction
- The backbone module GhostPercepC2f combines the low-cost feature generation of the Ghost structure with an axis-aware attention mechanism. This integration enhances spatial sensitivity to crack features while maintaining a low computational footprint.
- The SAFPN (Spatial Attention-Enhanced Feature Pyramid Network) module enables adaptive multi-scale feature fusion. It incorporates inter-layer feature interaction, attention-guided enhancement, and feature flow reconstruction, improving the model’s ability to detect cracks with varying widths and lengths.
- The SC2f (Selective Channel-Enhanced Cross-Stage Feature Fusion Module) dynamically models channel-wise feature importance. It replaces fully connected layers with adaptive one-dimensional convolution, effectively emphasizing crack-relevant features and suppressing irrelevant background information. This design improves the model’s overall discriminative capability with minimal computational overhead.
- In addition, existing public road crack datasets lack high-resolution UAV imagery with detailed crack annotations, which are essential for real UAV inspection scenarios. Therefore, we constructed the LCrack dataset to address these limitations and provide more realistic and diverse samples for model training and generalization evaluation.
2. Materials and Methods
2.1. Datasets
2.2. CrackLite-Net
2.2.1. Architecture
2.2.2. GhostPercepC2f
2.2.3. SAFPN
2.2.4. SC2f
2.3. Experimental Settings
2.3.1. Experimental Environment
2.3.2. Evaluation Metrics
3. Experimental Results and Analysis
3.1. Ablation Study
3.2. Comparison Experiments
3.3. Visualization
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zou, Q.; Cao, Y.; Li, Q.; Mao, Q.; Wang, S. CrackTree: Automatic crack detection from pavement images. Pattern Recognit. Lett. 2012, 33, 227–238. [Google Scholar] [CrossRef]
- Wu, S.; Fang, J.; Zheng, X.; Li, X. Sample and Structure-Guided Network for Road Crack Detection. IEEE Access 2019, 7, 130032–130043. [Google Scholar] [CrossRef]
- Cebon, D. Vehicle-Generated Road Damage: A Review. Veh. Syst. Dyn. 1989, 18, 107–150. [Google Scholar] [CrossRef]
- Deng, L.; Zhang, A.; Guo, J.; Liu, Y. An Integrated Method for Road Crack Segmentation and Surface Feature Quantification under Complex Backgrounds. Remote Sens. 2023, 15, 1530. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, C.; Li, G.; Xu, H. Analysis of the Impact of Different Road Conditions on Accident Severity at Highway–Rail Grade Crossings Based on Explainable Machine Learning. Symmetry 2025, 17, 147. [Google Scholar] [CrossRef]
- Qiu, Q.; Lau, D. Real-Time Detection of Cracks in Tiled Sidewalks Using YOLO-Based Method Applied to Unmanned Aerial Vehicle (UAV) Images. Autom. Constr. 2023, 147, 104745. [Google Scholar] [CrossRef]
- Du, Y.; Cheng, Q.; Liu, X.; Xu, J.; Yi, Y. Enhancing Road Maintenance through Cyber-Physical Integration: The LEE-YOLO Model for Drone-Assisted Pavement Crack Detection. IEEE Trans. Intell. Transp. Syst. 2025, 26, 14169–14178. [Google Scholar] [CrossRef]
- Mohan, A.; Poobal, S. Crack Detection Using Image Processing: A Critical Review and Analysis. Alex. Eng. J. 2018, 57, 787–798. [Google Scholar] [CrossRef]
- Li, T.; Li, G. Road Defect Identification and Location Method Based on an Improved ML-YOLO Algorithm. Sensors 2024, 24, 6783. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.D.; Miyojim, M. Automatic Pavement Distress Detection System. Inf. Sci. 1998, 108, 219–240. [Google Scholar] [CrossRef]
- Liu, F.; Liu, J.; Wang, L. Asphalt Pavement Crack Detection Based on Convolutional Neural Network and Infrared Thermography. IEEE Trans. Intell. Transp. Syst. 2022, 23, 22145–22155. [Google Scholar] [CrossRef]
- Bhardwaj, M.; Khan, N.U.; Baghel, V. Fuzzy C-Means Clustering Based Selective Edge Enhancement Scheme for Improved Road Crack Detection. Eng. Appl. Artif. Intell. 2024, 136, 108955. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, L.; Yu, S.; Prokhorov, D.; Mei, X.; Ling, H. Feature Pyramid and Hierarchical Boosting Network for Pavement Crack Detection. IEEE Trans. Intell. Transp. Syst. 2020, 21, 1525–1535. [Google Scholar] [CrossRef]
- Maode, Y.; Shaobo, B.; Kun, X.; Yuyao, H. Pavement Crack Detection and Analysis for High-Grade Highway. In Proceedings of the 8th International Conference on Electronic Measurement and Instruments (ICEMI 2007), Xi’an, China, 16–18 August 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 4548–4552. [Google Scholar] [CrossRef]
- Zhou, J. Wavelet-Based Pavement Distress Detection and Evaluation. Opt. Eng. 2006, 45, 027007. [Google Scholar] [CrossRef]
- Shi, Y.; Cui, L.; Qi, Z.; Meng, F.; Chen, Z. Automatic Road Crack Detection Using Random Structured Forests. IEEE Trans. Intell. Transp. Syst. 2016, 17, 3434–3445. [Google Scholar] [CrossRef]
- Chen, C.; Seo, H.; Jun, C.H.; Zhao, Y. Pavement crack detection and classification based on fusion feature of LBP and PCA with SVM. Int. J. Pavement Eng. 2021, 23, 3274–3283. [Google Scholar] [CrossRef]
- Alam, S.Y.; Loukili, A.; Grondin, F.; Rozière, E. Use of the Digital Image Correlation and Acoustic Emission Technique to Study the Effect of Structural Size on Cracking of Reinforced Concrete. Eng. Fract. Mech. 2015, 143, 17–31. [Google Scholar] [CrossRef]
- Kaseko, M.S.; Ritchie, S.G. A Neural Network-Based Methodology for Pavement Crack Detection and Classification. Transp. Res. Part C Emerg. Technol. 1993, 1, 275–291. [Google Scholar] [CrossRef]
- Xu, H.; Zheng, W.; Liu, F.; Li, P.; Wang, R. Unmanned Aerial Vehicle Perspective Small Target Recognition Algorithm Based on Improved YOLOv5. Remote Sens. 2023, 15, 3583. [Google Scholar] [CrossRef]
- Mayer, H. Fatigue Crack Growth and Threshold Measurements at Very High Frequencies. Int. Mater. Rev. 1999, 44, 1–34. [Google Scholar] [CrossRef]
- Jiang, X.; Ma, Z.J.; Ren, W. Crack Detection from the Slope of the Mode Shape Using Complex Continuous Wavelet Transform. Comput.-Aided Civ. Infrastruct. Eng. 2012, 27, 187–201. [Google Scholar] [CrossRef]
- Ye, X.; Wang, L.; Huang, C.; Luo, X. Wind Turbine Blade Defect Detection with a Semi-Supervised Deep Learning Framework. Eng. Appl. Artif. Intell. 2024, 136, 108908. [Google Scholar] [CrossRef]
- Zhang, A.; Wang, K.C.; Li, B.; Yang, E.; Dai, X.; Peng, Y.; Fei, Y.; Liu, Y.; Li, J.Q.; Chen, C. Automated Pixel-Level Pavement Crack Detection on 3D Asphalt Surfaces Using a Deep-Learning Network. Comput. Aided Civ. Infrastruct. Eng. 2017, 32, 805–819. [Google Scholar] [CrossRef]
- Wu, W.; Yin, Y.; Wang, X.; Xu, D. Face Detection with Different Scales Based on Faster R-CNN. IEEE Trans. Cybern. 2019, 49, 4017–4028. [Google Scholar] [CrossRef]
- Zhou, K.; Lei, D.; Chun, P.J.; She, Z.; He, J.; Du, W.; Hong, M. Evaluation of BFRP Strengthening and Repairing Effects on Concrete Beams Using DIC and YOLO-v5 Object Detection Algorithm. Constr. Build. Mater. 2024, 411, 134594. [Google Scholar] [CrossRef]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 2980–2988. [Google Scholar] [CrossRef]
- Xu, X.; Zhao, M.; Shi, P.; Ren, R.; He, X.; Wei, X.; Yang, H. Crack Detection and Comparison Study Based on Faster R-CNN and Mask R-CNN. Sensors 2022, 22, 1215. [Google Scholar] [CrossRef]
- Zhou, Q.; Ding, S.; Qing, G.; Hu, J. UAV Vision Detection Method for Crane Surface Cracks Based on Faster R-CNN and Image Segmentation. J. Civ. Struct. Health Monit. 2022, 12, 845–855. [Google Scholar] [CrossRef]
- Liu, Z.; Yeoh, J.K.W.; Gu, X.; Dong, Q.; Chen, Y.; Wu, W.; Wang, L.; Wang, D. Automatic pixel-level detection of vertical cracks in asphalt pavement based on GPR investigation and improved Mask R-CNN. Autom. Constr. 2023, 146, 104689. [Google Scholar] [CrossRef]
- Li, R.; Yu, J.; Li, F.; Yang, R.; Wang, Y.; Peng, Z. Automatic Bridge Crack Detection Using Unmanned Aerial Vehicle and Faster R-CNN. Constr. Build. Mater. 2023, 362, 129659. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef]
- Xiang, X.; Wang, Z.; Qiao, Y. An Improved YOLOv5 Crack Detection Method Combined with Transformer. IEEE Sens. J. 2022, 22, 14328–14335. [Google Scholar] [CrossRef]
- Tran, V.P.; Tran, T.S.; Lee, H.J.; Kim, K.D.; Baek, J.; Nguyen, T.T. One-Stage Detector (RetinaNet)-Based Crack Detection for Asphalt Pavements Considering Pavement Distresses and Surface Objects. J. Civ. Struct. Health Monit. 2021, 11, 205–222. [Google Scholar] [CrossRef]
- Su, P.; Han, H.; Liu, M.; Yang, T.; Liu, S. MOD-YOLO: Rethinking the YOLO Architecture at the Level of Feature Information and Applying It to Crack Detection. Expert Syst. Appl. 2024, 237, 121346. [Google Scholar] [CrossRef]
- Zhu, X.; Hang, X.; Gao, X.; Yang, X.; Xu, Z.; Wang, Y.; Liu, H. Research on Crack Detection Method of Wind Turbine Blade Based on a Deep Learning Method. Appl. Energy 2022, 328, 120241. [Google Scholar] [CrossRef]
- Suhendar, H. Road Crack Detection Using YOLO-V5 and Adaptive Thresholding. J. Appl. Intell. Syst. 2023, 8, 425–431. [Google Scholar] [CrossRef]
- Jing, Y.; Ren, Y.; Liu, Y.; Wang, D.; Yu, L. Automatic Extraction of Damaged Houses by Earthquake Based on Improved YOLOv5: A Case Study in Yangbi. Remote Sens. 2022, 14, 382. [Google Scholar] [CrossRef]
- Huang, Z.; Wang, J.; Fu, X.; Yu, T.; Guo, Y.; Wang, R. DC-SPP-YOLO: Dense Connection and Spatial Pyramid Pooling Based YOLO for Object Detection. Inf. Sci. 2020, 522, 241–258. [Google Scholar] [CrossRef]
- Yu, Z.; Shen, Y.; Shen, C. A Real-Time Detection Approach for Bridge Cracks Based on YOLOv4-FPM. Autom. Constr. 2021, 122, 103514. [Google Scholar] [CrossRef]
- Guo, G.; Zhang, Z. Road Damage Detection Algorithm for Improved YOLOv5. Sci. Rep. 2022, 12, 15523. [Google Scholar] [CrossRef]
- Ye, G.; Qu, J.; Tao, J.; Dai, W.; Mao, Y.; Jin, Q. Autonomous Surface Crack Identification of Concrete Structures Based on the YOLOv7 Algorithm. J. Build. Eng. 2023, 73, 106688. [Google Scholar] [CrossRef]
- Zeng, J.; Zhong, H. YOLOv8-PD: An improved road damage detection algorithm based on YOLOv8n model. Sci. Rep. 2024, 14, 12052. [Google Scholar] [CrossRef]
- Guo, F.; Qian, Y.; Liu, J.; Yu, H. Pavement Crack Detection Based on Transformer Network. Autom. Constr. 2023, 145, 104646. [Google Scholar] [CrossRef]
- Liu, H.; Miao, X.; Mertz, C.; Xu, C.; Kong, H. CrackFormer: Transformer Network for Fine-Grained Crack Detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021; pp. 3783–3792. [Google Scholar] [CrossRef]
- Chen, S.; Feng, Z.; Xiao, G.; Chen, X.; Gao, C.; Zhao, M.; Yu, H. Pavement Crack Detection Based on the Improved Swin-UNet Model. Buildings 2024, 14, 1442. [Google Scholar] [CrossRef]
- Arya, D.; Maeda, H.; Ghosh, S.K.; Toshniwal, D.; Sekimoto, Y. RDD2022: A Multi-National Image Dataset for Automatic Road Damage Detection. Geosci. Data J. 2024, 11, 846–862. [Google Scholar] [CrossRef]





| Model | GhostPercepC2f | SAFPN | SC2f | mAP(%) | Params/M |
|---|---|---|---|---|---|
| YOLO12n | 88.4 | 2.6 | |||
| Method (1) | ✓ | 89.8 | 2.1 | ||
| Method (2) | ✓ | ✓ | 90.2 | 2.1 | |
| Method (3) | ✓ | ✓ | ✓ | 92.3 | 2.2 |
| Model | Datasets | ||||||||
|---|---|---|---|---|---|---|---|---|---|
| LCrack | RDD2022 | Params/M | |||||||
| Precision (%) | Recall (%) | F1 (%) | mAP (%) | Precision (%) | Recall (%) | F1 (%) | mAP (%) | ||
| EfficientDet | 88.6 | 71.0 | 78.8 | 79.5 | 63.2 | 44.1 | 52.0 | 50.1 | 12.0 |
| DETR | 84.5 | 75.2 | 79.6 | 81.3 | 61.6 | 45.6 | 52.4 | 51.8 | 32.8 |
| YOLO10 | 79.9 | 78.1 | 79.0 | 81.7 | 59.4 | 49.0 | 53.7 | 52.6 | 2.7 |
| YOLO11 | 83.4 | 78.1 | 80.7 | 83.6 | 59.6 | 50.8 | 54.8 | 53.3 | 2.6 |
| Swin-T | 89.1 | 74.4 | 81.1 | 84.5 | 61.5 | 48.5 | 54.2 | 53.6 | 28.3 |
| RT-DETR | 88.3 | 77.1 | 82.3 | 85.3 | 63.7 | 49.2 | 55.5 | 57.2 | 20.0 |
| YOLO12 | 84.7 | 83.5 | 84.1 | 88.2 | 64.8 | 51.2 | 57.2 | 60.8 | 2.5 |
| CrackLite-Net | 92.4 | 85.2 | 88.7 | 93.3 | 65.5 | 53.0 | 58.6 | 61.2 | 2.2 |
| Model | Precision (%) | Recall (%) | F1 (%) | mAP (%) |
|---|---|---|---|---|
| MN-YOLOv5 | 83.5 | 81.7 | 82.6 | 82.5 |
| YOLOv8-PD | 86.7 | 82.9 | 84.8 | 86.8 |
| LEE-YOLO | 88.3 | 84.6 | 86.4 | 89.4 |
| CrackLite-Net | 92.4 | 85.2 | 88.7 | 93.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, R.; Zhang, Y. CrackLite-Net: A Sustainable Transportation-Oriented Real-Time Lightweight Network for Adaptive Road Crack Detection. Sustainability 2025, 17, 10973. https://doi.org/10.3390/su172410973
Pan R, Zhang Y. CrackLite-Net: A Sustainable Transportation-Oriented Real-Time Lightweight Network for Adaptive Road Crack Detection. Sustainability. 2025; 17(24):10973. https://doi.org/10.3390/su172410973
Chicago/Turabian StylePan, Ruiyunfei, and Yaojun Zhang. 2025. "CrackLite-Net: A Sustainable Transportation-Oriented Real-Time Lightweight Network for Adaptive Road Crack Detection" Sustainability 17, no. 24: 10973. https://doi.org/10.3390/su172410973
APA StylePan, R., & Zhang, Y. (2025). CrackLite-Net: A Sustainable Transportation-Oriented Real-Time Lightweight Network for Adaptive Road Crack Detection. Sustainability, 17(24), 10973. https://doi.org/10.3390/su172410973

