The Impact of Open Public Data on Corporate Low-Carbon Technological Innovation: Evidence from China
Abstract
1. Introduction
2. Institutional Background and Theoretical Hypotheses
2.1. Policy Background
2.2. Theoretical Hypotheses
3. Research Design
3.1. Sample Selection and Data Sources
3.2. Variable Construction
3.2.1. Dependent Variable
3.2.2. Core Independent Variable
3.2.3. Control Variables
3.3. Estimation Model
4. Results and Analysis
4.1. Benchmark Regression
4.2. Robustness Checks
4.2.1. Parallel Trend Test
4.2.2. Tests for Heterogeneous Treatment Effects
4.2.3. Placebo Test
4.2.4. Eliminating Other Policies’ Interference
4.3. Other Robustness Tests
4.3.1. Two-Way Clustered Standard Errors
4.3.2. Adjusting the Sample Period
4.3.3. PSM
4.3.4. Replacing Dependent Variable
4.4. Endogeneity Test
4.5. Mechanism Analysis
4.5.1. Government Transparency
4.5.2. Barriers to Factor Mobility
4.6. Heterogeneity Analysis
4.6.1. R&D Investment
4.6.2. Financing Constraints
4.6.3. Digitalization Level
5. Further Discussion: Non-Rival Spillover Effects of Public Data Openness
5.1. Geographical Spillover Effect
5.2. Industry Spillover Effect
6. Conclusions and Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, H.; Feng, T.; Kong, J.; Cui, M.; Xu, M. Grappling with the trade-offs of carbon emission trading and green certificate: Achieving carbon neutrality in China. J. Environ. Manag. 2024, 360, 121101. [Google Scholar] [CrossRef]
- Malhotra, A.; Schmidt, T.S. Accelerating low-carbon innovation. Joule 2020, 4, 2259–2267. [Google Scholar] [CrossRef]
- Mao, Y.; Lin, Y. Do more hands make work easier? Public supervision and corporate green innovation. Int. Rev. Econ. Finance 2024, 91, 1064–1083. [Google Scholar] [CrossRef]
- Jones, C.I.; Tonetti, C. Nonrivalry and the economics of data. Am. Econ. Rev. 2020, 110, 2819–2858. [Google Scholar] [CrossRef]
- Chen, K.; Zhang, S. How does open public data impact enterprise digital transformation? Econ. Anal. Policy 2024, 83, 178–190. [Google Scholar] [CrossRef]
- Liu, L. The rise of data politics: Digital China and the world. Stud. Comp. Int. Dev. 2021, 56, 45–67. [Google Scholar] [CrossRef] [PubMed]
- Nagaraj, A. The Private Impact of Public Data: Landsat Satellite Maps Increased Gold Discoveries and Encouraged Entry. Manag. Sci. 2022, 68, 564–582. [Google Scholar] [CrossRef]
- Magalhaes, G.; Roseira, C. Open government data and the private sector: An empirical view on business models and value creation. Gov. Inf. Q. 2020, 37, 101248. [Google Scholar] [CrossRef]
- Yan, R.; Xing, C.; Chen, X.; Zhao, Y. Is it real or illusory? An empirical examination of the impact of open government data on innovation capability in the case of China. Technol. Soc. 2023, 75, 102396. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, Y.; Wang, H.; Ouyang, X.; Xie, Y. Can green credit policy promote low-carbon technology innovation? J. Clean. Prod. 2022, 359, 132061. [Google Scholar] [CrossRef]
- Lyu, Y.; Bai, Y.; Zhang, J. Digital transformation and enterprise low-carbon innovation: A new perspective from innovation motivation. J. Environ. Manag. 2024, 365, 121663. [Google Scholar] [CrossRef]
- Yang, G.; Nie, Y.; Li, H.; Wang, H. Digital transformation and low-carbon technology innovation in manufacturing firms: The mediating role of dynamic capabilities. Int. J. Prod. Econ. 2023, 263, 108969. [Google Scholar] [CrossRef]
- Wang, M.; Li, Y.; Li, M.; Shi, W.; Quan, S. Will carbon tax affect the strategy and performance of Low-carbon technology sharing between Enterprises? J. Clean. Prod. 2019, 210, 724–737. [Google Scholar] [CrossRef]
- Luo, Y.; Liu, Y.; Wang, D.; Han, W. Low-carbon city pilot policy and enterprise low-carbon innovation—A quasi-natural experiment from China. Econ. Anal. Policy 2024, 83, 204–222. [Google Scholar] [CrossRef]
- Qi, S.Z.; Zhou, C.B.; Li, K.; Tang, S.Y. Influence of a pilot carbon trading policy on enterprises’ low-carbon innovation in China. Clim. Policy 2021, 21, 318–336. [Google Scholar] [CrossRef]
- Hughes-Cromwick, E.; Coronado, J. The value of US government data to US business decisions. J. Econ. Perspect. 2019, 33, 131–146. [Google Scholar] [CrossRef]
- Wainwright, T.; Huber, F.; Stöckmann, C.; Kraus, S. Open data platforms for transformational entrepreneurship: Inclusion and exclusion mechanisms. Int. J. Inf. Manag. 2023, 72, 102664. [Google Scholar] [CrossRef]
- Schmidthuber, L.; Ingrams, A.; Hilgers, D. Government openness and public trust: The mediating role of democratic capacity. Public Adm. Rev. 2021, 81, 91–109. [Google Scholar] [CrossRef]
- Goldfarb, A.; Tucker, C. Digital economics. J. Econ. Lit. 2019, 57, 3–43. [Google Scholar] [CrossRef]
- Shane, S. Prior knowledge and the discovery of entrepreneurial opportunities. Organ. Sci. 2000, 11, 448–469. [Google Scholar] [CrossRef]
- Grimmelikhuijsen, S.; Porumbescu, G.; Hong, B.; Im, T. The effect of transparency on trust in government: A cross-national comparative experiment. Public Adm. Rev. 2013, 73, 575–586. [Google Scholar] [CrossRef]
- Tao, F.; Wang, Y.; Zuo, Y.; Yang, H.; Zhang, M. Internet of Things in product life-cycle energy management. J. Ind. Inf. Integr. 2016, 1, 26–39. [Google Scholar] [CrossRef]
- Yu, Y.; Xie, B.; Dou, Z.; Fu, Q. Managerial myopia and corporate innovation strategy. Finance Res. Lett. 2024, 67, 105733. [Google Scholar] [CrossRef]
- Park, S.; Gil-Garcia, J.R. Open data innovation: Visualizations and process redesign as a way to bridge the transparency-accountability gap. Gov. Inf. Q. 2022, 39, 101456. [Google Scholar] [CrossRef]
- Zuiderwijk, A.; Janssen, M. Open data policies, their implementation and impact: A framework for comparison. Gov. Inf. Q. 2014, 31, 17–29. [Google Scholar] [CrossRef]
- Viscusi, W.K.; Harrington, J.E., Jr.; Sappington, D.E. Economics of Regulation and Antitrust; MIT Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Aghion, P.; Cai, J.; Dewatripont, M.; Du, L.; Harrison, A.; Legros, P. Industrial policy and competition. Am. Econ. J. Macroecon. 2015, 7, 1–32. [Google Scholar] [CrossRef]
- Guo, Q.; Zhou, A.; Liu, M. Factor market distortion, environmental regulation, and green innovation. J. Clean. Prod. 2020, 277, 123194. [Google Scholar]
- Zhu, J.; Fan, Y.; Deng, X.; Xue, L. Low-carbon innovation induced by emissions trading in China. Nat. Commun. 2019, 10, 4088. [Google Scholar] [CrossRef]
- Dong, Z.; Wang, J. Does public data access stimulate the efficiency of corporate green innovation? Financ. Res. Lett. 2024, 65, 105560. [Google Scholar] [CrossRef]
- Beck, T.; Levine, R.; Levkov, A. Big bad banks? The winners and losers from bank deregulation in the United States. J. Financ. 2010, 65, 1637–1667. [Google Scholar] [CrossRef]
- Fung, S.Y.K.; Raman, K.K.; Zhu, X.K. Does the PCAOB international inspection program improve audit quality for non-US-listed foreign clients? J. Account. Econ. 2017, 64, 15–36. [Google Scholar] [CrossRef]
- Callaway, B.; Sant’Anna, P.H. Difference-in-Differences with Multiple Time Periods. J. Econ. 2021, 225, 200–230. [Google Scholar] [CrossRef]
- Berliner, D. The political origins of transparency. J. Polit. 2014, 76, 479–491. [Google Scholar] [CrossRef]
- Gutiérrez, G.; Philippon, T. Declining Competition and Investment in the US; National Bureau of Economic Research: Cambridge, MA, USA, 2017. [Google Scholar]
- Barney, J. Firm Resources and Sustained Competitive Advantage. J. Manag. 1991, 17, 99–120. [Google Scholar] [CrossRef]
- Weber, T.A.; Neuhoff, K. Carbon markets and technological innovation. J. Environ. Econ. Manag. 2010, 60, 115–132. [Google Scholar] [CrossRef]
- Wei, J.; Li, Y.; Liu, X.; Du, Y. Enterprise characteristics and external influencing factors of sustainable innovation: Based on China’s innovation survey. J. Clean. Prod. 2022, 372, 133461. [Google Scholar] [CrossRef]
- Bhattacharya, U.; Hsu, P.H.; Tian, X.; Xu, Y. What affects innovation more: Policy or policy uncertainty? J. Financ. Quant. Anal. 2017, 52, 1869–1901. [Google Scholar] [CrossRef]
- Addula, S.R.; Tyagi, A.K.; Naithani, K.; Kumari, S. Blockchain-Empowered Internet of Things (IoTs) Platforms for Automation in Various Sectors. In Artificial Intelligence-Enabled Digital Twin for Smart Manufacturing, 1st ed.; Kumari, S., Tyagi, A.K., Eds.; Wiley: Hoboken, NJ, USA, 2024; pp. 443–477. [Google Scholar]
- Bharadwaj, A.; El Sawy, O.A.; Pavlou, P.A.; Venkatraman, N.V. Digital business strategy: Toward a next generation of insights. MIS Q. 2013, 37, 471–482. [Google Scholar] [CrossRef]
- Kaplan, S.N.; Zingales, L. Do investment-cash flow sensitivities provide useful measures of financing constraints? Q. J. Econ. 1997, 112, 169–215. [Google Scholar] [CrossRef]
- He, G.; Li, Z.; Yu, L.; Zhou, Z. Does commercial reform embracing digital technologies mitigate stock price crash risk? J. Corp. Financ. 2025, 91, 102741. [Google Scholar] [CrossRef]
- Alder, S.; Shao, L.; Zilibotti, F. Economic reforms and industrial policy in a panel of Chinese cities. J. Econ. Growth 2016, 21, 305–349. [Google Scholar] [CrossRef]
- Li, X.; Yuan, C.; Zhao, Y.; Wu, M.; Cao, A.; Liu, L. Peer effects in urban pollution and carbon reduction: Evidence from China. Sustain. Cities Soc. 2025, 130, 106521. [Google Scholar] [CrossRef]



| Variables | Definition | Obs. | Mean | SD |
|---|---|---|---|---|
| Lct | The logarithm of the number of low-carbon patent applications | 37,705 | 0.194 | 0.553 |
| Open | A value of 1 is assigned when the firm’s province has implemented an open public data platform; otherwise, the value is 0 | 37,705 | 0.575 | 0.494 |
| Lev | The proportion of total debts to total assets | 37,705 | 0.398 | 0.197 |
| Roa | Net profit after tax to total assets | 37,705 | 0.044 | 0.054 |
| Size | The natural logarithm of total assets | 37,705 | 22.155 | 1.271 |
| Age | The natural logarithm of the current year minus the year of listing plus one | 37,705 | 1.913 | 0.940 |
| Tobinq | The ratio of firm market value to replacement capital | 37,705 | 1.963 | 1.118 |
| Board | The number of directors on the board | 37,705 | 2.238 | 0.177 |
| Mhold | The ratio of management shareholding | 37,705 | 0.153 | 0.205 |
| Idr | The ratio of independent directors | 37,705 | 0.376 | 0.053 |
| Variables | Lct | |
|---|---|---|
| (1) | (2) | |
| Open | 0.028 *** | 0.026 *** |
| (0.009) | (0.009) | |
| Lev | 0.015 | |
| (0.032) | ||
| Roa | 0.047 | |
| (0.059) | ||
| Size | 0.060 *** | |
| (0.010) | ||
| Age | 0.011 | |
| (0.010) | ||
| Tobinq | 0.006 ** | |
| (0.003) | ||
| Board | −0.004 | |
| (0.035) | ||
| Mhold | 0.137 *** | |
| (0.034) | ||
| Idr | −0.020 | |
| (0.087) | ||
| Firm FE | YES | YES |
| Year FE | YES | YES |
| F-value | 10.675 *** | 8.304 *** |
| Observations | 37,705 | 37,705 |
| R-squared | 0.636 | 0.638 |
| Adj. R-squared | 0.590 | 0.592 |
| Variables | Simple Weighting | Calendar Time | Group | Dynamic |
|---|---|---|---|---|
| (1) | (2) | (3) | (4) | |
| Simple ATT | 0.057 *** | |||
| (0.022) | ||||
| GAverage | 0.036 * | |||
| (0.020) | ||||
| GAverage | 0.057 *** | |||
| (0.021) | ||||
| Pre_avg | −0.085 | |||
| (0.560) | ||||
| Post_avg | −0.071 ** | |||
| (0.031) |
| Variables | Lct | ||||
|---|---|---|---|---|---|
| (1) | (2) | (3) | (4) | (5) | |
| Open | 0.023 *** | 0.026 *** | 0.029 *** | 0.031 *** | 0.028 *** |
| (0.009) | (0.009) | (0.009) | (0.009) | (0.010) | |
| Pinfor | −0.022 | −0.028 * | |||
| (0.015) | (0.016) | ||||
| Ndata | −0.007 | −0.009 | |||
| (0.016) | (0.017) | ||||
| Wcity | −0.014 | −0.007 | |||
| (0.017) | (0.017) | ||||
| Lcarbon | −0.023 * | −0.024 * | |||
| (0.013) | (0.014) | ||||
| Control variables | YES | YES | YES | YES | YES |
| Firm FE | YES | YES | YES | YES | YES |
| Year FE | YES | YES | YES | YES | YES |
| Observations | 37,705 | 37,705 | 34,150 | 34,150 | 34,150 |
| R-squared | 0.638 | 0.638 | 0.642 | 0.642 | 0.642 |
| Variables | Two-Way Clustered Standard Errors | Removing Samples Prior to 2012 | PSM | Replacing Dependent Variable | |
|---|---|---|---|---|---|
| (1) | (2) | (3) | (4) | (5) | |
| Lct | Lct | Lct | Lct | Gup | |
| Open | 0.026 ** | 0.026 ** | 0.027 *** | 0.027 *** | 0.019 ** |
| (0.009) | (0.009) | (0.010) | (0.009) | (0.010) | |
| Control variables | YES | YES | YES | YES | YES |
| Firm FE | YES | YES | YES | YES | YES |
| Year FE | YES | YES | YES | YES | YES |
| Observations | 37,705 | 37,705 | 32,019 | 36,336 | 33,488 |
| R-squared | 0.638 | 0.638 | 0.674 | 0.641 | 0.639 |
| Variables | First Stage | Second Stage |
|---|---|---|
| (1) | (2) | |
| Open | Lct | |
| Open | 0.167 ** | |
| (0.0679) | ||
| Iv | 0.893 *** | |
| (0.0599) | ||
| Control variables | YES | YES |
| Firm FE | YES | YES |
| Year FE | YES | YES |
| Kleibergen–Paap rk LM statistics | 122.605 *** | |
| Cragg–Donald Wald F statistic | 442.057 | |
| Observations | 37,705 | 37,705 |
| Variables | Lct | |
|---|---|---|
| (1) | (2) | |
| Open | 0.039 *** | 0.012 |
| (0.009) | (0.010) | |
| Gt | 0.022 ** | |
| (0.009) | ||
| Open × Gt | −0.027 *** | |
| (0.010) | ||
| Fmb | −0.025 ** | |
| (0.010) | ||
| Open × Fmb | 0.031 *** | |
| (0.012) | ||
| Control variables | YES | YES |
| Firm FE | YES | YES |
| Year FE | YES | YES |
| Observations | 29,629 | 36,715 |
| R-squared | 0.674 | 0.638 |
| Variables | R&D Investment | Financing Constraints | Digitalization | |||
|---|---|---|---|---|---|---|
| Low | High | Low | High | Low | High | |
| (1) | (2) | (3) | (4) | (5) | (6) | |
| Open | 0.022 ** | 0.042 ** | 0.037 *** | 0.007 | 0.017 | 0.022 * |
| (0.009) | (0.017) | (0.012) | (0.013) | (0.011) | (0.012) | |
| Control variables | YES | YES | YES | YES | YES | YES |
| Firm FE | YES | YES | YES | YES | YES | YES |
| Year FE | YES | YES | YES | YES | YES | YES |
| Observations | 13,654 | 13,777 | 18,426 | 18,419 | 16,866 | 15,995 |
| R-squared | 0.572 | 0.709 | 0.666 | 0.671 | 0.610 | 0.728 |
| p-value of Chow test | 0.000 | 0.029 | 0.061 | |||
| Variables | Lct | |
|---|---|---|
| (1) | (2) | |
| Open | 0.025 *** | 0.025 *** |
| (0.009) | (0.009) | |
| Peer | 0.065 ** | 0.054 * |
| (0.031) | (0.031) | |
| Control variables | YES | YES |
| Firm FE | YES | YES |
| Year FE | YES | YES |
| Industry FE | YES | YES |
| Observations | 37,600 | 37,600 |
| R-squared | 0.639 | 0.641 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Wang, J.; Cai, Z. The Impact of Open Public Data on Corporate Low-Carbon Technological Innovation: Evidence from China. Sustainability 2025, 17, 10939. https://doi.org/10.3390/su172410939
Wang J, Wang J, Cai Z. The Impact of Open Public Data on Corporate Low-Carbon Technological Innovation: Evidence from China. Sustainability. 2025; 17(24):10939. https://doi.org/10.3390/su172410939
Chicago/Turabian StyleWang, Jing, Jie Wang, and Zhijian Cai. 2025. "The Impact of Open Public Data on Corporate Low-Carbon Technological Innovation: Evidence from China" Sustainability 17, no. 24: 10939. https://doi.org/10.3390/su172410939
APA StyleWang, J., Wang, J., & Cai, Z. (2025). The Impact of Open Public Data on Corporate Low-Carbon Technological Innovation: Evidence from China. Sustainability, 17(24), 10939. https://doi.org/10.3390/su172410939

