Evaluation of TOC Change Scenarios in Cropping Systems with and Without Diversification Across Different Scales: Insights from a Northern Italian Case Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Data Collection and Mapping
2.3. Simulation at Field Scale
2.4. Upscaling at Landscape Scale
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| SOC | Soil Organic Carbon |
| TOC | Total Organic Carbon |
| IDW | Inverse Distance Weighting |
| ML | Machine Learning |
References
- Stolbovoy, V.; Montanarella, L.; Filippi, N.; Jones, A.; Gallego, J.; Grassi, G. Soil Sampling Protocol to Certify the Changes of Organic Carbon Stock in Mineral Soil of the European Union, 2nd ed.; EUR 21576 EN/2; Office for Official Publications of the European Communities: Luxembourg, 2007; p. 56. Available online: https://esdac.jrc.ec.europa.eu/ESDB_Archive/eusoils_docs/other/EUR21576_2.pdf (accessed on 15 September 2025)ISBN 978-92-79-05379-5.
- Janzen, H.H. Carbon cycling in earth systems—A soil science perspective. Agric. Ecosyst. Environ. 2004, 104, 399–417. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [PubMed]
- Scharlemann, J.P.; Tanner, E.V.; Hiederer, R.; Kapos, V. Global soil carbon: Understanding and managing the largest terrestrial carbon pool. Carbon Manag. 2014, 5, 81–91. [Google Scholar] [CrossRef]
- Silva Neto, E.C.; Coelho-Junior, M.G.; Horák-Terra, I.; Gonçalves, T.S.; Anjos, L.H.C.; Pereira, M.G. Organic soils: Formation, classification and environmental changes records in the highlands of southeastern Brazil. Sustainability 2023, 15, 3416. [Google Scholar] [CrossRef]
- Siddique, K.H.M.; Bolan, N.; Rehman, A.; Farooq, M. Enhancing crop productivity for recarbonizing soil. Soil Tillage Res. 2024, 235, 105863. [Google Scholar] [CrossRef]
- Biskaborn, B.K.; Smith, S.L.; Noetzli, J.; Matthes, H.; Vieira, G.; Streletskiy, D.A.; Schoeneich, P.; Romanovsky, V.E.; Lewkowicz, A.G.; Abramov, A.; et al. Permafrost is warming at a global scale. Nat. Commun. 2019, 10, 264. [Google Scholar] [CrossRef]
- Winkler, K.; Fuchs, R.; Rounsevell, M.; Herold, M. Global land use changes are four times greater than previously estimated. Nat. Commun. 2021, 12, 2501. [Google Scholar] [CrossRef]
- Bouasria, A.; Namr, K.I.; Rahimi, A.; Ettachfini, E.M. Geospatial Assessment of Soil Organic Matter Variability at Sidi Bennour District in Doukkala Plain in Morocco. J. Ecol. Eng. 2021, 22, 120–130. [Google Scholar] [CrossRef]
- Dolan, S.; Clapp, C.; Allmaras, R.; Baker, J.; Molina, J. Soil organic carbon and nitrogen in a Minnesota soil as related to tillage, residue and nitrogen management. Soil. Tillage Res. 2006, 89, 221–231. [Google Scholar] [CrossRef]
- Van Wesemael, B.; Paustian, K.; Meersmans, J.; Goidts, E.; Barancikova, G.; Easter, M. Agricultural management explains historic changes in regional soil carbon stocks. Proc. Natl. Acad. Sci. USA 2010, 107, 14926–14930. [Google Scholar] [CrossRef]
- Knotters, M.; Teuling, K.; Reijneveld, A.; Lesschen, J.P.; Kuikman, P. Changes in organic matter contents and carbon stocks in Dutch soils, 1998–2018. Geoderma 2022, 414, 115751. [Google Scholar] [CrossRef]
- Kim, D.-H.; Wade, T.; Brym, Z.; Ogisma, L.; Bhattarai, R.; Bai, X.; Bhadha, J.; Her, Y. Assessing the agricultural, environmental, and economic effects of crop diversity management: A comprehensive review on crop rotation and cover crop practices. J. Environ. Manag. 2025, 387, 125833. [Google Scholar] [CrossRef] [PubMed]
- Laamrani, A.; Voroney, P.R.; Berg, A.A.; Gillespie, A.W.; March, M.; Deen, B.; Martin, R.C. Temporal Change of Soil Carbon on a Long-Term Experimental Site with Variable Crop Rotations and Tillage Systems. Agronomy 2020, 10, 840. [Google Scholar] [CrossRef]
- Di Bene, C.; Marchetti, A.; Francaviglia, R.; Farina, R. Soil Organic Carbon Dynamics in Typical Durum Wheat-Based Crop Rotation of Southern Italy. Ital. J. Agron. 2016, 11, 4. [Google Scholar] [CrossRef]
- Novara, A.; Cerda, A.; Barone, E.; Gristina, L. Cover crop management and water conservation in vineyard and olive orchards. Soil Tillage Res. 2021, 208, 104896. [Google Scholar] [CrossRef]
- Keesstra, S.; Nunes, J.; Novara, A.; Finger, D.; Avelar, D.; Kalantari, Z.; Cerdà, A. The superior effect of nature based solutions in land management for enhancing ecosystem services. Sci. Total Environ. 2018, 610–611, 997–1009. [Google Scholar] [CrossRef]
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef]
- Isbell, F.; Adler, P.R.; Eisenhauer, N.; Fornara, D.; Kimmel, K.; Kremen, C.; Letourneau, D.K.; Liebman, M.; Polley, H.W.; Quijas, S.; et al. Benefits of increasing plant diversity in sustainable agroecosystems. J. Ecol. 2017, 105, 871–879. [Google Scholar] [CrossRef]
- Finn, J.A.; Suter, M.; Haughey, E.; Hofer, D.; Lüscher, A. Greater gains in annual yields from increased plant diversity than losses from experimental drought in two temperate grasslands. Agric. Ecosyst. Environ. 2018, 258, 149–153. [Google Scholar] [CrossRef]
- Danso-Abbeam, G. Crop diversification and multidimensional poverty in rural Ghana: The empirical linkages. Sustain. Fut. 2025, 10, 101122. [Google Scholar] [CrossRef]
- Beillouin, D.; Ben-Ari, T.; Malézieux, E.; Seufert, V.; Makowski, D. Positive but variable effects of crop diversification on biodiversity and ecosystem services. Glob. Change Biol. 2021, 27, 4697–4710. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, J.; Beillouin, D.; Lambers, H.; Yang, Y.; Smith, P.; Zeng, Z.; Olesen, J.E.; Zang, H. Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers. Nat. Commun. 2022, 13, 4926. [Google Scholar] [CrossRef]
- Yang, X.; Steenhuis, T.S.; Davis, K.F.; van der Werf, W.; Ritsema, C.J.; Pacenka, S.; Zhang, F.; Siddique, K.H.M.; Du, T. Diversified crop rotations enhance groundwater and economic sustainability of food production. Food Energy Secur. 2021, 10, e311. [Google Scholar] [CrossRef]
- Wang, S.; Xiong, J.; Yang, B.; Yang, X.; Du, T.; Steenhuis, T.S.; Siddique, K.H.M.; Kang, S. Diversified crop rotations reduce groundwater use and enhance system resilience. Agric. Water Manag. 2023, 276, 108067. [Google Scholar] [CrossRef]
- Tamburini, G.; Bommarco, R.; Wanger, T.C.; Kremen, C.; van der Heijden, M.G.A.; Liebman, M.; Hallin, S. Agricultural diversification promotes multiple ecosystem services without compromising yield. Sci. Adv. 2020, 6, eaba1715. [Google Scholar] [CrossRef] [PubMed]
- Himmelstein, J.; Ares, A.; Gallagher, D.; Myers, J. A meta-analysis of intercropping in Africa: Impacts on crop yield, farmer income, and integrated pest management effects. Int. J. Agric. Sustain. 2016, 15, 1–10. [Google Scholar] [CrossRef]
- Jones, S.K.; Sánchez, A.C.; Juventia, S.D.; Estrada-Carmona, N. A global database of diversified farming effects on biodiversity and yield. Sci. Data 2021, 8, 1–6. [Google Scholar] [CrossRef]
- Kamau, H.; Roman, S.; Biber-Freudenberger, L. Nearly half of the world is suitable for diversified farming for sustainable intensification. Commun. Earth Environ. 2023, 4, 446. [Google Scholar] [CrossRef]
- Chopin, P.; Blazy, J.C.; Guindé, L.; Tournebize, R.; Doré, T. A novel approach for assessing the contribution of agricultural systems to the sustainable development of regions with multi-scale indicators: Application to Guadeloupe. Land Use Policy 2017, 62, 132–142. [Google Scholar] [CrossRef]
- Cheung, W.W.L.; Rondinini, C.; Avtar, R.; van den Belt, M.; Hickler, T.; Metzger, J.P.; Scharlemann, J.P.W.; Velez-Liendo, X.; Yue, T.X. Linking and harmonizing scenarios and models across scales and domains. In IPBES: The Methodological Assessment Report on Scenarios and Models of Biodiversity and Ecosystem Services; Ferrier, S., Ninan, K.N., Leadley, P., Alkemade, R., Acosta, L.A., Akçakaya, H.R., Brotons, L., Cheung, W.W.L., Christensen, V., Harhash, K.A., et al., Eds.; Secretariat of the Intergovernmental Science-Policy Platform for Biodiversity and Ecosystem Services: Bonn, Germany, 2016; Available online: https://files.ipbes.net/ipbes-web-prod-public-files/downloads/pdf/2016.methodological_assessment_report_scenarios_models.pdf (accessed on 29 August 2025).
- Huang, H.; Yang, L.; Zhang, L.; Pu, Y.; Yang, C.; Wu, Q.; Cai, Y.; Shen, F.; Zhou, C. A review on digital mapping of soil carbon in cropland: Progress, challenge, and prospect. Environ. Res. Lett. 2022, 17, 123004. [Google Scholar] [CrossRef]
- McBratney, A.; de Gruijter, J.; Bryce, A. Pedometrics timeline. Geoderma 2019, 338, 568–575. [Google Scholar] [CrossRef]
- Burrough, P.A. Principles of Geographical Information Systems for Land Resources Assessment; Clarendon Press: Oxford, UK, 1986. [Google Scholar]
- Watson, D.F. Contouring: A Guide to the Analysis and Display of Spatial Data; Pergamon Press: Oxford, UK, 1992. [Google Scholar]
- Shmueli, G.; Bruce, P.C.; Stephens, M.; Patel, N.R. Data Mining for Business Analytics: Concepts, Techniques, and Applications with JMP Pro, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Smith, J.; Gottschalk, P.; Bellarby, J.; Richards, M.; Nayak, D.; Coleman, K.; Hillier, J.; Flynn, H.; Wattenbach, M.; Aitkenhead, M.; et al. Model to Estimate Carbon in Organic Soils—Sequestration and Emissions (ECOSSE). User-Manual. 2010. Available online: https://www.abdn.ac.uk/staffpages/uploads/soi450/ECOSSE%20User%20manual%20310810.pdf (accessed on 30 October 2025).
- Begum, K.; Zornoza, R.; Farina, R.; Lemola, R.; Alvaro-Fuentes, J.; Cerasuolo, M. Modeling soil carbon under diverse cropping systems and farming management in contrasting climatic regions in Europe. Front. Environ. Sci. 2022, 10, 819162. [Google Scholar] [CrossRef]
- Duveiller, G.; Donatelli, M.; Fumagalli, D.; Zucchini, A.; Nelson, R.; Baruth, B. A dataset of future daily weather data for crop modelling over Europe derived from climate change scenarios. Theor. Appl. Climatol. 2017, 127, 573–585. [Google Scholar] [CrossRef]
- Heuvelink, G.B.M.; Webster, R. Modelling soil variation: Past, present and future. Geoderma 2001, 100, 269–301. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Hengl, T.; MacMillan, R.A. Predictive Soil Mapping with R; OpenGeoHub Foundation: Wageningen, The Netherlands, 2019; Available online: https://soilmapper.org/statistical-theory.html (accessed on 25 November 2025).
- Olaya, V. Basic Land-Surface Parameters. In Geomorphometry: Concepts, Software, Applications; Hengl, T., Reuter, H.I., Eds.; Developments in Soil Science; Elsevier: Amsterdam, The Netherlands, 2006; Volume 33, pp. 141–169. [Google Scholar]
- Wilson, J.P.; Gallant, J.C. (Eds.) Terrain Analysis—Principles and Applications; John Wiley & Sons, Inc.: New York, NY, USA, 2000. [Google Scholar]
- Anders, N.S.; Seijmonsbergen, A.C.; Bouten, W. Multi-Scale and Object-Oriented Image Analysis of High-Res LiDAR Data for Geomorphological Mapping in Alpine Mountains. In Proceedings of the Geomorphometry, Zurich, Switzerland, 31 August–2 September 2009; pp. 61–65. [Google Scholar]
- Prima, O.D.A.; Echigo, A.; Yokoyama, R.; Yoshida, T. Supervised landform classification of Northeast Honshu from DEM-derived thematic maps. Geomorphology 2006, 78, 373–386. [Google Scholar] [CrossRef]
- Yokoyama, R.; Shirasawa, M.; Pike, R.J. Visualizing topography by openness: A new application of image processing to digital elevation models. Photogramm. Eng. Remote Sens. 2002, 68, 257–265. [Google Scholar]
- Boehner, J.; Koethe, R.; Conrad, O.; Gross, J.; Ringeler, A.; Selige, T. Soil Regionalisation by Means of Terrain Analysis and Process Parameterisation. In Soil Classification 2001; Micheli, E., Nachtergaele, F., Montanarella, L., Eds.; Research Report No. 7, EUR 20398 EN; European Soil Bureau: Luxembourg, 2002; pp. 213–222. [Google Scholar]
- Boehner, J.; Selige, T. Spatial prediction of soil attributes using terrain analysis and climate regionalisation. In SAGA—Analysis and Modelling Applications; Boehner, J., McCloy, K.R., Strobl, J., Eds.; Goettinger Geographische Abhandlungen: Goettingen, Germany, 2006; Volume 115, pp. 13–28. [Google Scholar]
- Gallant, J.C.; Dowling, T.I. A multiresolution index of valley bottom flatness for mapping depositional areas. Water Resour. Res. 2003, 39, 1347–1359. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef]
- Ewert, F.; van Ittersum, M.K.; Heckelei, T.; Therond, O.; Bezlepkina, I.; Andersen, E. Scale changes and model linking methods for integrated assessment of agri-environmental systems. Agric. Ecosyst. Environ. 2011, 142, 6–17. [Google Scholar] [CrossRef]
- Hengl, T.; Mendes de Jesus, J.; Heuvelink, G.B.M.; Ruiperez Gonzalez, M.; Kilibarda, M.; Blagotić, A.; Shangguan, W.; Wright, M.N.; Geng, X.; Bauer-Marschallinger, B.; et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 2017, 12, e0169748. [Google Scholar] [CrossRef] [PubMed]
- Suleymanov, A.; Abakumov, E.; Suleymanov, R.; Gabbasova, I.; Komissarov, M. The Soil Nutrient Digital Mapping for Precision Agriculture Cases in the Trans-Ural Steppe Zone of Russia Using Topographic Attributes. ISPRS Int. J. Geo-Inf. 2021, 10, 243. [Google Scholar] [CrossRef]
- Roma, E.; Laudicina, V.A.; Vallone, M.; Catania, P. Application of Precision Agriculture for the Sustainable Management of Fertilization in Olive Groves. Agronomy 2023, 13, 324. [Google Scholar] [CrossRef]
- Qaswar, M.; Mouazen, A.M. Precision application of combined manure, compost and nitrogen fertilizer in potato cultivation using online vis-NIR and remote sensing data fusion. Smart Agric. Technol. 2025, 12, 101328. [Google Scholar] [CrossRef]
- Nicholls, C.I.; Altieri, M.A.; Vazquez, L. Agroecology: Principles for the Conversion and Redesign of Farming Systems. J. Ecosys. Ecograph. 2016, 1, 1–8. [Google Scholar] [CrossRef]
- Poeplau, C.; Don, A. Carbon sequestration in agricultural soils via cultivation of cover crops—A meta-analysis. Agric. Ecosyst. Environ. 2015, 200, 33–41. [Google Scholar] [CrossRef]
- Locatelli, J.L.; Del Grosso, S.; Silva Santos, R.; Hong, M.; Gurung, R.; Stewart, C.E.; Cherubin, M.R.; Bayer, C.; Cerri, C.E.P. Modeling soil organic matter changes under crop diversification strategies and climate change scenarios in the Brazilian Cerrado. Agric. Ecosyst. Environ. 2025, 379, 109334. [Google Scholar] [CrossRef]
- Yan, Z.; Xu, Y.; Chu, J.; Guillaume, T.; Bragazza, L.; Li, H.; Shen, Y.; Yang, Y.; Zeng, Z.; Zang, H. Long-term diversified cropping promotes wheat yield and sustainability across contrasting climates: Evidence from China and Switzerland. Field Crops Res. 2025, 322, 109764. [Google Scholar] [CrossRef]
- Heiß, I.; Stegmann, F.; Wolf, M.; Volk, M.; Kaim, A. Supporting the spatial allocation of management practices to improve ecosystem services—An opportunity map approach for agricultural landscapes. Ecol. Indic. 2025, 172, 113212. [Google Scholar] [CrossRef]
- Oubdil, S.; Souiri, S.; Ajmani, S.; Nazih, A.; Mentag, R.; Benradi, F.; El Jalil, M.H. Characterization and GIS Mapping of the Physicochemical Quality of Soils in the Irrigated Area of Tafrata (Eastern Morocco): Implications for Sustainable Agricultural Management. Geographies 2025, 5, 66. [Google Scholar] [CrossRef]






| Predictor | Description | Reference |
|---|---|---|
| DEM | Digital elevation model, 25 m | https://land.copernicus.eu/user-corner/publications/eu-dem-flyer/at_download/file (accessed 22 September 2025) |
| CPROF | Profile curvature | [43] |
| DEVMEAN | Deviation from the mean value—Relations of each grid cell to its neighbourhood | [44] |
| OPENN, OPENP | Topographic openness indicates the degree of dominance (positive) or enclosure (negative) at a specific site and is linked to the extent of the visible landscape from a given point | [45,46,47] |
| SLOPE | Slope | [43] |
| TWI | The “SAGA Wetness Index” is similar to the “Topographic Wetness Index”, but it relies on a modified catchment area computation that does not treat flow as a thin film. For cells located on valley floors with minimal vertical distance to a channel, it predicts higher and more realistic potential soil moisture than the conventional TWI calculation | [48,49] |
| VBF | Combination of a “multiresolution index of valley bottom flatness” (MRVBF) and the complementary “multiresolution index of the ridge top flatness” (MRRTF) | [50] |
| VDEPTH | Valley depth, determined as the difference between the elevation and an interpolated ridge level | [43] |
| NIR | Landsat8 OLI band 4, 30 m | [51] |
| RED | Landsat8 OLI band 3, 30 m | [51] |
| SW1 | Landsat8 OLI band 5, 30 m | [51] |
| SW2 | Landsat8 OLI band 7, 30 m | [51] |
| TREECOVER | Tree cover in 2000, defined as the canopy closure of all vegetation exceeding 5 m in height, 30 m | [51] |
| BARESOIL | Global bare ground cover obtained from annual seamless composites of Landsat 7 ETM+ per band using the median reflectance of all cloud- and shadow-free observations during the growing season, 30 m | [51] |
| Count | Min | Max | Mean | St Dev | Var | Skewness | Kurtosis |
|---|---|---|---|---|---|---|---|
| 24 | 7.36 | 15.85 | 10.35 | 1.77 | 3.14 | 1.18 | 2.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piccini, C.; Vanino, S.; Di Bene, C.; Marchetti, A.; Farina, R. Evaluation of TOC Change Scenarios in Cropping Systems with and Without Diversification Across Different Scales: Insights from a Northern Italian Case Study. Sustainability 2025, 17, 10823. https://doi.org/10.3390/su172310823
Piccini C, Vanino S, Di Bene C, Marchetti A, Farina R. Evaluation of TOC Change Scenarios in Cropping Systems with and Without Diversification Across Different Scales: Insights from a Northern Italian Case Study. Sustainability. 2025; 17(23):10823. https://doi.org/10.3390/su172310823
Chicago/Turabian StylePiccini, Chiara, Silvia Vanino, Claudia Di Bene, Alessandro Marchetti, and Roberta Farina. 2025. "Evaluation of TOC Change Scenarios in Cropping Systems with and Without Diversification Across Different Scales: Insights from a Northern Italian Case Study" Sustainability 17, no. 23: 10823. https://doi.org/10.3390/su172310823
APA StylePiccini, C., Vanino, S., Di Bene, C., Marchetti, A., & Farina, R. (2025). Evaluation of TOC Change Scenarios in Cropping Systems with and Without Diversification Across Different Scales: Insights from a Northern Italian Case Study. Sustainability, 17(23), 10823. https://doi.org/10.3390/su172310823

